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Abstract

We imbed a classic fishery model, where the optimal policy follows a Most

Rapid Approach Path to a steady state, into an overlapping generations setting.

The current generation discounts future generations’ utility flows at a rate pos-

sibly different from the pure rate of time preference used to discount their own

utility flows. The resulting model has non-constant discount rates, leading to

time inconsistency. The unique Markov Perfect equilibrium to this model has

a striking feature: provided that the current generation has some concern for

the not-yet born, the equilibrium policy does not depend on the degree of that

concern.
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1 Introduction

The Millennium Ecosystem Assessment identifies fisheries as one of the world’s critical

environmental stocks (United Nations 2005). Due to a combination of overfishing,

loss of habitat, and climatic change, at least 30% of the world’s fisheries are at risk of

population collapse (Sumaila et al. 2011). Fisheries support the well-being of nations

through direct employment in fishing, processing, and ancillary services amounting to

over US$ 220 billion annually (Dyck and Sumailila 2010). Fish provide nearly 3.0 bil-

lion people with 15 percent of their animal protein needs; including post-catch activities

and workers’ dependants, marine fisheries support nearly 8% of the world’s population

(FAO, 2011). Fishery economists have used a particular optimal control model as a

basis for recommending stock levels. We imbed this model in an overlapping genera-

tions (OLG) setting, thereby contributing to the field of fishery economics. Our paper

also contributes to the broader field of environmental economics, in view of the impor-

tance of discounting in this field. More generally, the paper contributes to the study

of OLG models and to the literature on non-constant (e.g., hyperbolic) discounting.

The actual problem of fishery management is intergenerational: those currently alive

have to decide how much of the stock to retain for generations that will be alive in the

distant future. Agents currently alive have a standard optimization problem in two

cases: if they have no concern for those who have not yet been born, or if they discount

the future utility flows of the not-yet-born at the same rate as they discount their own

future utility. In all other cases, their implied discount rate is non-constant, either

decreasing, as with hyperbolic discounting, or increasing. In these cases, the policy

trajectory that is optimal for the current generation is not time consistent.

It is not reasonable for the current generation to act as if it could choose decisions

for subsequent generations. We therefore consider a particular class of time consistent

equilibria, in which the harvest decision at a point in time is conditioned on the stock of

biomass — the state variable — at that point in time. We obtain a Markov equilibrium

to the dynamic game amongst the sequence of policymakers. Each policymaker in

this sequence is the representative agent at a point in time. The Markov Perfect

Equilibrium is a subgame perfect Nash equilibrium to this sequential game: the policy

rule chosen by each representative agent is optimal, given her beliefs about the policy

rule that will be used in the future.

Perhaps the model most widely used to propose target stocks for fishery manage-

ment, and certainly the model most widely used to explain the management problem, is

linear in the harvest rate (Clark and Munro 1975), (Clark 2005). With this model, the

benefit per unit of harvest is constant and the cost per unit of harvest is a decreasing

convex function of the biomass of fish; harvest costs increase as the stock falls. The

equation of motion equals the natural growth rate of biomass minus the harvest. The

limitation of this model is its assumption that the flow of benefit minus cost is linear

in the harvest. Fishery economists use this model because it provides a plausible, ele-

gant, and easily interpreted recommendation: the stock should be driven as rapidly as

possible to a steady state. The solution is “bang-bang”, i.e. it involves a Most Rapid
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Approach Path (Spence and Starrett 1975). The steady state depends on the per unit

benefit of harvest, the growth equation, the harvest cost function, and importantly, on

the discount rate used to evaluate future benefits.

We imbed this linear-in-control model into the sequential game described above, and

obtain a striking conclusion: provided that the current generation has some concern

for the net-yet born, the equilibrium policy rule, and thus the stock trajectory and the

steady state, is independent of the degree of concern for future generations. The steady

state stock here equals the level of a planner who has a constant discount rate equal to

the pure rate of time preference minus the growth rate of the population that benefits

from future harvests. If the current generation has zero concern for future generations,

the steady state stock equals the level of a planner that has a constant discount rate,

equal to a generation’s pure rate of time preference plus their mortality rate, i.e. equal

to their risk-adjusted discount rate. The difference between these two discount rates

is twice the mortality rate minus the birth rate. For this model, the degree of the

current generation’s concern for the not-yet born is irrelevant to the equilibrium policy,

provided that they have some concern for the not-yet born. There is a discontinuity

in the equilibrium decision rule, in the limit as the current generation’s concern for the

not-yet born vanishes.

Our results depend on the linear-in-control framework, but not on other functional

(e.g. the Gordon-Schaefer) assumptions. Our focus is the fishery problem, but the

analysis contributes more generally to the literature on non-constant (including hy-

perbolic) discounting and to the OLG literature. OLG models used to study policy

sometimes assume that the policy maker discounts the utility of the generation currently

alive back to the time of their birth; see for example Calvo and Obstfeld (1988) page

414. Calvo and Obstfeld recognize that this assumption is “unnatural ...[because]...the

planner is concerned with their welfare from the present time onward”. Ignoring this

fact and assuming instead that their utility is discounted back to the time of their birth,

eliminates the time-inconsistency problem that is an integral part of this setting. Our

sequential game model, and the focus on Markov perfection, provides an alternative

that deals squarely with the time consistency issue. This class of OLG problems is

sufficiently complicated that it makes sense to develop our understanding by dealing

with special cases, such as the linear-in-control model.

2 The model

We first state the primitives of the model and then define the equilibrium.

2.1 Primitives

An agent’s lifetime is exponentially distributed, with hazard rate . At time  the

population size is (). The memoryless feature of the exponential distribution means

that all agents alive at a point in time have the same probability of dying over any
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future interval, regardless of their current age. Therefore, agents alive at a point in

time are indistinguishable from each other. There is literally a representative agent,

so in this model there is no issue of aggregation of preferences over the agents currently

alive. Agents are born at rate ; the growth rate of the population is  = − .

The aggregate utility (profit) flow, shared by all agents alive at time , regardless

of their age, equals (). In our setting, () is the aggregate flow of profits from the

fishing sector. Agents’ pure rate of time preference for their own future utility is ,

and they discount the future utility of the not-yet-born at the rate . Provided that

 ∞, agents are “paternalistically” or “impurely” altruistic, because they care about
the “direct”, or “selfish”, utility flows of agents who will be born in the future; they do

not care how intervening generations value the utility of the agents born in the future.

If they cared about their successors’ valuation of their mutual successors’ utility, they

would be said to be purely altruistic (Ray 1987), (Andreoni 1989).1

The value that an agent today places on a flow at a future time  depends on the

number of agents alive at that time, and on how the agent today values those agents’

utility. For example, if the agent today puts the same weight on the utility of all agents

alive at time , regardless of their date of birth, then she would consider a flow twice

as valuable if the population were 2() rather than (). She may, however, place

more weight on the future utility of agents currently alive (members of her generation)

than on the utility of agents who will be born between now and time . In that case,

the comparison of the two situations, where the time  population is either () or

2(), depends on the composition of the two populations, not just on their size. The

discount factor reflects this kind of consideration, and therefore depends on the birth

and death rates,  and , on the agent’s pure rate of time preference, , and on her

discount rate for the utility of the not-yet born, .

There are two components to the welfare of agents alive today. The selfish welfare

component equals the present discounted stream of the agents’ own expected future

utility. All agents, regardless of their date of birth, use the risk adjusted discount rate

 +  to compute the selfish component of their welfare; this rate equals the pure rate

of time preference plus the hazard rate for death. An equivalent interpretation of this

component is that of the () agents alive at time , only −() of them will be

alive at time + , with  ≥ 0. The present value of the time +  utility flow, for the

agents alive at time , is therefore −(+)() times the +  utility flow.

The altruistic component of the welfare of those currently alive equals the selfish

component of welfare for all agents who will be born in the future, discounted at the

altruistic rate . A positive value of  means that agents alive today place more

weight on the selfish welfare of those who are born sooner rather than later: they

1Purely altruistic preferences require that agents apply non-negative weights to their successors’

welfare. Saez-Marti and Weibull (2005) find conditions under which an arbitrary discount factor is

consistent with purely altruistic preferences. However, their setting involves a succession of agents

who each live a single period, and therefore it cannot be directly applied to our OLG setting. Work

in progress examines the relation between pure and paternalistic altruism in an OLG model; details

available on request.
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care more about the utility of their children than they do about the utility of their

(grand)

children. For  =∞, the altruistic component vanishes, and we have a model

with purely selfish agents who discount future utility flows at the risk adjusted rate

 + .

Table 1 collects the definitions of the parameters entering the discount factor.

    

death rate birth rate
growth rate

− 

selfish pure rate

of time preference

altruistic discount rate

applied to unborn

Table 1: Parameters entering Discount Factor

We follow Ekeland and Lazrak (2010), who use a proposal in Sumaila and Walters

(2005), to calculate the discount factor, ():

() = −(+)
 − 

 − − 
+

µ


+  − 

¶
−(−) (1)

Appendix A contains the details. The discount factor exists provided that  6= + ,

as we hereafter assume. In our model the flow payoff, (), is positive. To ensure that

the value of the program is finite, we also assume that   .

The discount factor is a weighted sum (but not necessarily a convex combination) of

exponential discount factors. The first involves the risk-adjusted discounting of those

currently alive, + , and the second involves the difference between the discount rate

applied to the unborn and the population growth rate. The discount rate, (), and

its time derivative, corresponding to the discount factor () are

() = − 



=

−(+)(−)+(−)−(−−)
(−)+−(−−)



= −(−−) −

(−+−(−−))2
( −  − )

2


This discount rate is constant if  =  or if  =∞. (Recall that we assume throughout
that  6=  + ). We have:

for  = ,  =  − ; for  =∞,  =  + 

For  ∈ {  + ∞}, the discount rate is decreasing if    and increasing if   .

The initial value of the discount rate is (0) = −  = +− for all finite  6= +.

Define ∞ = lim→∞ (). The signs of the derivatives and the asymptotic values of the

discount rate are

for  +    ∞: 

 0; ∞ =  + 

for      + : 

 0; ∞ =  −    + 

for   : 

 0; ∞ =  −    +  − 

(2)
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Figure 1:  = 002,  = 0013. Solid curve shows  () for  = 006 and  = 0. Dashed

curve shows  () for  = 0005 and  = 0. The two dotted curves increase  to 00035

The case    corresponds to hyperbolic discounting, with the discount rate converging

to  − . The case    corresponds to an increasing discount rate, converging to

 + . In both cases, however, the trajectory of discount rates lies below the selfish

rate,  + .

Let the unit of time be a year. Figure 1 shows the graphs of  for  = 002 and

 = 0013, corresponding to an expected lifetime of 77 years. The increasing solid curve

shows () for  = 006 and the decreasing dashed curve shows () for  = 0005; both

curves are for a constant population,  = 0. The dotted curves correspond to the same

values, except with  = 00035; for this value, the population doubles in approximately

200 years.

The flow payoff, denoted () above, is () = (− ()), where the state variable

 is the biomass of fish, the decreasing convex function () is the unit cost of harvest,

 is the price, and  is the harvest. The welfare of the agents alive at time  is the

present discounted value of their selfish and altruistic flow of payoff,Z ∞

0

() (− (+))+ (3)

The stock of fish evolves according to

()


= ̇ = ()−  (4)

In order to avoid uninteresting technical issues, we assume that harvest is bounded

below by 0 and bounded above by ̄ ∞.
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Our discount function incorporates the assumption that an arbitrary future flow of

profits, (), is more valuable to the current generation when the population at  is

larger. This assumption captures the idea that future profits are more important when

more people depend on them. This interpretation is non-controversial if the flow is

non-rival, e.g. if it is literally a public good, or used to finance a public good. For

a rival good, a larger future population likely diminishes the value, to those currently

alive, of the future flow, because they know that they will have to share the profits with

more people. This interpretation gives rise to a model that is isomorphic to the one

that we discuss in the text. We can use the results in the text to determine the MPE to

this alternative model. The two models of discounting are equivalent if the population

is constant. With a public good, the aggregate utility flow at  is ()() and with a

private good where each individual obtains the same share, the individual flow is
()

()
.

If  is constant, the flow payoffs differ by a constant factor, so the equilibrium is the

same regardless of whether () is a public or a private good. (Appendix B).

2.2 The equilibrium

For  ∈ {  + ∞} the discount rate is non-constant, so a program that maximizes

expression (3) subject to equation (4) is time inconsistent. We obtain a time consistent

equilibrium by modelling the decision problem as a sequential game amongst agents

who make decisions at different points in time. The agent at time  chooses the

current harvest rate, taking as given the current state variable, , under the belief

that decisions at time  + ,   0, are given by a function  (+). We look for a

symmetric, stationary, pure strategy Nash equilibrium to this game, a function  ()

such that  =  () is the optimal action for the agent at time  given the state

variable , when this agent believes that future actions will be + =  (+). These

beliefs are confirmed in equilibrium for any possible subgame (any realization of +).

That is, we obtain a Markov Perfect Equilibrium (MPE).

Karp (2007) studies the MPE for a more general class of games by taking the limit of

a discrete stage infinite horizon game. In that game, each stage lasts for  units of time,

and the discount rate for the first  periods can take arbitrary values, but is constant for

period +1, +2∞. The integral in expression (3) is replaced by an infinite sum, and
the differential equation (4) is replaced by a difference equation. Harris and Laibson

(2001) obtain the generalized Hamilton-Jacobi-Bellman (HJB) Equation for the case

 = 2, which corresponds to the “ ” model of quasi-hyperbolic discounting (Laibson

1997). Their methods are easily extended to obtain the generalized HJB equation

for the case of arbitrary finite . Let  = , the amount of time (as distinct from

the number of periods) during which the discount rate may be nonconstant. Taking

the formal limit of the discrete time generalized HJB equation as  → 0, holding 

constant, gives the generalized continuous time HJB equation when the discount rate

is allowed to be any function of time for 0 ≤  ≤  , and is constant after  . One then

takes the formal limit of that equation as  →∞.
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Ekeland and Lazrak (2010) take a different route to studying this problem. They

begin with the continuous time problem with arbitrary discounting function (). At

any time , the agent is allowed to choose a policy over ( + ), taking as given the

decision rule that will be used after  + . They obtain the necessary and sufficient

condition for this agent’s problem and then take the limit as → 0. The two approaches

lead to the same generalized HJB equation. Karp (2007) interprets this equation as

the standard HJB equation for a “fictitious” optimal control problem: solving one is

equivalent to solving the other. In the case at hand, solving the fictitious control

problem turns out to be easier and more transparent than solving the generalized HJB

equation, and we proceed to do so in the next section.

3 Results

We first explain the methods used to obtain a MPE and then characterize the unique

equilibrium.

3.1 Obtaining the MPE

Using Proposition 1 and Remark 1 of Karp (2007), we obtain the MPE to our problem

by solving the necessary conditions to the optimal control problem

() = max
R∞
0

−∞ [(− (+))+ − (+)] 

subject to ̇ = ()− ,  given.
(5)

Denote  () as a (not necessarily unique) MPE decision rule, and define  () :=

(− ()) () as the flow of payoff under this decision rule, given the state variable

. The function  () is

 () =

Z ∞

0

() (()− ∞) (+)) (6)

where + is the solution to equation (4) given initial condition  and given + =

 (+) for  ≥ 0. We refer to the optimization problem (5) and the definition (6) as

the “fictitious control problem”. We use the necessary conditions to this problem to

obtain a MPE to the game.

The validity of this approach requires that the value function  () and the function

() are differentiable. We verify differentiability in Lemma 1 below.2 We obtain a

MPE by solving the necessary conditions to a control problem with constant discount

2Karp (2007) assumes at the outset that the policy rule  () is differentiable, but that assumption

is needed only later in his paper, not for Proposition 1 and Remark 1, which are all that we rely on.

However, differentiability of the functions () and () are required. Similarly, Ekeland and Lazrak

(2010) assume that the policy rule is differentiable, but an extension of their argument shows that in

the current problem, differentiability of  () is not required.
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rate ∞. The integrand in this control problem equals the integrand in the original

game, minus the function (). That function depends on the MPE decision rule,

(). In general, replacing the original game by the fictitious control problem does

not seem to have advanced matters much, because it appears that we need to know

the function () to solve the control problem, and () depends on the unknown

MPE decision rule. In addition, in general we can not give an intuitive meaning to the

function (). For the problem at hand, however, there is a simple solution to the

problem, and an intuitive interpretation of  ().

The simplicity arises because the fictitious control problem is linear in the control

variable, harvest. For any policy rule that results in a differentiable () and (),

the optimal decision must be on either boundary,  = 0 or  = ̄, unless a particular

function (the “switching function”), defined below, vanishes. The linearity makes this

problem tractable.

The asymptotic discount rate, ∞, takes two possible values, depending on whether
 +     ∞ or    + . We consider these two cases separately, because the

parameter ∞ is used to discount the payoff in the fictitious control problem, and it

also appears in the definition of ().

For +   ∞, the asymptotic discount rate is ∞ = +. Some calculations

establish

() (()− ∞) = −−(−)
which implies

− () = 

Z ∞

0

−(−) (+)) (7)

Here, − is an annuity, which if received in perpetuity and discounted at the birth rate

, equals the present discounted stream of the future payoff, discounted at  − , the

altruistic discount rate minus the growth rate. The fictitious control problem includes

this annuity in the flow payoff.

For    + , ∞ =  − . In this case,

 () ( ()− ∞) = − ( − ) −(+)

which implies

− () = ( − )

Z ∞

0

−(+) (+ )) (8)

Here, − is an annuity, which if received in perpetuity and discounted at the rate

− , equals the present discounted stream of the future payoff, discounted at the risk

adjusted rate  + . Again, this annuity is part of the flow payoff in the fictitious

control problem. For   , this annuity is negative, a fact that we discuss below.

3.2 Equilibrium results

In the problem with a constant discount rate,  this fishery problem has a well-known

solution. It is optimal to set the harvest level at its maximum or minimum value (̄

8



or 0) in order to drive the stock of fish as quickly as possible to its steady state level,

the solution to

 =  0()− 0()()
− ()

 (9)

In the interest of simplicity, we adopt

Assumption 1: For 0   −  ≤  ≤  +  there exists a unique solution to

equation (9), decreasing in .

Assumption 2: The growth function () is concave with (0) = 0 and

 0 (0)  0.

Assumption 3: The value of  below which profits are negative, defined as

min, is positive and  (min)− ̄  0.3

Assumption 1 implies that in the standard constant discounting problem, a larger dis-

count rate lowers the steady state stock, thereby lowering the steady state flow of

profit. Assumption 2 excludes the possibility of “critical depensation”, the situation

where for sufficiently small initial conditions, the resource is doomed to extinction even

in the absence of harvest. Assumption 3 means that although it is feasible to drive the

stock below min, it is never part of an equilibrium strategy to do so. Therefore, the

non-negativity constraint on the stock is not binding.

The current value Hamiltonian for the fictitious control problem is

 = (− ()− )− () + ()

where  is the current value costate variable, and the function (− ()− ) is known

as the switching function. The costate equation is

̇ = (∞ −  0()) + 0()∗ + 0() (10)

where ∗ is the optimal control. (“Optimal” for the fictitious control problem, or

“equilibrium” for the sequential game.) Due to the linearity in  of the Hamiltonian,

an optimal harvest rate must be on the boundary unless the switching function is 0. The

harvest rate can be at an interior value for an interval of time (with positive measure) if

and only if the switching function is identically 0 during that interval. Differentiating

this identity with respect to time and using equations (4) and (10) imply that the

switching function is identically 0 if and only if  is a solution to

∞ =  0()− 0()() + 0()
− ()

 (11)

Equations (9) and (11) have the same form, apart from the presence of  0() on the
right side of the latter.

The following proposition summarizes our main result

3If  0()− 0()()
(−())() is a decreasing function, and if there exists a carrying capacity  at which

() = 0   0 (), then Assumption (iii) implies Assumption (i).
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Proposition 1 We maintain Assumptions 1 - 3 and require  6= +. (i) Within the

class of pure strategy equilibria that generate differentiable value functions, the unique

MPE to the game amongst the sequence of representative agents, is to follow a most

rapid approach path (MRAP) to drive the stock of fish to a level ∗, and thereafter to
maintain that stock by harvesting at rate (∗):

∗ =

⎧⎪⎨⎪⎩
0 for   ∗

(∗) for  = ∗

̄ for   ∗
(12)

(ii) For   ∞, the steady state is the solution to equation (9) with  =  − . (iii)

For  =∞, the steady state is the solution to equation (9) with  =  + .

Analysis of the fictitious control problem requires establishing that  0() exists.
Under the policy in equation (12) it is obvious that  0 () exists for  6= ∗. We need
only show that it exists (i.e. that the left and right derivatives are equal) at  = ∗,
the point at which there is a discontinuous change in the harvest rate. We also need

to evaluate that derivative. We have

Lemma 1 Under the policy given in equation (12), for   ∞, the derivative  0(∗)
is

 0 (∗) =

⎧⎨⎩  (−  (∗)) for    + 

( − ) (−  (∗)) for    + 
(13)

The lemma states a “smooth pasting” condition, a phenomena that appears in many

contexts, e.g. stochastic control. The proof involves routine calculations, available on

request. Note that, evaluated at ∗ the annuity − is an increasing function of  if

   and a decreasing function of  if   . We return to this observation in Section

4.

An argument that parallels the proof of the lemma shows that the value function

is differentiable. Therefore, the costate variable,  can be written as a continuous

function of ,  =  (); the costate variable equals  0 ().

3.3 Proof of the proposition

We first establish parts (i) and (ii). The Markov assumption means that at any value of

the stock, the equilibrium harvest does not depend on whether the stock has approached

this value from above or from below. In a model with a single state variable, pure

strategy Markov equilibrium trajectories cannot cycle. In view of the linearity of the

problem, harvest takes a boundary value unless  satisfies equation (11). We proceed

under the hypothesis that the control rule is a MRAP of the form of equation (12), and

we then verify this hypothesis.
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For ∞     + , ∞ =  + . Using this equality and the first line of equation

(13) implies that ∗ is the solution to

 +  =  0()− 0()() +  (−  ())

− ()
=⇒

 +  −  =  −  =  0()− 0()()
− ()

 (14)

For   +, ∞ = − . Using this value of ∞ and the second line of equation (13)
implies that ∗ is the solution to

 −  =  0()− 0()() + ( − ) (−  ())

− ()


which reproduces equation (14). By Assumption 1, there is a unique solution to this

equation.

We now confirm that the control rule must be the MRAP in equation (12) with ∗

equal to the solution to equation (14). The hypothesis that the control rule is a MRAP

is equivalent to the claim that the graph of the switching function, (− ()−  ())

is negative for   ∗ and positive for   ∗. A proof by contradiction establishes

this claim.

First, in the neighborhood of the carrying capacity (defined as the value of   0

at which () = 0), the switching function is not negative. If it were negative, then

for fish stocks sufficiently close to the carrying capacity, it would be a MPE to extract

nothing forever. That cannot be an equilibrium, because any deviation gives a higher

payoff. Therefore, if for any   ∗ the switching function is negative, it must cross the
 axis again from below, at a point where   ∗. That possibility violates Assumption
1, which imposes uniqueness.

The switching function cannot be positive in the neighborhood of  = min, the

largest stock value at which average profits are 0. If the switching function were

positive in this neighborhood, then for values of  close to min the solution to the

fictitious control problem would drive the stock of fish to min and then harvest at the

rate that keeps it there, (min). This outcome results in a zero flow of profit at the

steady state min. Any deviation involving lower harvest for an interval of time results

in positive profits. Therefore, the proposal to drive  to min can not solve the fictitious

control problem, and hence is not a MPE. (An appendix, available on request, verifies

this informal argument by showing that the trajectory that drives  to min violates a

transversality condition.) Therefore, if the switching function is positive for any   ∗

it must cross the  axis at some   ∗, so that the switching function is negative in
the neighborhood of min. This multiple crossing violates Assumption 1.

If  =  then the original problem involves the constant discount rate  − . The

result is a standard problem, for which the solution is well-known: follow a MRAP until

reaching ∗, the solution to equation (14). The only remaining case is where  =∞,
where again we have a standard problem, but here the constant discount rate is  + .

The solution is to follow a MRAP to ∗, the solution to equation (9) with  =  + .
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This completes the proof.

4 Discussion

In optimal control models with constant discounting, the optimal policy depends, some-

times sensitively, on the discount rate. For example, in the case of climate change, the

optimal carbon tax might change by a factor of 10 as the discount rate varies between

levels that different economists consider reasonable (Stern 2007), (Nordhaus 2007). A

large part of the debate about climate change, and about environmental policy more

generally, turns on the degree to which we think it appropriate to value utility flows of

distant generations.

A standard approach uses the social discount rate to value these flows. The social

discount rate is the sum of the pure rate of time preference used to evaluate our own

future utility flows, and a term that depends on future consumption growth (set equal

to 0 in our setting). The problem with this approach is that our own future utility

flows and those of the not-yet born belong to different categories; there is no reason

that we should apply the same degree of impatience to discount them. An overlapping

generations model, in which current generations might discount their own future utility

flows and those of successive generations at different rates avoids this conflation of

distinct categories, but typically leads to the problem of time inconsistency of optimal

programs. Because it is unreasonable for people living today to believe that they

can choose policies that will be in effect generations from now, we are led to replace

the optimization problem usually used to study resource issues with a sequential game

amongst successive overlapping generations.

If we happen to evaluate our own and future generations’ utility flows using the same

discount rate (i.e. if  = ), then the discount rate for each of the infinite succession of

planners in this game is constant, equal to −, the pure rate of time preference minus
the population growth rate. In this case, the sequential game and the ‘benevolent’

social planner’s problem are equivalent. At the other extreme, if we have no concern

for future generations ( =∞), then the equilibrium to the sequential game is identical
to the solution for the selfish social planner; it involves the risk adjusted discount rate

 + , the pure rate of time preference plus the mortality rate. These results hold in

the case of a pure public good. The problem with a private (rival) good is isomorphic

to the public good problem, and requires only trivial changes.

Neither of these two extremes ( =  or  = ∞) is particularly compelling. It is

hard to believe that we are completely indifferent to the utility of distant generations.

However, the choice  =  is arbitrary, in view of fact that own-utility and other’s-utility

belong to different categories. Certainly the choice  =  does not have a convincing

ethical basis. Why should the life-time stream of consumption of someone born in

 years be worth only the fraction − of the consumption stream of someone born

today? The ‘benevolent’ social planner values the stream of consumption of the agent

born today more than that of the agent born in  years. Because these are different

12



agents, not the same agent at different points in time, this ‘benevolent’ planner earns

her inverted commas.

The striking result is that the unique equilibrium (within the class giving rise to

differentiable value functions) to the sequential game replicates this ‘benevolent’ social

planner. Provided that agents have some concern for the future, the degree of their

concern is irrelevant. This outcome is better for future generations compared to the

selfish outcome (where  =∞), but for the reason discussed above it can not be viewed
as a particularly ethical outcome. Thus, from the standpoint of future generations, the

news is mixed: even large changes in the extent to which current agents value future

generations’ utility flows have no effect on those flows.

The fact that the current generation’s problem is linear in its control regardless of

the Markovian policies that future generations use means that each agent’s action is

always at the boundary of its feasible set, unless the state variable takes a particular

value. In the one-state variable model, this value equals the steady state. Mild

assumptions on the primitives of the model insure that this value is unique. Thus, the

issue of multiplicity of Markov equilibria does not arise here.

We also used the fact that the MPE satisfies the necessary conditions to a fictitious

control problem, one that includes an annuity (−) that is a function of the current
state variable. The annuity depends on actions that future generations take, and in

equilibrium those actions depend on the current state via its effect on future state

variables. Evaluated at the steady state, this annuity is a positive and decreasing

function of  if    and it is a negative and increasing function if   . Thus, if

agents are relatively selfish (  ) this fictitious control problem assigns a positive but

decreasing amenity value to the state, arising from the actions of subsequent agents.

The reverse holds if agents are relatively altruistic (  ). These contrasting effects

just offset the differences in the constant discount rate used in this fictitious control

problem. They cause the solution to be independent of .

We emphasized the importance of the fact that the problem is linear in the control.

Our results do not hold for more general classes of problems. Given the difficulty of

obtaining general results for this type of game, it is instructive of build up our intuition

using special cases. This paper contributes to that ongoing effort.
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A Derivation of discount function

The 0
 agents born during the interval ( + ) die at rate  and they discount

their own utility at rate  so their present discounted value of their selfish payoff from

the program () is (with  ≡ 0)



Z ∞



−(−)−(−) ()  (15)

The representative agent alive at time 0 discounts the payoff of generations born in

the future at rate , so this representative agent’s altruistic value of the selfish utility

received by the agents born during ( + ) is

(−)
Z ∞



−(−)−(−) () 

The current representative agent’s value of the selfish utility received by all agents who

will be born in the future is therefore


R∞
0

(−)
¡R∞


−(−)−(−) () 

¢
 =


R∞
0

−(+) ()
³
(−+)−1

−+

´


The equality follows from changing the order of integration and simplifying.

The current representative agent discounts the future utility of those currently alive

at rate  and knows that these agents die at rate , so her risk-adjusted discount rate

for them is  + . Her (selfish) valuation of their lifetime welfare is therefore



Z ∞

0

−(+)()

The representative agent’s total welfare is the sum of welfare attributed to the utility of

the agents who will be born in the future (the altruistic component), and of the agents

who are currently alive (the selfish component):



Z ∞

0

∙
−(+)

µ
(−+) − 1
−  + 

¶
+ −(+)

¸
 () 

The discount factor for the time  utility flow is

() := −(+)

µ
(−+) − 1
−  + 

¶
+ −(+) (16)

Simplifying this equation yields equation (1). Note that the right side of equation (16)

is positive and it converges to 0 as →∞, because +−(−  + ) = −(− ) =

 −   0, where the inequality holds by assumption.
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B Private versus public goods

Our model of discounting provides an “exact” description of paternalistic altruism in

the case where the population size is constant, or if population is growing but the flow

(here, fishing profits) is a non-rival public good. The model can be viewed only as an

approximation if  is non-zero and the flow is not a pure public good. Clearly, profits

are not a pure public good, unless they happen to be used to finance a public good.

This appendix explains in greater detail the meaning of our discounting model in the

text, when  6= 0. It also provides results for an alternative model.
Our discounting function assumes that if agents have some concern for future gen-

erations (  ∞), the current generation values future profit flows more highly, the
larger is the number of agents in the future, i.e., the larger is . It also assumes that if

agents have no concern for future generations ( =∞), then their evaluation of future
profit flows is independent of . These assumptions are non-controversial when the

flow is a pure public good. But the division of a profit flow is a zero sum game. The

text defends our modeling approach on the ground that it captures the idea that a

particular flow of aggregate income should be more valuable if there are more people

who need to use it.

Here we explore the opposite view. Our model assumes that utility is linear in

profits; we need that assumption in order to have a model in which the payoff is linear

in the control variable, harvest. Suppose that profits at a point in time are divided

amongst all agents alive equally, and that aggregate utility equals the sum of utility of

all agents. In that case, the value of an aggregate profit flow () given population

() is
()

()
(), i.e. it is independent of (). However, the present value of that

future flow, to an agent today depends on the composition of the population at time ,

unless she discounts her own and future generations welfare at the same rate:  = .

Denote the population at time 0 as  , so the population at time  is . There

are  agents born during the interval ( + ). At time  each of these obtains

the flow
()

(+)
. The aggregate selfish life-time welfare of these agents is



Z ∞



−(−)−(−)
 ()

(+)
 (17)

Expression (15) and (17) differ because the latter equation assumes that each agent

gets the same share of the flow and that the sum of shares equals 1; that is, the flow is

a private rather than a public good.

The representative agent (who aggregates the preferences of her generation) alive at

time 0 discounts the selfish payoff of generations born in the future at rate , so this

representative agent’s altruistic value of the selfish utility received by the agents born
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during ( + ) is4

−

Z ∞



−(−)−(−)
 ()

(+)


The current representative agent’s altruistic value of the direct utility received by all

agents who will be born in the future is thereforeR∞
0

−
³R∞


−(−)−(−) ()

(+)

´

= 
R∞
0

−(++)()
¡R 
0
−(−−)

¢


=
R∞
0

1−
−(−−)
−− −(++)()

The first equality follows from changing the order of integration and simplifying. Note

that 1−−(−−)
−−  0 for   0, so the discount factor used to calculate the altruistic

component of welfare is always positive (as required by a sensible model). This discount

factor also converges to 0 as  → ∞ if and only if both  +  +   0 and  −  −
 +  +  +  =  +   0 are true. Thus, convergence requires that the size of the

population is not falling too quickly.

The current representative agent’s aggregation of her generation’s preferences at-

tributed to their selfish welfare is



Z ∞

0

−(+)
()


 =

Z ∞

0

−(+)()

Here also the discount factor is positive and converges to 0 because  +   0. The

total welfare is the sum of the altruistic and the selfish components:Z ∞

0

µ

1− −(−−)

 −  − 
−(++) + −(+)

¶
()

The discount factor is

() = 1−
(−++)
−− −(++) + −(+)

−
−−

−(+) +
¡
1 + 

−−
¢
−(+)

(18)

This discount factor is the sum of the discount factors applied to the altruistic and the

selfish components of welfare, each of which is positive. This discount factor converges

if  +   0. Note that with a public good, convergence of payoffs requires that the

growth rate not be too large (  ) whereas with a private good, convergence holds if

  −.
4This expression equals the aggregate value that all agents alive at time 0 attribute to the selfish

welfare of agents born during (0 ). It is not the value that a single agent alive at time 0 attributes

to this welfare; if it were, we would have to multiply it by  to obtain the aggregate value.
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In order to make this model of discounting easily comparable to the one that we

study in the text, define

̃ ≡  + 2 =⇒  = ̃ − 2
̃ ≡  +  =⇒  = ̃ − 

(19)

With these definitions, we can rewrite equation (18) as

() = −
̃−2−−(̃−)

−(̃−2+) +

µ
1 + 

̃−2−−(̃−)

¶
−(̃−+)

= −
̃−−̃

−(̃−) + ̃−̃
̃−−̃

−(̃+)

(20)

Comparing the last line of equation (20) with equation (1) shows that the two are

equivalent, except that the latter involves the “adjusted” preference parameters ̃ and

̃. This fact allows us to use our earlier results to write down the equilibrium in the

new model of discounting. We summarize the results, for the alternative discounting

model presented in this appendix:

Corollary 1 (i) Given the preference parameters  and  and the growth parameters

 and , if  ∞, the unique MPE (within the class that generate differentiable value
functions) is the MRAP given by equation (12) with the steady state ∗ given by equation
(9), where  = ̃ −  = . If  =∞, the value of  that determines the steady state is
̃ +  =  + . (ii) If   0, the discounting model in this appendix leads to a lower

steady state, one associated with a higher discount rate, , compared to the discounting

model in the text. If   0, the new discounting model leads to a higher steady state.

For  = 0, the two models are equivalent.
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C Referees’ appendix

This appendix is available on request, but not intended for publication

C.1 Proof of Lemma

We provide details for the case    + , where ∞ =  + . Define  () as the

amount of time it takes the state variable to move from ∗ +  to ∗ using the control
rule in equation (12);  may be either positive or negative, but is small. With this

definition, the control rule (12), and equation (7), we have

−(∗ + ) =


³
∗
R  ()
0

−(−) (−  (+))  + (−  (∗))  (∗)
R∞
 ()

−(−)
´  (21)

The first integral on the right side is the contribution to − of the flow payoff during

the approach to the steady state value ∗; the second integral equals the contribution
due to the steady state flow payoff.

We want to show that the left and right derivatives are equal, i.e. lim→0
(∗+)



has the same value regardless of whether  approaches 0 from above or below. Consider

the case where   0, so ∗ = ̄ over [0  ). Integrating equation (4) we have − =R +


 =
R 
0

¡
 (+)− ̄

¢
 . (The first term is − because here   0, so + =

∗  ∗ +  = .) In this case,




=

−1
(∗)− ̄

 (22)

Using equations (21) and (22) we have

lim
→0+

(∗ + )


=  (−  (∗))

¡
̄−  (∗)

¢ 1

(∗)− ̄
=  (−  (∗)) 

Now consider the case where   0, so ∗ = 0 over [0  ). Here,  =
R +


 =R 
0
 (+)  , and




=

1

(∗)
 (23)

Using equation (21) and (23) we have

lim
→0−

(∗ + )


= − (−  (∗)) (0−  (∗))

1

(∗)
=  (−  (∗)) 

Thus, the left and right derivatives are equal, as shown in the first line of equation (13).

The argument for   + parallels the above. In this case, using the control rule

(12), and equation (8), we have

− (∗ + ) =

( − )
³
∗
R  ()
0

−(+) (−  (+ ))  + (−  (∗))  (∗)
R∞
 ()

−(+)
´

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Equation (22) still applies for   0 and equation (23) for   0. We have

lim→0+
(∗+)


=

( − ) (−  (∗))
¡
̄−  (∗)

¢
1

(∗)−̄ = ( − ) (−  (∗)) 

A similar argument shows that the left derivative lim→0−
(∗+)


, has the same value,

shown in the second line of equation (13).

C.2 The transversality condition

Here we confirm that a trajectory that drives the resource to the point where it is not

economically viable and thereafter keeps it at that level, is not an equilibrium. Define

 as the date at which the resource reaches min in this candidate. At  the fictitious

control problem effectively ends; there is no scrap value, so the continuation payoff at

 is 0. In addition, (min) = 0 from the definition of () and the fact that the

equilibrium flow payoff for    is identically 0 in this candidate. In the fictitious

control problem, a necessary condition for a program that drives the stock to min is

that the Hamiltonian vanish at  :

 ( ) = [(− ()− )− () + ()]|=( )=min
=
£
(− ()− ) ̄− () + ()

¤
|=( )=min = 0 =⇒

 ( )
¡
( )− ̄

¢
= 0 =⇒  ( ) = 0 =⇒ − ()−  ( ) = 0

(24)

(An obvious abuse of notation replaces the arguments  = min by  .) The third

line of equation (24) follows from the fact that (min) = 0 and Assumption (iii) that

states (min)− ̄  0. Thus, the switching function is 0 at  = min. In order for the

hypothesized trajectory to be optimal, the switching function must be positive for larger

values of . That is, the switching function must approach 0 from above, as  →  .

Consequently, the time derivative of the switching function must be non-positive at

 =  .

We need to know whether the switching function,  () − , approaches 0 from

above or below as →  . Consider the case where   + where ∞ = +. Using

equation (7),

 0 () =
( − ) +  (−  ())

()− 


Substitute this equation into the costate equation (10) to write the time derivative of

the switching function, on the candidate equilibrium, in the neighborhood of  (where

 = ̄):

(−()−)


=

−0 () ¡ ()− ̄
¢− h( +  −  0 ()) () + 0 () ̄+ (−)+(−())

()−

i
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Evaluating the right side of this equation at  = min, the right side simplifies to

−0 (min)  (min)  0. This inequality is our contradiction, because our hypothesis

requires that the time derivative of the switching function is non-positive at  = min.

A parallel argument deals with the case where    + .
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