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ABSTRACT

This report defines a framework for comparing dynamic traffic models. It emphasizes four
dimensions: functionality, traffic dynamics, route choice dynamics, and overall network
performance. The first dimension compares the models through a check-list of model
functions. Regarding the last three comparison dimensions, a total of five networks and
twelve scenarios are defined. These test scenarios are designed to accentuate model properties
and differences. Also included in this report are a list of performance measures for

comparison purposes, and a discussion of the interpretation of results.

Keywords: Traffic Models Comparison, Traffic Simulation, Dynamic Traffic

Assignment

ii



EXECUTIVE SUMMARY

This report is part of a series of three that covers the scope of study for MOU 148--Traffic
Models Comparison and Origin-Destination Sensitivities. Part I, reported herein, provides the
background information regarding the development of traffic models, and defines in detail
the comparison framework and test scenarios. Parts II and III, to be finished, will provide the
comparison results among the four models selected for this study and the impact of

perturbations to origin-destination data, respectively.

This report first provides an overview of the philosophy of dynamic route choice model
development, highlights the different approaches, and reviews the four models selected for
this study--INTEGRATION, DYNASMART, DINOSAUR, and METS. This background

information helps delimit appropriate expectations and limitations of these models.

We then developed a comparison framework that encompasses four dimensions:
functionality, traffic dynamics, route choice dynamics, and overall network performance. For
comparison purposes, a check-list of model functions, detailed definitions of the test networks
and scenarios for each of the comparisons, the criteria or measures to be produced, and a

discussion of the interpretation of results were provided. This comparison framework is
designed to be generic so that it permits a comparison among other traffic models.

. . .
111
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1. INTRODUCTION

Ever since the proposal of Intelligent Transportation Systems (ITS) as potential tools for
mitigating this country’s transportation problems, Advanced Transportation Management
and Information Systems (ATMIS) have always been considered as crucial elements. It is
expected that, by using advanced computing, processing, and communication technologies,
ATMIS will be instrumental in relieving both recurrent and non-recurrent congestion.

The crux of ATMIS relies on its ability to generate, analyze, simulate, and select reactive or

proactive traffic management strategies. These abilities are predicated on the development of
dynamic traffic models (DTM). Such models may be developed for planning purposes--
analyzing what-if scenarios, supporting cost-effective studies by modeling the impacts of

installing new facilities fine-tuning signal control strategies, evaluating and eventually

implementing route guidance strategies, etc. Unfortunately, it is generally accepted that

existing DTMs  lag behind the sophistication of technological and hardware capabilities
(Mahmassani and Chang, 1992). There is no existing model that can fully support the uses and

needs of ATMIS. Realizing this gap, the Federal Highway Administration (FHWA) has

developed a five-year program plan to strengthen existing and develop new DTMs  (Santiago,

1993).

Perhaps observing the same need, the California Department of Transportation (Caltrans) in
the past few years has provided partial support for the development of a number of DTMs,
including DYNASMART (University of California, Irvine), METS (Cal Poly, San Luis Obispo),

DINOSAUR (PATH Program), and WATSIM (University of California, Berkeley). All of these
models are still being actively refined. Nevertheless, it is important to ascertain what they
have accomplished so far and highlight future improvements. The objective of this report is to

review these DTMs  and set up an appropriate framework and suitable scenarios for their
comparison. The focus here is not to assess “which is a better model per se”, but rather, to shed
light on “the context where they may be applicable”, and to point out their current limitations,
so that future development efforts can be directed. Due to time and resource constraints, we

3
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did not finish a complete evaluation of all the four DTMsi;  only DYNASMART and
DINOSAUR, and partially METS were included. Due to its prevalence in the general DTM

community and role in assessing the Smart Corridor project in Southern California, we also
included INTEGRATION in this comparison.

These four DTMs--DYNASMART,  DINOSAUR, METS, INTEGRATION--were motivated by
similar purposes. All of them attempt to replicate or represent traffic flows in a network. All of
them focus on incorporating route choice decisions or behavior in their model@  approaches.
None of them specializes in signal optimization, transportation demand analysis, mode and

departure time decisions, although these parameters are used as exogenous input. Finally, all
of them are developed as off-line evaluation tools. For convenience, we classify them as
Dynamic Route Choice Traffic Models (DRCTM). In general, in addition to the four models

studied here, DTMs  belong to this group include INTRAS,  THOREAU, FREQ, DYMOD,

NETSIM, CORQ, etc. (See, for example, Gardes and May, 1990). This scope helps establish a
meaningful and fair comparison framework. As described in more detail in Section 2, the

comparison framework examines these four aspects: functional, traffic dynamics, route choice
dynamics, and overall network performance. Although in this study the four models are

compared through this framework, the framework and scenarios are designed to be generic

enough for comparing other DRCTMs too.

This report is part of a series of three that covers the scope of study for MOU 148--Traffic
Models Comparison and OD Sensitivities. Part I, reported herein, provides background
information regarding the development of traffic models, and defines in detail the comparison

framework and test scenarios. Parts II and III, to be finished, will provide the comparison
results among the four models selected for this study and the impact of perturbation to OD

data, respectively.

The rest of this Part I report is organized as follows. Section 2 discusses general approaches for

developing DRCTMs,  and the history of each of the four models chosen for this study. Section

1 The revised version of NETSIM was not yet operational at the time of our assessment.

2
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3 delineates the comparison framework together with the detailed comparison scenarios.

Finally, Section 4 provides some summary remarks.

2. DYNAMIC ROUTE CHOICE TRAFFIC MODEL DEVELOPMENT

Before we embark on comparing the models, it is necessary to establish some understanding

of the philosophy behind dynamic route choice model development, so as to form appropriate

expectations. In this section, we provide an overview of DRCTM development, and then a

discussion of each of the four models studied in this project.

In general, there are two well-accepted approaches for DRCTM development: simulation-

based and analytical-based. The first approach emphasizes the ability to model vehicular
flows microscopically. The crux of this approach involves a simulation engine to model

vehicle movements. Two types of input are necessary to drive the simulation engine. The first

type is microscopic vehicle movement characterizations, such as vehicle lane-changing and
lane-following rules, and queue formation and dissipation. The second is route choice and/or

turning movements. Most simulation-based models would explicitly address the modeling of
queues. On the other hand, lane-changing and lane-following behavior are largely an open

research topic due to the lack of good data.

For the second input type, earlier generations of simulation models generally use a set of

intersection turning percentages to direct vehicle flows. This may be appropriate if one is

interested in analyzing intersection signal performance alone. However, if the objective is to
analyze route guidance performance, the notion of “route” must be explicitly represented. To
rectify this shortcoming, most simulation-based models have added a “path-processor” to

derive vehicle routes for each origin-destination pair. For example, recently, Caltrans has

sponsored a project to add this capability to NETSIM. These path-processors mostly adopt

simple concepts of route derivations, such as shortest time path or K-shortest time paths. More
advanced approaches use these path processors in combination with a concept of “bounded



Draft: A Comparison of Traffic Models: Part I Framework 4
- - - -“,, -...“l.----.I~.,.,.,,~

rationality”* to model dynamic route switching (Chang and Mahmassani, 1988). Whether the

notions of shortest time path and bounded rationality are good characterizations of route
choice behavior are open to discussion and debate. It is sufficient here to highlight that route
choice characterization is one of the crucial elements for defining simulation-based models.

We also note two points generic to all simulation-based models. The first is that simulation-
based models are essentially descriptive, not prescriptive tools. They portray the results of
certain traffic management strategies, but do not prescribe what traffic management strategies
ought to be. The second is their lack of solution properties. Simulation-based models produce

one realization per run out of a large space of probable realizations. By carefully ensuring that
the system has been “warmed up” before collecting statistics, and by obtaining results from
multiple runs with different random seed numbers, and so forth, meaningful results can still

be obtained at an aggregate link or network level in terms of averages and standard
deviations. (However, it is too often the case that people run the simulation once and

generalize the results as representative of the network.) This lack of solution properties means
that one has to be extremely carefully in generalizing results, because results learned from one
case may not be transferable to other cases. It also implies that bounding analyses are not

possible with simulation; one cannot tell whether the system has achieved optimality.

DRCTM may also be developed based on an analytical approach, which is a relatively new

research area. The solutions thus obtained have well-defined and understood properties. If the
solution is obtained under an user-equilibrium condition, then the system is in equilibrium. If
the solution is defined for an system optimal condition in which the objective is to minimize

system travel time, then the system has a minimal travel time. Because the solution can be

obtained in an “operator-defined” manner, the model can be used for both prescriptive or
descriptive purposes. In the context of route guidance, this approach can be used to model the
cases where the route plan is calculated either in the vehicle or at a centralized location, while
the simulation-based approach can only model the first or “in-vehicle” case. The disadvantage

of this approach is that it requires the development of new theories and fast solution

2 That drivers will switch routes only when the difference between the new and current paths is greater
than a certain user-defined threshold.

4
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algorithms. Some examples of these models include DINOSAUR by (Ran, Lo, and Boyce,

1996) and DYMOD by (Janson,  1991). The other shortcoming is that since these models are
formulated based on mathematical programs, adding vehicle dynamics such as queuing and
lane-changing behavior is very difficult. For this reason, analytical-based DRCTM are all

macroscopic3.

These two approaches--simulation and analytical based--have their strengths and weaknesses.
They may be useful and appropriate for different purposes of the analysis. In this study, we
intend to illustrate and highlight these differences, so that users of these models can interpret

model results in a more appropriate way. In the following, we provide some brief background

for each of the models selected for this study.

2.1 INTEGRATION

The development of INTEGRATION began in 1984, as a result of the doctoral thesis of Van
Aerde at the University of Waterloo in Canada. INTEGRATION was first developed as a
research tool to analyze the operations of an integrated network, particularly traffic routing

between freeways and surface streets during recurrent and non-recurrent congestion. The

first version was completed in 1988. INTEGRATION contributed toward integrating the

simulation of freeways and surface streets in a single platform; traffic models in the 70’s and
80’s treated these two types of simulations separately, despite their close interactions.

INTEGRATION became commercially available in 1992 and since then, it has been updated
continuously, with more features added. The most recent version (Version 1.5x3D,  released in

3 Based on the level of detail in vehicle representation, DTM may be classified as macroscopic,
microscopic and mesoscopic. Macroscopic models consider the average traffic stream characteristics
(flow, speed, density) or vehicle packets. In contrast, microscopic models consider the characteristics of
each individual vehicle (location, speed, acceleration, etc.) and its interactions with other vehicles in the
traffic stream. Mesoscopic models utilize aggregate traffic flow characteristics to derive macroscopic
characteristics, while still tracking individual vehicles.

5
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February 1995) permits the user to define the routing characteristics of up to seven types of

driver information systems. The routing characteristics are defined by these parameters:

routing strategy, source and quality of traffic information, and link access permissions.
Together with a parameter to define the information update frequency, INTEGRATION is

arguably one of the most comprehensive models to simulate Advanced Transportation

Information Systems (ATIS) (Gardes and May, 1990).

INTEGRATION is a time-based simulation model. Vehicles are modeled as individual entities
with self-assignment capabilities. Vehicle movements are simulated by combining results

from macroscopic speed-density-flow relationships as well as explicit queuing delays, while
microscopic lane-changing and -following characteristics are not modeled4.  Therefore, the
model is often classified as mesoscopic-between macroscopic and microscopic. This design
speeds up the code substantially. Route choice is primarily based on the concept of shortest
path for individual vehicles. Multiple path equilibrium assignment is only available for the

static case, which may not be appropriate for dynamic traffic simulation.

In addition to ATIS  parameters and network representation, input to the model include
dynamic origin-destination (OD) demands, s ignal  t iming plan+,  and inc ident .

INTEGRATION generates statistics on link flows and queues, total network travel times, etc.
It also provides on-screen animation of vehicle movements as the simulation proceeds.

There are a number of articles written about INTEGRATION, including Van Aerde (1992,

1994). Interestingly, there is also a critic by Yagar (1993). These articles provide a more
comprehensive overview of the model.

4 The most recent version (which was not tested here) can model microscopic properties such as lane
changing and vehicle following logic. See Van Aerde (1996).
5 The later versions can generate signal timing plans: Webster and Cobbe  algorithm for Isolated
intersections, and a corridor optimization scheme for coordinated intersections.

6
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2.2 DYNASMART

DYNASMART (mnamic Network &signment  Simulation Node1 for Advanced Road
Telematics)  was officially named in 1992. An earlier version of the code was part of
Jayakrishnan’s doctoral thesis with Mahmassani at the University of Texas, Austin (1988-
1991). Most of the current version of DYNASMART was developed later on (1990-1992) by
Mahmassani, Hu, and others at the University of Texas, Austin, through FHWA support, and
Jayakrishnan, subsequently at University of California, Irvine, through Caltrans support.

DYNASMART was developed for research purposes and has never been commercially
available.

DYNASMART is a simulation-based model specifically developed for studying the
effectiveness of alternative information-supplying strategies, traffic control measures and

route assignment rules at the network level. It does not attempt to find optimal configurations
of ATMIS; it only simulates the effectiveness of a given configuration.

DYNASMART uses a link-node configuration to represent networks and simulates traffic

through a time-based approach. Although macroscopic flow models are used, vehicle
movements are captured individually, making DYNASMART mesoscopic in scope. There are
seven types of driver (behavior) classes differing by vehicle type, network restrictions and
information availability. DYNASMART models driver response to ATIS information with
boundedly-rational behavior rules. It has extensive path processing capabilities such as the
determination of time-dependent k-shortest paths. Recently, Jayakrishnan has added a front-

end processor to facilitate data input as well as a post-processor for displaying results.

Developers of DYNASMART have also linked the model with a set of network assignment
modules to simulate user-optimal or user-equilibrium patterns. However, in the version that

we received from University of California, Irvine, such capabilities were absent, and many of
the parameters were hard-coded. Because of this, it should be noted that this partial version of
DYNASMART prevented us from testing the model for the entire set of scenarios.
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There are a number of articles written about DYNASMART, including publications from

University of Texas, Austin’s Center for Transportation Research (1994),  and Mahmassani et
al. (1992,1993),  Hu and Mahmassani (1995),  and Jayakrishnan et al (1994).

2.3 DINOSAUR

DINOSAUR (Dynamic Information Network Optimizer for System and User Requirements) is

a macroscopic dynamic traffic network model based on analytical approaches. A prototype of
DINOSAUR was first developed as part of Ran’s Ph.D. Thesis at University of Illinois, in 1993.
Part of DINOSAUR development effort has also been sponsored by Caltrans through PATH,
especially toward its testing, revision and enhancement. The model continues to be updated
with added ATMIS modeling capabilities, such as multiple user classes, congestion pricing,

signal control, etc.

DINOSAUR was developed for and continues to be used for research purposes. Its guiding
vision was to be used to provide dynamic user-optimal or dynamic user-equilibrium route
travel times and traffic flows. While DINOSAUR is macroscopic in scope, it also models some

more detailed traffic network characteristics, such as delay functions for signalized arterials.

DINOSAUR models driver choice with three traveler classes: those following pre-specified,
externally-generated routes, those with partial or imperfect information (unguided) and those

with information (guided). This consideration of information in driver choice, along with
DINOSAUR’s ability to generate equilibrated route travel times under both recurrent and
nonrecurrent congestion, give it strong potential to be applied in future ATMIS systems.

DINOSAUR uses approaches based on variational inequality, optimal control and non-linear

programming for its formulation and solution methods. The solution approach uses an
iterative procedure to find the dynamic user-optimal state for the network traffic through the
creation of an time-space expanded network. The iterations will stop when user-specified
convergence criteria are met.

8
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DINOSAUR provides an analytical framework for studying the integration or interaction
between route guidance and signal control, or network performance with departure time and
mode choice models. Mathematically, these interactions can be formulated with relative ease.

The greatest drawback lies in its computational requirements. Coupling these functions in the
modeling framework may require formidable effort in arriving at solutions. Speeding up the

code will continue to be an aspect that requires substantial research. References for
DINOSAUR can be found in Ran (1993), Ran and Boyce (1994),  and Ran, Lo and Boyce (1996).

2.4 METS

METS (Mesoscopic  Event-based Traffic Simulator) was developed with Caltrans support
under the direction of Hockaday and Sullivan at California Polytechnic State University at San
Luis Obispo in 1994. It is a simulation-based model that is mesoscopic is scope; individual

vehicles are tracked through the network with their following distances determined by

macroscopic traffic characteristics.

METS uses “linked sections,” rather than a traditional links and nodes, to represent networks.

The simulated road system is divided into sections of road with uniform traffic characteristics

and no branches or merges. Branches (divergence) and merges occur only at the beginning

and end of links. This approach eliminates the need to store information on intermediate
nodes as required by the link-node approach. In addition, each section may have a certain

cost associated with it such as to reflect congestion pricing or toll roads. Information related
to “nodes,” such as arterial intersections or control methods, can be stored in an “intersection

file.”

The overriding design objective behind METS appears to keep the program small, flexible and

to allow user interaction. While METS can handle 1024 origins and 1024 destinations, each
origin and destination can be further broken up into “neighborhoods” to and from which the
traffic flow can be randomly generated or directed to. With this compromise method, over
10,000 origin neighborhoods and 10,000 destination neighborhoods can be handled,
effectively resulting in an O/D matrix with 100,000,000  entries.
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METS also incorporates randomness into its calculations of route choice. METS records an
individual destination for each vehicle as well as turn-ratio probabilities for each divergence.
Turning movements for each vehicle are microscopically determined by a Monte Carlo choice
of a down stream link. METS allows a different path choice for each type, static or dynamic.
Static types rely on turning ratios provided and updated by the user, while dynamic types
rely on METS to update their turning movements based on the current status of the network.

METS has no predefined driver classes (behavior type); these must be defined by the user by
specifying whether it is static or dynamic, the percent of time this type will obey the route
choice instructions, how it evaluates the cost of traveling each section, turning ratios (if the
type is static) and whether the TMC can assert control over that vehicle. A typical METS run

has lO+ behavior types.

METS is event-driven to allow for faster execution and more flexible design. Each event
points to its own event-handling function. There are events to advance vehicles from link to

link, to introduce new vehicles at origin points and to update shortest-path values as the

simulation progresses. These events are held in a standard priority queue in order of their

time-stamp. This queue is implemented as a balanced heap to speed up simulation execution.

METS can also be executed in controlled, time-based “steps,” with the smallest being 0.1 of a
second. No user interaction is allowed to take place during the execution of steps, but

between them, the user can collect data, change parameters, introduce incidents, or save the
current state as a “snapshot” from which to start future executions. The references for METS
include Hockaday and Sullivan (1994) and Staley, Sullivan and Wormley (undated).

2.5 Summary

INTEGRATION, DYNASMART, and METS may be classified as mesoscopic traffic simulation
models, though they may have different granularity of traffic flow representation.
INTEGRATION and DYNASMART both use a time-based simulation approach and a

10
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traditional node-link approach to represent a network. They also have a number of route

derivation rules and can model a number of vehicle classes. In both cases, the notion of
“route” is explicitly captured and modeled. METS, on the other hand, is different from

INTEGRATION and DYNASMART in a number of ways. First, it is an event-based
simulation model. Second, METS uses the concept of link alone; node is not explicitly
modeled. Both of these designs are intended to speed up the code, and save memory

requirements. More importantly, METS relies on turning percentages at intersections to direct
vehicle flows. The notion of “route”, though may be used to derive the turning percentages, is
not simulated directly. It is not possible to track or enforce the routes to be followed by
individual vehicles. Depending on the purpose of the simulation, this design may prove to be
an important deficiency for modeling ATIS  scenarios. For modeling other functions such as
signal control, it may be an efficient design, however. It is sufficient to highlight that there is

potentially a tradeoff consideration here.

DINOSAUR is developed from a totally different approach. It is based on analytical

approaches, which intrinsically cannot model traffic characteristics microscopically.
However, it has other nice properties as mentioned earlier. The important point to determine
is whether the output from these different models are comparable at coarser levels of

aggregation. In other words, will results from these models agree with each other at an
overall network level, link level, or queue level? Will they identify the same “hot” spots at

about the same time?

3. MODEL COMPARISON FRAMEWORK

We propose a framework for comparing dynamic route choice traffic models (DRCTMs) in

this section. This comparison framework is intended to be generic so that it can be applied for

other DRCTMs comparison. Three dimensions are highlighted in this framework:

functionality comparison, traffic dynamics comparison, route choice comparison, and finally
overall network performance Comparison.

11
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Functionality comparison addresses the features and ways of modeling as claimed by the

model developers. Note however that since most DRCTMs  are undergoing constant upgrades,
features claimed may not necessarily imply their availability at the present moment.
Sometimes, a check may simply mean that the model framework permits such development
in the future. As such, by no means should this comparison be used as a rigorous approach to

assess a model. This comparison, however, may provide a quick overview of what each model
is intended to include. The detail of this comparison is discussed in Section 3.1.

Traffic dynamics comparison focuses on whether the model can accurately represent vehicle
flows at an aggregate level. Speed-flow-density relationships at a link level are to be
compared, while microscopic behavior such as Lane-changing and vehicle-following will not
be included. To achieve this goal, a few simple networks are constructed. They are simple

enough that detailed tracking of vehicle flows are possible. This in turn permits an easier
understanding of the results. Section 3.1.1 provides a more detailed discussion of this
comparison.

The third comparison examines how the model determines route choices. Does it use user-

optimal or system-optimal criteria, shortest path concepts, or others. Since route choice is
critical in deriving the underlying traffic flows in a network, one should have a good
understanding of this component before examining the results. Section 3.3 provides a detailed
description of this comparison.

Finally, the fourth comparison pertains to overall network performance. Ultimately, we want

to see if the models are comparable among themselves when applied to a realistic network.
Will the randomness effect due to larger network size and more origin-destination flows even

out the discrepancies highlighted in the traffic dynamics and route choice comparisons? Here
we have to select a network that balances this effect of size with the tractability of results, We

then define a comparison scheme that is according to the need and intention of using the
models. Detail is discussed in Section 3.4.

12
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3.1 Functionality Comparison

We set up the comparison of functionality features by five aspects, as addressed in each of the
following subsections. This comparison is intended to classify the capabilities of the models as

claimed in modeling traffic system functions. These functionality aspects include the

modeling of: network representation, traffic dynamics, multiple vehicle classes, ATIS
modeling capabilities, and ATMS modeling capabilities. A way to compare different DRCTMs
is to examine how they perform or model these functions.

3.1.1 Network Representation

An urban roadway network consists of both freeway and surface street systems. A DRCTM

should have the ability to model both systems. In the theory of network flows, a network is
usually represented as a collection of links and nodes. Each node represents a point in the
network. Each link represents the connection between two nodes. In representing an urban

roadway network, a node can be a physical point connecting two links ,such as an
intersection, or can be a centroid representing the location of traffic inflow (or outflow),
commonly known as origin (or destination). Traffic control attributes such as signals are often
associated with a node. Given the importance of signal control, the detail of which will be

further discussed in Section 3.1.5.

Generally, a link is defined on a roadway segment with homogeneous characteristics. Physical
link characteristics include length, saturation flow, free-flow speed, jam density, and number
of lanes. Sometimes, to enable the modeling of ATMIS, besides these characteristics, the
attributes of detectorization and lane usage (such as HOV or toll facility) are also specified at
the link level. In summary, the recommended, all DRCTMs should have a way of representing

these attributes:
1. Node Characteristics

a> Designation

i> Intersection
ii) Origin and destination
iii) Incident location

13
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2.

iv) CMS locations

b) Control attributes

9 Signal control

ii) Turning movement allowance/restriction

4 Physical attributes

9 mtersection  capacity or saturated flow

ii) Level or kind of detectorization

Link Characteristics

a> Control attributes

i> Lane usage (e.g., HOV, Bus lane, etc.)

b) Physical attributes

9 Length

ii) Saturation flow

iii) Free-flow speed

iv) Jam density

4 Number of lanes

vi) Level and kind of detectorization

There are variations in the association of attributes with the node and link characteristics. The

above list only provides a general approach for DRCTMs.  For example, some models associate

incident location at the link level rather than at the node level. And there are different
approaches for the association of detector placement; some at the node, others at the link level.

3.1.2 Traffic Dynamics

Traffic dynamics can be loosely defined as the evolution of traffic flow over time given a set of
OD demand and determined route choices. Depending on the purpose of the DRCTM, one
may wish to model traffic dynamics microscopically or macroscopically. A microscopic

DRCTM models the movements of each individual vehicle, including lane-changing and car-
following maneuvers, through a set of rules relating vehicle headway and movement

patterns. Given the nature of this approach, generally these models require intensive

computation, and simulation is the only possible approach.

14
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On the contrary, a macroscopic DRCTM models traffic flow through the collective or

aggregate movements of vehicle streams. A macroscopic approach typically uses these three
variables: speed (V), flow (F), and density (K), and the fundamental relationship: F=V*K. By

assuming a certain relation between two of the variables, the entire relationship between these
three variables is fully specified. Some well-known examples include the Greenshield
function, and subsequently the BPR (Bureau of Public Research) function. Given its analytical

representation of traffic flow, this approach is used in analytical DRCTMs.

As compared to the microscopic approach, the macroscopic approach offers much faster

computational time in deriving link performance measures. On the other hand, the
microscopic approach provides details that may be important for traffic dynamics modeling.
Naturally, it would be advantageous to combine these two approaches and exploit their

distinctively advantage. This results in the mesoscopic approach. In this approach, vehicle link
travel time is typically represented by two components: link travel time determined by a
macroscopic relationship, and intersection or node delay determined by simulating queues

microscopically. Other mesoscopic approaches are developed for trading off the requirements
for accuracy and computational effort. For example, instead of simulating and developing

vehicle headway microscopically and in each time instant, the headway can be pre-

determined and packaged in a standard length as derived from a macroscopic relationship.
This “standardized” headway is subsequently used in simulation to speed up computation.

In the following, a list of features for capturing traffic dynamics modeling is provided. By

checking this list against a model, the granularity of its ability to capture traffic dynamics can

be illustrated.

1. Model type

a> microscopic

b) mesoscopic

4 macroscopic
2. Detailed features captured

4 Lane changing

b) Car following

15
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4
4
4

f >

g)
h)
9

Acceleration/Deceleration patterns

Separate turning movements
Platoon progression

Merging
Weaving
Queue dynamics (on one link)
Queue spillback (on multiple links)

The detailed features listed in item 2. are not independent. Ideally a detailed modeling of lane-
changing and car-following should encapsulate features such as merging and weaving
automatically, while models that capture merging and weaving through a macroscopic
approach may not have lane-changing and car-following features. So features 2 a) and 2 b)

imply features 2 e), f), g), h), but not vice versa.

3.1.3 Multiple vehicle classes

To adequately model the transportation network, one must acknowledge the fact that there
are different vehicle classes operating simultaneously, and that they interact with one another.

To the extent that they are relevant and without adding unduly complexity, three major
classification schemes can be defined: physical characteristics, driver maneuvering behavior,

and travel choice behavior. Each scheme may be further subdivided according to the purpose

of the analysis.

The first category differentiates that bus, truck, auto, and HOV have different access
permissions to facilities, and different operational characteristics (such as requiring frequent

stops). Some macroscopic models assign numeric (usually greater than 1) auto-equivalency to
trucks and buses to represent their greater impedance on traffic flow. Microscopic models

sometimes assign different parameters to the car-following and lane-changing rules for trucks
and buses, or sometimes define a set of different rules for them.

The second category delineates driver maneuvering characteristics, as represented by the
different lane-changing and car-following rules. An example is that an “aggressive” driver

16
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may execute these rules at much tighter headway or gap than for an “average” driver. This

category is primarily applicable for microscopic approaches.

The last category is also the most complicated, which is grouped into the general heading of
travel choice behavior. Encapsulated in this category include destination choice, departure
time choice, route choice, and mode choice. Each of these choices can be expressed as a

relation to its decision inducement. Some examples of the inducements may include the
availability of traffic information, travel costs (the impact of congestion pricing may thus be

formulated), trip value, and early and late arrival penalty, etc. As one can see easily, there is a
host of factors that affects trip making and choices for mode, route and departure time. As a
broad framework, all travel choices are important for consideration. Regarding the focus of
this study, however, since most existing DRCTMs  assume given mode and departure time
choices, we emphasize route choice alone (knowing well that it is only part of the choice set).

Under route choice characteristics, one can further develop four subcategories to categorize
multiple classes of vehicles: (i) levels of traffic information availability, (ii) toll amount, (iii)

driver’s reaction to information and preferences, and (iv) system control. Traffic information
availability can be classified by the time dimension: instantaneous, or predictive; by

instructional types: descriptive (of what are the traffic conditions), or prescriptive (of how the
travelers ought to respond); and finally, by different accuracy levels. It also includes the case
where traffic information is not provided or available. Toll may be used as an input to route,

mode, and departure time models. One can also set different tolls to different vehicle classes.

Items (i) and (ii) may be connected with ATMIS strategies to model their impacts. Item (iii)

includes drivers’ reactions and preferences to these strategies, which contains factors such as

compliance to routing instructions, performance differences or “bounded rationality” to
trigger route switches, the intention to follow user-equilibrium (UE) or user optimal (UO)

route choices, and various biases for or against freeway and arterial. Finally, the fourth
category is reserved for routing strategies that achieve a system optimal solution. Although
this last strategy seems unlikely for day-to-day operations, situations such as emergency
evacuation may warrant an system control approach. So we reserve this as the fourth category
for modeling considerations.

17
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Other than approaches that explicitly model route choice, as driven primarily by the need to
model route guidance impacts, some existing models use an implicit way of modeling route
choice, such as using turning percentages at an intersection to direct traffic flow. Note that this
implicit approach cannot tag vehicles by their routes taken. There are also approaches that use

a cruder way of modeling route choice--assigning same OD demand onto the same route,
commonly known as “all-or-nothing”. Strictly speaking, this can be considered as a

degenerate case in which the entire system contains only one vehicle class (in terms of route
choice) and that vehicles share the same travel time by traveling on the same route. For

classification purposes, we put the above two approaches, which are based on convenient
modeling constructs rather than explicit route choice behavior, under the category of
miscellaneous.

In summary, modeling for multiple vehicle classes may include these features:

1. Physical characteristics

a> Auto

b) Truck

4 Bus

4 High occupancy vehicle (HOV)

2. Driver maneuvering Behavior

4 Aggressive, average, slow, etc.

3. Travel choice modeling

a> Mode Choice (out of scope of this study)

b) Departure time Choice (out of scope of this study)

4 Route choice

i> Traffic information availability for various vehicle classes

a> time scale: pre-trip, instantaneous, predictive information

b) instructional types: descriptive, prescriptive

4 information accuracy
ii) Preferential toll for different vehicle classes

a> dynamic/static tolling scheme (see Lo and Hickman, 1996)
iii) Traveler’s response and preferences

a> % compliance to routing instruction
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up the scenarios to facilitate the comparison of results across the models. This comparison is
still meaningful. If all models produce similar results, then model selection becomes an easier
task. One just needs to consider the cost of implementing a model, in terms of data input and
computational requirements. On the contrary, if the models produce very different results,
one must be careful in interpreting the results. A good understanding of the behavior of a
model could help users identify the validity of the ouput from the model.

3.4.1 Test Network

In general, there is no restriction on the types of networks to be selected for this comparison.

For the purpose of our study, since some models have restrictions on the network size and
number of vehicles generated, we cannot select a large network. For convenience, we use the

network depicted in the INTEGRATION user manual (Van Aerde, 1992),  referred to as QNET.

3.4.1.1 Network Topology

Figure 10 shows the topology of QNET. The origins include nodes 1, 4, 5, 6, 7, and the

destinations nodes 2 and 3. One can think of QNET as a typical network for a central business
district. There are two parallel routes linking the origins with the destinations. The network

used for this section is a modified version of the test network included in INTEGRATION
~1.5. This test network, dubbed QNET by the manual, is based on a corridor section of the
local road network in Kingston, Ontario, Canada. For our purposes, signals at the
intersections have been removed and the network has been changed to only permit flow in
one direction, except for the short connectors roads between the two main routes. There are 19

nodes, connected by 25 links. These links are mostly homogenous, sharing the same V-K

curve (flat), jam density, per lane capacity as used before (e.g. Table 2 and Table 5, and section
3.2.1) and only differ by the number of lanes and length per link. The upper route linking

nodes 1 and 2 simulates an arterial section and has only one lane along its length, as do the
aforementioned connector roads. The rest of the network is made up of 2 lane links. Table 7
summaries the link features.
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60

(21)

Figure 10 The network topology of QNET (not drawn to scale).

Table 7 Link Characteristics of QNET.

Link
No.

Length No. of Free Flow Speed at Capacity
(I4 Lanes speed Capacity (vph per

(mph) (mph) lane)

Jam
Density

1 0.884 1 2 1 60 1 60 1800 210 I
1800 210=I210

210

0.625 2 60 60
0.625 2 60 60
0.625 2 60 60

2
3 1800
4 1800

1800 210=I210
210

0.884 2 60 60
1.400 1 60 60
1.250 1 60 60

5
6 1800

18007
210=I210
210

8 1.250 1 60 60 1800
9 1.400 1 60 60 1800
10 0.938 2 60 60 1800
13 0.938 1 2 1 60 1 60 1800 210 I
12 0 . 5 0 0  1 1 60 60 1800 210 1
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3.4.1.2 Test Scenarios

Two scenarios are tested, representing two different traffic demand levels: unsaturated and
saturated conditions. The purpose is to determine if a larger network size, and more O-D pairs
would even out the discrepancies among the traffic models. In each of the two scenarios

(Scenario 11 and 12),  the network is loaded for twenty 30-second time intervals (or a total of
600 seconds) according to the OD demand rates depicted in Table 8 and Table 9. In both

scenarios, traffic is allowed to clear.

Table 8 OD demand rates (vph) for Scenario 11: the unsaturated case

Destination nodes Origin nodes

1 4 5 6 7

2 450 450 450 450 450
3 450 450 450 450 450

Table 9 OD demand rates (vph) for Scenario 12: the saturated case

Destination nodes Origin nodes

1 4 5 6 7

2 1020 450 450 450 450
3 1020 450 450 450 450
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3.4.2 Comparison Criteria

For comparison purposes, we examine the outputs according to three categories: (i) overall
network travel time and speed; (ii) time-dependent route travel time; and (iii) time-dependent
link travel time and occupancy. The first category is relevant to planning activities that
examines overall network performance. It is the highest level of results aggregation for our

comparison. The second category is important for route guidance activities in which getting
accurate route travel time estimates is critical. The third category is intended to illustrate
whether the results are suitable for traffic operations such as signal control, in which
identifying the correct “hot” spots at the right time is crucial. This is also the lowest level of

results aggregation for the purpose of this study.

3.4.2.1 Average Network Travel Time and Speed

Average network travel time is defined as the total system travel time divided by the total
number of simulated vehicles per simulation duration. Average network speed is defined as

the total travel distance divided by the total system travel time per simulation duration. These
two measures provide gross estimates of a network’s congestion level. They can also be used
as indicators to examine  whether or how close a model can achieve the objective of DSO, and
the impact of different traffic management strategies.

3.4.2.2 Time-dependent Route Travel Time

The definition of time-dependent route travel time is the same as the discussion in section
3.3.2.1. Most models do not provide this measure directly. Composing this measure for a big
network based on piece-meal model outputs is a tedious task. Sometimes this is not even
possible. To the extent that this measure can be derived, it provides a good indicator for the

performance of the routes, which is particularly relevant to assessing the impact and

performance of route guidance.
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3.4.2.3 Time-dependent Link Travel Time and Density

Time-dependent link travel time and density are used as the last criteria for comparing model
outputs. These two measures are directly related to traffic operations such as signal control.

Most models produce these two measures directly. Plots of these two measures versus time
can be a valuable tool for judging whether the results of the models are consistent at a link
level.

4. SUMMARY REMARKS

This report is part of a series of three that covers the scope of study for MOU 148--Traffic

Models Comparison and OD Sensitivities. Part I, reported herein, provides the background
information regarding the development of traffic models, and defines in detail the comparison
framework and test scenarios. Parts II and III, to be finished, will provide the comparison
results among the four models selected for this study and the impact of perturbation to OD

data, respectively.

This report first provided an overview of the philosophy of dynamic route choice model

development, highlighted the different approaches, and reviewed the four models selected for
this study--INTEGRATION, DYNASMART, DINOSAUR, and METS. This background
information helps delimit appropriate expectations and limitations of these models.

We then developed a comparison framework that encompasses four dimensions:
functionality, traffic dynamics, route choice dynamics, and overall network performance. For
comparison purposes, a check-list of model functions, detailed definitions of the test networks

and scenarios for each of the comparisons, the criteria or measures to be produced, and a brief

discussion of the interpretation of results were provided. This comparison framework is
generic enough to be used for comparing other traffic models.
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