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ABSTRACT 

A synthesis and preliminary interpretation of predominantly 
geophysical information relating to the Klamath Basin geothermal 

resource is presented. 

Falls, and the Klamath Hills area, south of Klamath Falls, are discussed 
in detail. Available geophysical data, including gravity, magnetic, 

electrical resistivity, microearthquake, roving dipole resistivity, 

audio-magnetotelluric (AMT) and magnetotelluric (MTI data sets, are 

examined and reinterpreted for these areas. 

modeling techniques are applied, and general agreement among overlapping 

data sets is achieved. 

of exploration, although interpretation is difficult in the complex 

geology. Roving dipole and AM!C are useful in reconnaissance, while 

gravity and magnetics help in defining structure. For the Swan Lake 

Valley the data suggest buried electrically conductive zones beneath 
Meadow Lake Valley and Swan Lake, connected by a conductive layer at 

1 kilometer depth. 

conductive zone centered near the northwestern tip of Stukel Mountain, 
associated w i t h  a concealed northeast-trending cross-fault-. 
conductive zone appears near some prodwing hot wells at the southwestern 

edge of the Klamath Hills. 

themal reseryoirs , 

The Swan Lake Valley area, northeast of Klamath 

One- and two-dimensional 

The MT method appears well suited to this  type 

In the K l m t h  Bills area, the data suggest a 

Another 

a These conductive zones may represent gso- 

Follow-up work is recommended for each target. are&. 
I 

d- 
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INTRODUCTION 

The Klamath Basin, located in south-central Oregon and northern 

California (Figure l), has been the locus of geothermal exploration 

activities for several years. 

stimulated by the presence of numerous hot springs and over 400 wells 

containing waters of 60 C to 115 C which are currently used for domestic, 
institutional, and business heating, and for a few agri-business 

projects. Three Known Geothermal Resource Areas (KGRA's) have been 
identified in the area (Figure 2 ) :  (a) Klamath Falls KGRA north and 
northeast of the town of Klamath Falls, (b) Olene Gap KGRA east of the 
town, and (c) Klamath Hills KGRA south of the town. Exploration 

activities have been conducted by several companies within the KGRA's, 

as well as within lands a Klamath Falls. W o  unsuccessful 

deep holes have been dril 

temperature resource suitable €or e.lectric power generation, and the 
general level of interest in the area has consequently declined over 

the last two or three years. 

Exploration interest in this area was 

0 0 

s far in the search for a higher 

In an attempt to re-stimulate exploration activity, the Earth 

Sciences Division Geothermal Group of LBL, working with the State of 

Oregon's Department of Geology and Mineral Industries (DOGAMI), and 

the U.S. Geological Survey (USGS), has attempted to collect all available 

exploration data pertaining to the area, to compile, assess, and interpret 

them in terms of 

for a geothermal 

to be a document useful to geothermal exploration planners, containing 

surface geology, and to develop conceptual models 
The end-product of the study is intended rvoir. 
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of explordtion techniques and a suggested exploration strategy. 

report deals with work performed during the period, June-September 1978. 

This 

Data for this work have come from the open literature (e-g., 

journal articles, university dissertations, and reports by various 

government organizations) and from files of private companies who made 

their proprietary, confidential data available to LBL. 
Resources Company, Thermal Power Company, and Creslenn Oil Company 

have contributed data to this study. 

100 relevant documents, listed in the Appendix. 

Gulf Mineral 

The data base consists of over 

Although the general area of interest is the entire Oregon portion 

of the Klamath Basin (Figure I), the actual area of study has been 
restricted to the region around Klamath Falls, the principal area where 
exploration efforts have been made. Survey data available to LBL cover 

the areas outlined in Figure 2. 
any other aspect, has directed our initial attention to the two specific 
areas discussed in this report: (a) the Swan Lake Valley area, and 

(b) the Klamath Hills area. Because so much of the data are geophysical, 

this report concentrates primarily on that aspect of exploration. 
to this study, most of the data received only a cursory examination and 
preliminary interpretation, We have attempted to do a far more thorough 
and detailed analysis of the data in order to demonstrate the procedures 

involved in a proper interpretation, to determine how much information 

can be extracted, and to evaluate the applicability of the various 

techniques to the particular exploration problem. 

me availability of data, more than 

Prior 

REGIONAL GEOLOGY AND GEOPHYSICS 
4 

Geology 

I The geologic setting has been described by Peters 

(1970). 

the Medicine Lake Highlands to the south in California, and the high 

desert country to the east. The basin is drained by the tributaries 
of the Klamath River which flows southward into California before 
discharging into the Pacific Ocean. 

The Klamath Basin is bounded by the High Cascades to'the west, 

t 
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Numerous normal faults, trending N40°W, break the area into gra- 

bens and horsts. The Klamath graben may be traced for 80 km from 

the Medicine Lake volcanic field to Crater Lake. It encompasses Upper 

Klamath Lake and attains a width of about 15 km. The steeply dipping 

normal faults have vertical offsets that are estimated to attain 1600 

feet in places (e.g., Rattlesnake Point and Stukel Mountain). Al- 

though the predominant fault direction is northwesterly, there is 

geologic and topographic evidence for north- and northeast-trending 

cross faults which truncate or offset topographic features. 

The stratigraphic section in Figure 3 shows Peterson and Mcfntyre's 

rock units. 

mined thickness. 

formation, a designation given to a sequence of tuffaceous siltstones 

and sandstones, lacustrine sediments (mainly diatomites) and basalt 

flows (Newcomb, 19581, The rocks are sub-aqueous deposits formed 

during a period when the region was covered by lakes and swamps. 

Explosive and quiescent volcanism were nearly contemporaneous with 

deposition, as evidence by maars, 

Yonna Formation. Newcomb (1958) r 

of about 600 meters for the Yonna Formation. 

The basement rock consists of Pliocene basalts of undeter- 

These are unconformably overlain by Pliocene Yonna 

Late Pliocene and Pleistocene basalt flows and volcaniclastic 

interbeds are found overlying the Yonna Formation at the higher eleva- 

tions. Quaternary alluvi rs the valleys. Groundwater aquifers 

exist in ail these rock 

able strata whi 

the Yonna Formation incl 

for aquifers below. 

ake averages only 2.4 m in depth, but con 

of water, which strongly influences the groundwate 

Klamath Falls area. The lake water tends to obscure the near-surface 

thermal gradient in the immediate vicinity of the lake. 

The three KGRA's are shown in Figure 2. Klamath Falls KGRA 

encompasses the principal hot well area covering the town and extends 
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east-north9astward. 

for space heating, since the turn of the century. Presently, approxi- 

mately 400 shallow wells, most in the 200- to 300-foot depth range, are 

used to heat 500 structures. Water temperatures range up to 113OC. 

The main hot water well area is located adjacent to one of the fault 

scarps forming the eastern boundary of the Klamath Lake graben. 

Hot water has been used by the residents, mainly 

Olene Gap KGRA covers an area which includes much of the northern 
and western portion of Stukel Mountain. 

include a few wells and springs with temperatures up to 87OC in Olene 
Gap, and a few warm wells with temperatures up to 42OC near the north- 

western tip of Stukel Mountain. 

Geothermal manifestations 

Sammel (1976) made a minimum reservoir temperature estimate of 

13OOC for the Klamath Falls area, based on several chemical geother- 
mometers . 
Geophysics 

(a) Aeromagnetic Survyes 

Two aeromagnetic surveys, flown for the U.S. Geological Survey 

(USGS, 1972 and 19731, cover the region in Oregon, and have been 
placed on open-file. 

The survey flown by Scintrex Mineral Surveys, Xnc. cover6 the 
Klamath Falls and Crescent 1:250,000 sheets and all of the area 

r 
* discussed in detail in this report. Geametrics, Inc. flew and 

compiled the data for the Medford sheet, contigvous to the Klamath 

bs 

sheet along the 122OOO' meridian. 

a constant barometric elevation 

of 9000 feet, or about 4850 feet above Klamath Lake and the sther 
valley areas, and about.1500 feet above the highest local relief. 
Lines were flown east-west and at a line separation of approximately 

two miles (3.2 km) . 
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Sharp topographic anomalies are seen t o  cor re la te  w i t h  several 
of the highest mountains, e.g., Stukel Mountain (6525 feet) ,  Edge- 

wood Mountain (6694 feet) ,  and the south end of Hogback Mou 

the. lookout tower ('~6000 feet) a l l  give posi t ive anomalies 

hundred t o  over l O O O y .  However, several  other prominent anomalies 
t 

have an unusual re la t ionship to  topography which could be explained 

by strong remanent magnetization. For example, Hopper H i l l  ( 5  

a t  the south end of Swan Lake Valley is a 100 y low, and both the 

dipolar  anomalies a t  Spence Mountain (5841 feet) and a t  Swan Lake 

-a 

+ 

point (7260 f ee t )  suggest a magnetization vector toward the w e s t .  

In this regard, the magnetic high near Squaw Point on the west 
side of U p p e r  K l a m a t h  Lake could be due mainly t o  Spence Mountain 

i f  i t s  ne t  magnetization w e r e  horizontal and t o  the west. 

Not a l l  of the prominent anomalies cor re la te  w i t h  topography, 

however, and these must be due to buried sources. 

i n  point  is a broad high, trending northeasterly across Swan Lake 

Valley, one of the areas considered i n  detail i n  th i s  report. 

maximum is centered near Grizzly Butte (4525 feet) i n  the northeast  

corner of the valley,  but it seems doubtful tha t  loca l  topography 

A par t icu lar  case 

The 

contributes much t o  the anomaly. Using a simple "half-slope" 

method f o r  estimating source depth (Nettleton, 19761, we obtain a 

depth of 500 m below surface. The Swan Lake Valley anomaly could 

be a swarm of northeast-trending dikes, but the source is highly 

conjectural. 

Van Deusen (1978) attempted an 

magnetic data and an interpretat ion 

involved analysis  of the aero- 

showing possible areas where 
elevated Curie isotherms occur. For t h i s  work, he performed a % 

"variable continuation" i n  which gridded data were continued t o  a 

constant elevation above average local t e r r a in  so as t o  reduce 

topographic effects. W e  have not checked Van Deusen's interpretat ions,  

but we agree w i t h  h i s  general conclusion t h a t  the data provide l i t t l e  

information useful f o r  geologic mapping purposes , i .e. , l i tho logic  

-4 

and age relat ionships  between volcanics cannot be determined. W 
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b+ 
Regarding geological s t ructure ,  there is a s e t  of magnetic 

lineaments which trend northwesterly, correlat ing i n  places w i t h  

mapped fau l t s .  These lineaments are not as pronounced as one might 

L 

expect based on the.topographic r e l i e f  developed along many of the 

northwesterly fau l t s .  

average t e r r a in  clearance and the large f l i g h t  lkne spacing, 

However, the aeromagnetic data c lear ly  reveal a conjugate set of 

lineaments trending northeasterly,  

This could be explained i n  pa r t  by the large 
b 

These a l so  show a correlqtfon 

t o  topography, but  few mapped f a u l t s  strike i n  t h i s  general direct5on. 

Although the geothermal welEs a t  K l a m a t h  Falls occur within  an area 

of many intersect ing f a u l t s  end aeromagnetic lineaments, we have no 

bas is  f o r  knowing whether t h i s  re la t ionship can be used as an explora- 

t i on  guide elsewhere within the  region. 

is  characterized by a high density of intersect ing f a u l t s  and mag- 

I n  fact, the e n t i r e  region 

ne t i c  lineaments. 

(bl Gravity Survey D a t a  

Van Deusen (1978). established 465 gravity s ta t ions ,  average 
2 spacing 3.5 km, over a 3000 km qrea around K l a m a t h  Falls., 

h i s  intent ion w a s  to  determine the thickness of young volcanics, t h k s  

Although 

goal proved to be unqt tahable  due t o  problems presented by topograplty 

and lateral changes i n  suhsustqce densi tyt  Tn this report 'we yse 

selected portions of Van Deusen's Bouguer gravt ty  d4tq t o  estimate 

c 

.r; 

&J 

the thicknesses of the  young, low-density mqter5al f i l l i n g  Swgn Lake 

Valley and the val leys  borderkng the Klamqth H i l l s .  

I n  3 regional sense, er gravt ty  contours cor re le te  wel l ,  

?!his f ~ l l o ~ s .  e dtmhant  northwest-southeast s t r rke b i r e c t b n ,  

fact t h a t  gravi ty  lws occur p r i m  oyer grabens mantled 
ens i ty  sedim s y  e.g.8 Upper 4 wep KLBmath L e e s  and 

Swan Lake V a l 1  , The steepest gravi ty  gra  s trend northwesterly 

and are  found the west f lank t h  H i l l s  and a t  the w e s t  

end of Agency Lake, Bouguer g r  lows also qppea~ over a few of 
1 

the mountain peaks (e*g. , Hamaker and Chase Mountains, T , 4 W ,  R,lW, 

Secs. 23 and 16). These e f f ec t s  were e l imhated  a f t e r  Van Deusen 
applied an a l te rna te  Bouguer xeductkon scheme i n  whlch a variqble 

density w a s  used depending on geology2 
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Lid 
(a) areas of volcanic flows, sediments and alluvium, 2.43 g/cm3, and 

3 (b) probable young volcanic centers,  2.39 g/cm . 
instead of a uniform 2.67 g/cm , as convenl3onally assumed. 3 

Regardless of the Bouguer gravi ty  reduction scheme used, gravity 

contours reveal major N50°-600E lineaments as do the aeromagnetic data. 

The strongest of these are: 

(1) Olene Gap lineament, running from Pleasant Valley (California) 
on the  southwest, across Lower Klamath Lake, and through 
Olene Gap. 

(2) Klamath Fa l l s  lineament, running through the  City of 
Klamath Fa l l s ,  and along the southern borders of 
Meadow Lake and Swan Lake Valleys. 

Both gravi ty  lineaments conform, i n  par t ,  t o  topographic expres- 

sions,  but t raverse  rocks of d i f fe ren t  age and composition. 

dance between lineaments and mapped f a u l t s  is minor; Peterson and 

McIntyre (1970) show only shor t  f a u l t  segments on l i n e  with the Olene 

Gap lineament. However, the Olene Gap lineament is also marked by a 

number of young basaztic volcanic centers spaced a t  in te rva ls  of 20 to 
30 )Em, and therefore it is impossible t o  discount the r e l a e o n  and 

importance of northeast-trending f rac ture  zones on the r e g b n a l  thermal 

regime. 

Conpor- 

(c) Magnetotelluric Survey D a t a  

Tang (1974) reported on a magnetotelluric program t h a t  included 

telluric measurements a t  17 sktes ,  only 10 of which provided data,  i n  

the  Klamath F a l l s  area. 
measured i n  Corvallis; 220 kn\ from the area of investigation, 

telluric measurements such as these require (a) a uniform primary 

magnetic f i e l d  over a large area and (bl l i t t l e  o r  no s p a t i a l  variac 

For a l l  measurements the magneth f f e l d  w a s  .. 
Remote 

il. 

t i ons  i n  the  secondary magnetic fkelds a t  any of the s t a t ions  due to  

induced currents,  Bemuse the  second condition does not occur i n  
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areas of complex geology, the accuracy of the method for  determining 

subsurface resisthities is  always i n  doubt unless ver i f ied by 

careful  experiment. Also, because a very l imited amount of scalar 

data were obtained and analyzed, and only i n  the  20-50 sec,  band, 

we-cannot place any confidence on Tang's interpretat ions.  A t  one 

s t a t ion  i n  Swan Lake Valley where we have good tensor MT data f o r  

comparison. 

be i n  rough agreement, however, Tang offered the ten ta t ive  conclu- 

s ion t h a t  "the apparent r e s i s t i v i t y  data observed i n  the Klamath 

Falls area are low when compared t o  normal c rus t a l  values .., The 

data are therefore indi  t i v e  of an enhanced electrical conductivity 

probably due t o  e levate  (sic) subsurface temperature i n  the region," 

Tang's values f o r  apparent resistivities appear t o  

\ 

, 

SWAN LAKE W E Y  AREA 

Topography and General Geology 

Located 10 t o  18 kilometers northeast  of K l w t h  Pal ls ,  Swan Lake 

Valley is a f l a t ,  roughly rectangular val ley bounded on a l l  s ides  by 

mountains, except f o r  an opening near its sou 

Swan Lake i t s e l f  lies near the northeastern edge of the valley,  forming 

a natural  sump for stre 

is  a closed hydrologic 

rn corner (Figure 4 ) .  
5 

aoor, bounds We val ley 

x 

. dipping normal f a u l t s  and 

e 
cate the V a l  

but none have 

ing mountains are composed primarily of Yonna Formatixm rocks and Plio- 

cene basalt flows. llcd 
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Fig. 4. Swan Lake Valley Base Map 
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Fig, 5, Swan Lake Valley Geologic Map 
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Holcomb Spring, near the northern end of Meadow Lake Valley, 

produces ;arm water (Geonomics , 1977) . 

Gravity Survey 

Van Deusen (1978) made gravi ty  measurements a t  about 20 s t a t ions  

i n  the  area as part of h i s  regional study. 

the gravi ty  da ta  i n  three forms: 

anomaly w i t h  Bouguer density of 2.67 g/cm3, and a variable density 

In  h i s  t hes i s ,  he presented 

free air  anomaly, complete Bouguer 

Bouguer anomaly. 

complete Bouguer anomaly, density 2.67 g/cm3, and the  Swan Lake Valley 

segment is reproduced i n  Figure 6. 

I n  our interpretat ions we have dealt only with the 

A gravi ty  l o w  dominates the Swan Lake Valley, presumably caused 

by the density cont ras t  between valley sediments and the surrounding 

basalts. 

(Figure 7 b ) .  

Van Deusen modeled val ley structure beneath profile B-B' 
3 Using a density cont ras t  of 1.0 gram/cm he found the 

sediment thickness t o  be about 300 meters. However, he s t ressed that 

this thickness is a minimum value because the assumed densi ty  cont ras t  

may be too large.  

W e  constructed the  profiles i n  Figures 7a and 7c along l i n e s  A-A' 

and C-C' f r o m  Van Deusen's contours i n  order t o  apply a "g lac ia l  

thickness" formula (Grant and W e s t ,  1965) to  approximate sediment 

thicknesses. 

density contrast  of 1.0 gram/cm 1 to  1500 meters (using a density 
3 contrast  of 0.3 g/cm ) .  

between these values. 

These are found to  range from 350 meters (using a 
3 

The true sediment thickness probably l ies  

The steepest gravi ty  gradients occur on the  east and southeast 

sides of t h e  p ro f i l e s ,  suggesting a major vertical f a u l t  offset asso- 

c ia ted  with the Swan Lake r i m .  Gradients westward (Figures 7a and 7c) 

are gentler.  As Van Deusen (1968) noted this could be caused by the 

2.67 g/cm Bouguer density. If t h i s  value is too large,  it w i l l  

erroneously depress Bquguer gravi ty  values, par t icu lar ly  i n  areas of 

3 

f ractured l o w  density rock such as w e  might expect i n  the Meadow Lake 

Valley - Hogback Mountain area. 

z1 

r 
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Fig, 6. Complete Bougu gravity contours, Swan Lake Valley 
(after .Van Deusen, 1978) . 
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u 
Another possibility is that the fault at Swan Lake Rim has under- 

gone greater displacement than those on the southwest margin of the 

valley. This is consistent with the regional geology if Swan Lake 

Valley and Meadow Lake Valley are seen as parasitic sub-grabens on rq 

the eastern flank of the larger Klamath Graben. 

3 
Figure 6 includes part of the Klamath Falls gravity lineament 

mentioned earlier. The lineament trends N60°E through Klamath Falls, 

Meadow Lake and along the southeast side of Swan Lake Valley. 

Aeromagnetic Survey 

Using the open File aeromagnetic survey (USGS, 1972) Van Deusen 

(1978) applied a variable continuation scheme to approximate aero- 

magnetic data flown at a constant height above terrain. 

original and variable-continued data show a magnetic high over the 

north end of Swan Lake Valley centered near Grizzly Butte (Figure 8). 

Other than this magnetic ananaly, there is generally good conformance 

between gravity and aeromagnetics in the 

speculation that the magnetic anomaly may be caused by highly magnetic 

dikes within the volca 

estimate for the sourc s 500 m below the surface. The source 

appears elongate in a northeasterly direction, subparallel to the 

Klamath Falls gravity lineament which manifests itself in Figure 8 

Both the 

ea. This leads us to the 

s underlying the valley. A rough depth 

lineament as well. 

Group Seven Incorporated (1972) performed roving dipole, direct 

current (dc) resistivity soundings, and e omagnetic (EM) sounding 

surveys in an area which included the westem quarter of the Swan Lake 

Valley area. 

resistivity sounding lines and EM stations occupied. 
50 pairs of dipole receivers were located in the Swan Lake Valley area. 

The receivers measured voltage drops relative to sources 1,s (Figure 4) 

or 8 (outside the area and now shown in Figure 4) or, in some cases, 

0 

Figure 4 shows the locations of bipole sources, dc 

Approximately 

LJ 
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Fig. $3. Total intensity magnetic f i e l d  variable-continued to 
2000-foot elevation above land surface, Swan Lake Valley 
(after Van Deusen, 1978). 
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from two or three sources. 

were then.plotted at the receiver locations and contoured. 

measurements were obtained relative to multiple sources the apparent 

resistivities were averaged. 

The calculated apparent resistivities 

Where 

We replotted the data from each bipole separately in order to 

apply one- and two-dimensional modeling techniques. Figures 9, 10, 

and 11 show the contoured apparent resistivities fram Sources 5, 1, 
and 8, respectively. 

gence of a low apparent resistivity zone in the Klamath Falls "steamer 

zone." This can be Seen in Figures 10 and 11. This low does not appear 

on Group Seven's apparent resistivity map of the averaged readings. 

We attempted one-dimensional curve-matching along line 5P (Figure 81, 

One by-product of the separation was the emer- 

which runs along the western margin of Swan Lake Valley. 

as the only area which might be suited to one-dimensional interpretation. 

The observed curve was matched against theoretical two-layer curves, 

This was seen 

and the best model indicates a drop in resistivity from 185 ohm-meters 

to 30 ohm-meters at a depth of 1 kilometer (Figure 12). 

We then used pr (Dey, 1976) to compute theoretical 

apparent resistivity maps for two-dimensional models striking perpen- 

dicular to line 52D (Figure 9). Guided by our magnetotelluric inter- 

pretation for the area (disc 
several iterations'of-pro 

dimensional Model 52D (Ffgyre 
apparent resistivity contours Mith observed data The agreement 

sed in the next section), we performed 
arriving finally at the two- 

gure 14 compares the calculated - 

Fine details in the obse data are probably 

all ace inhomogeneities which cannot be 

modeled in two dimensions. 

represents the Lake graben flanked by the western 

edge of Swan Lake Valley to the northeast, and by Hogback Mountain to 

the southwest. 

of large but undetermined depth extent. 

basement (2000 ohm-meters) is encountered at a depth of 1.4 kilometers. 
This two-dimensional model is consistent with the one-dimensional 

interpretation discussed above and shown in Figure 12. 

Meadow Lake graben is a conductive feature (5 ohm-meters) 

Flanking the graben resistant 

\ 



Fig, 9 ,  Mving dipole apparent resistivity from Source 5 ,  
Swan &ake VaZley, 
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Flgx 10, RIsylfng dipole apparent resistivity from 
Source 1 ,  Swan Lake Valley, 
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Fig. 11. Roving dipole apparent resistivity from Source 8, 
Klamath Falls area. 
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Fig. 12. Roving dipole p r o f i l e  along Line SP, with two-layer 
model, Swan Lake Valley. 
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The EM and DC soundings analyzed by Group Seven yielded layered- LJ 
earth interpretations which are not consistent with this model; they 

indicate conductive material ( 5  to 40 ohm-meters) down to depths of 

a few hundred meters, underlain by more resistive material (over 

100 ohm-meters) . 
We attribute the disagreement to the fact that the earth structure 

between Source 5 and the EM receivers is not one-dimensional, and 

attempts to interpret it as such have led to error. 

dc soundings were made adjacent to or across a mapped fault (Figure 41, 

so these one-dimensional interpretations are also questionable. 

Similarly, the 

, 
Magnetotelluric Survey 

Geonomics Incorporated (1977) conducted a telluric-magn 

Tens survey in the Swan Lake Valley area in September 1977. 

curves were obtained for 29 stations, of which 8 were five-component 

magnetotelluric base stations and 21 were two-component remote telluric 

stations (Figure 4). Judging from the Geonomics report, data quality 

appears to be exceptionally good; smooth and complete sounding curves, 

rotated into the principal resistivity directions, were obtained for 

the frequency range 0.01 to 50.0 Hz. 

Geonomics associated the transverse electric (TE) mode with the 

principal resistivity direction having the electric component oriented 

more nearly parallel to regional geologic strike (N4Oo W) . Interpreted 
sections for both transverse electric (TE) and transverse magnetic (TM) 

data sets were constructed by linking together one-dimensional inversions 

of the sounding curves for each station along the line A-A* (Figure 4). 

ssumption of a layered earth inherent 

in Geonomics' interpretation, we reinterpreted the data along line A-A' 

using the two-dimensional modeling program EMCDC (Madden, 1970). This 

program, based on the transmission-surface analogy, computes theoretical 

TE and TM soundings at selected points along a line perpendicular to 
a specified earth resistivity model. 

until the calculated TE and !CM soundings at each station match the 

corresponding observed soundings. 

Because of the question 

Model parameters are adjusted 

Best fits are determined visually 
8 L, 
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by comparing pseudo-sections of apparent resistivity plotted at each 

period for each station (e.g., Figures 16 a and b). 
a 

There was some uncertainty regarding mode identification. The 

scientist in charge of processing these data for Geonomics indicated 
t that the TE and TM modes might have been misidentified at stations 4, 

8A, and 8B (I.K. Reddy, personal communication, 1978). In this light 

we revised the observed apparent resistivity pseudo-sections by inter- 

changing the TE mode with the TM mode at the stations in question. 

Comparisons of Figures 16a and 17a with Figures 19a and 20a, respectively, 

shav the resulting differences. 

sets, two separate models were sought. 

I 

To account for the two possible data 

The models derived are called 

OM1 (original mode identification) and SMI (switched mode identification). 

The models are shown in Figures 15 and 18 and their calculated TE and 
TM pseudo-sections are shown in Figures 16b, 17b, 19b and 20b. Two- 

dimensional models were fitted to the TE data sets as these are more 
amenable to interpretation than the TM data sets. 

Lastly, we performed a two-dimensional inversion on the switched- 
This program iterates the mode data, using program SM2D (Jupp, 1976). 

forward modeling program EMCDC a specified number of times, changing 

the resistivities of each block at each.iteration based on computed 
partials for inversion. 

the program finds a bettermodel with the same electrical boundaries 
but With different resistivity-values. 

simultaneously, so the final model is a !*best fit" for both modes. 

That is, after an initial model is submitted, 

The TE and TM modes are inverted 

After five iterations on Model SMI, the inversion program yielded - 
I' Model ISMID (Inverted Switched-Mode Identified Data). The model is 

shown in Figure 21 and its calculated TE and TM pseudo-sections are 

shown in Figures 22a and b, 
definite improvement over those for SMI and OMI, but the TE pseudo- 
section for ISMID does not fit as well as those for SMI and OMS. 

The TM pseudo-section for ISMID is a 
r 

Although the two-dimensional modeling approach is a major improve- 

rd ment over one-dimensional inversion, the true subsurface structure is 



28 

rrrrl 

m
 

co 

0
'

 

0
 

0
 

0
 

- 

d
 

L
 

E
! 

4
 

Fig. 
15. 

Resistivity model 
"O

M
I'v 

(values in ohm-meters). 



29 

Fig. 16a 
XBL 789-651 I 

XBL 789-6514A 

Fig. 16. TE mode apparent resistivity pseudorsections, Line A d i t ,  Swan Lake Valley 
16a. Observed data. 16b. Calculated values for model WMIU, 



Fig. 17a 
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Fig. 17b 
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Fig. 17. TM mode apparent resistivity pseudo-sections, Line A-A' , Swan Lake Valley. 
17a. Observed data. 17b. Calculated data for model "OMI''. 
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Fig. 19a X6L 789-2065 
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Fig. 19. TE mode apparent resistivity pseudo-sections, Line A-A', Swan Lake Valley. 
19a. 
19b. 

Observed data, modes switched at stations 4, 8A and 8B. 
Calculated values for model %MI" . 
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Fig. 20. TM mode apparent resistkvity pseudo-sections, Gine AtAL,  $wan Lake Valley.. 
20a. Observed data, modes switched at statfons 4, 84 and 8B. 
20b. Calculated values for model "SMI". 
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probably highly three-dimensional. 

in obtaining two-dimensional pseudo-s,ections that simultaneously match 

both the TE and TM observed data. Unfortunately, state-of-the-art 

three-dimensional modeling routines are still prohibitively expensive 

to use, so two-dimensional modeling remains the best practical interpre- 
tation scheme. However, the results from simple three-dimensional 

geometries modeled by other workers (e.g., Hohmann and Ting, 1978) 

can be applied in a qualitative fashion to help understand the situation 

in Swan Lake Valley. 

In general, the third dimension tends to accentuate differences 

This is evidenced by the difficulty 

in the TE soundings between stations separated by vertical resistivity 

boundaries. 

with respect to period caused by layering (horizontal boundaries). This 

may be the case in Swan Lake Valley, where the observed TE pseudo- 
sections (Figures 16s and 19aI show extreme variation of apparent 

resistivity with respect to both horizontal distance and period. 

might also speculate that the observed electrical isotropy at station 4A 

is due to some symmetrical three-dimensional electrical swucture, 

rather than a layered-earth situation. 

It also seems to accentuate TE apparent resistivity changes ’ 

One 

Synthesis and Geologic Interpretation 

The earth models presented in the previous sections are intended 
to provide rough, flexible guides to subsurface geology rather than 

accurate representations. 

mode identification and three-dimensionality , and the solukions are not 
unique. 

in the form of overlapping geophysical data. 

to determine if the models were geologically reasonable. 

The MT models are plagued by questions of 

Therefore, we sought independent confirmation o€ our findings 
i 

In addition, we endeavored 

& 

The roving dipole and MT data Sets overlap in the western portion 

of the Swan Lake Valley area. Therefore, we attempted to fit the 

roving dipole data with the western portion of our MT model SMI. 

.few minor adjustments to this model proved sufficient to satisfy the 

roving dipole data (compare Figures 13 and 18). 

A 

b 
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The gravity, aeromagnetic, roving dipole, and MT data sets a l l  

suggest a lithologic change a t  a depth of about 1 kilometer beneath 

Swan Lake Valley. This may mark the transition from the Yonna Forma- 

tion to the underlying basalt flows. 
lends credence to  our interpretations, b u t  more detailed exploration 

work i s  needed t o  provide adequate constraint on the model parametws. 

For the time being, however, we w i l l  use model I S M I D  (Figure 21)  as a 

rough guide t o  subsurface geology. 

f i ts  the obsefved TM data better than models S M I  and OMI, and we 

feel that t h i s  is a favorable characteristic i n  t h i s  three-dimensional 

area. 

Overlapping geophysical evidence 

T h i s  model was chosen because it 

The central portion of Swan Lake Valley is underlain by resistive 

to  moderately conductive'material (280 to  26 ohm-meters) to a depth 

of 1 kilometer. This may represent relatively impermeable lacustrine 

alluvium overlying Yonna Formation rocks. 

meters of 8 ohm-meter material - possibly an aquifer i n  the alder basalt 

u n i t .  Beneath t h i s  l i e s  19 kilometers of electrically resist ive 

(2300 ohm-neters) basement rock, probably consisting of t ight  basalts 

or  other igneous rock. inally, a t  a depth of 20 kilometers we reach 

conductive, lower crust rocks ( 2 1  ohm-meters). A similar interpreta- 

tion of the electr ic  1 
M e  L a k e  V a l l e y .  

T h i s  is  underlain by 500 

ers is applicable i n  the area southwest of 

Meadow Lake Valley i t se l f  appears as a conductive (7 to 9 ohm- 

meter) dike-like feature about 2 kilometers in  width, I n  the model, 

this  zone merges with the lower crustal rocks a t  a depth of 20 kilo-  

meters. However, the zone may not extend so deep in actual i ty;  it is 
e "bottom" of a conductive block with the MT 

Regardless of i t s  true depth extent, we interpret the con- method. 

ductive zone as a highly fractured fluid-filled faul t  zone. 



The Geothermal Target 

Beneath the northeastern edge of the Swan Lake Valley lies another 

conductive block with a resistivity of 3 ohm-meters. 

we show a lower boundary for the conductor, but again this feature is 

not well resolved. 

fault zone similar to the one on the southwestern side of the valley. 

Alternatively, we might be seeing the effect of alteration and hydro- 

thermal circulation along the boundary fault. 

conductor lies a highly resistive block with a resistivity of 12,000 

ohm-meters. 

it is reasonable to infer an impermeable, possibly mineralized cap rock 

overlying the conductor. 

In the model 

i 

The conductor may represent a complex, sheared 

Directly above the 

The true resistivity of the block may not be that high; but 

At the extreme northeastern end of the model, Swan Lake Rim 

appears as a resistive (290 ohm-meter) basalt block, fault-displaced 

upard from similar rock underlying the valley. 

The data suggest that Swan Lake Valley is bordered by IXQ conductive 

zones which are connected via a conductive layer. 
zones occur beneath Meadow Lake Valley and beneath Swan Lake. 

ductive layer lies 1 to 1.5 kilometers below the valley floor. 

The conductive border 

The con- 

These zones may be permeable regions saturated with geothermal fluids 

which have ascended along fault zones. 

exploration techniques could be suggested to help determine whether 

thermal anomalies exist and to help define the conductive "layer" at depth. 

Shallow temperature gradient drilling aloQg northeast-trending lines 

At this stage several follow-up 

from Meadow Lake Valley to the Swan Lake Rim, detailed resistivity 
* 

(dipole-dipole or Schlumberger soundings) across the center of Swan Lake 

Valley, and more detailed gravity surveys would help to pinpoint a drill 
target in the =ea. 

be chemically analyzed to estimate equillbration temperatures. 

depth to conductive lower-crust indicated by the MT data is rather 

-t In addition, the waters from Holcomb Spring should 

The 

shallow (20 km). 

areas (e.g., Stanley et al., 1979). 

This phenomenon has been reported in several geothermal 

i; 
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4 

i 

Most of our work in the Swan Lake Valley area has focused on 

Line A-A'. There are, however, other areas of interest which we plan . 

to study with the available data. These include: 

1. An area south of Moyina Hill which has MT apparent 
resistivities measuring less than 1.0 ohm-meters 
(Geonomics, 1977). 

A small roving dipole low apparent resistivity zone 
located west of Meadow Lake Valley (Group Seven, 1972). 

2. 

3. The eastern and 
Valleyr which has low MT apparent resistivities and 
may be underlain by an elevated conductive lower 
crust (Geonomics, 1977). 

KLAMATH HILLS 

Topography and General Geology 

Located 13 to 26 kilometer 

Hills rise about 300 meters from the surrounding flatlands (Figure 23). 

They stretch northwest-southeast for a total length of about 18 kilo- 

meters, attaining a maximum width of almost 5 kilometers. To the 
southwest lies Lower Klmath Lake, whiah has been completely drained 

and reclaimed for farmland. 

the Lost River are located northeast of the Hills. 
Spring Lake Valley and the valley of 

We will refer to 

the Lost River-Spring Lake Valley. Further northeast, 

Stukel Mountain stands almo ters above these valWs. 

f the Basin and Range geomorphic The structure here is 
E province and the Klanath Hills are essential1 a h*rst* Pett?rson and 

McIntyre (1970) mapped Yonna Formation rocks and basalt flows in the 

Hills, with Quaternary alluvium and lacustrine sediments covering 

the valleys (Figure 
i 

The area isclassified as a KGRA based on the presence of several 
warm and hot wells, including two wells with temperatures exceeding 
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90°C. These two are located in Sections 27 and 34, T40S, R9E. We 

will refer to these as the Hot Wells. 

with temperatures from 2OoC to 50°C, exist along the southwest edge 

of the Hills (Sammel, 1976). Other warm wells are located near Miller 

Hill and near the northwestern tip of Stukel Mountain. 

In addition, several warm wells, 

Gravity Survey 

Van Deusen (1978) occupied about 25 gravity stations in this 

area as part of his regional study. 

dealt only with his complete Bouguer reduction, Bouguer density 

2.67 g/cm , (Figure 25). Van Deusen's model for profile A-A' indi- 

cates a 1 kilometer thickness of valley fill overlying basement. 

His model for profile D-D' predicts only 100 meters of valley fill. 
These estimates were made assuming a density contrast of 1.0 g/cm 

and thus both thickness estimates should be considered minimum values. 

True fill thicknesses may be 2 or 3 times greater. 

As in Swan Lake Valley, we have 

3 

3 

The gravity contours form a saddle between Stukel Mountain and 

the Klamath Hills, centered near the town of Hosley. 

caused by a raised northeast-trending basement ridge between the two 
mountains. 

line between Olene Gap, Stukel and Worden, passing through the Klamath 

Hills, is the Olene Gap lineament mentioned earlier. 

This may be 

The associated northeast-trending gradient running in a 

I 

L 

Microearthquake Study 

Microgeophysics Corporation conducted a ten-day microseismic 

survey with an array centered on the Klamath Hills (Natomas Company, 

1978). Eleven high-frequency (5-30 Hz) instruments were operated with 
amplifications ranging from 5x10 to 2x10 . The array was designed 
to record earthquakes down to magnitude -0.5, but no events were 

recorded during the ten-day span. 

1 

5 6 

r_ 
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The lack of seismic activity is somewhat surprising in view of 

the historical seismicity (Couch and Lowell, 1971). The record of 

felt earthquakes does not indicate many events, but the area is 

definitely seismically active. 

field evidence of geologically recent fault displacements. 

fore conclude that the study was conducted during an unusually quiet 

time. A successful study would hav yielded information about the 

locations and earthquake mechanisms of active faults in the area, 

thus helping to delineate possible target areas. 

This is also borne out by abundant 

We there- 

Audio-Magnetotelluric Survey 

Senterfit and Bedinger (1975) made scaler audio-magnetotelluric 

(AMTI measurements at 23 stations with both north-south and east-west 
telluric dipole orientations. Their U . S .  Geological Survey system 

was tuned to 12 pre-selected narrow frequency bands between 7.5 Hz 

and 18.6 kHz. 

only a tabulation of apparent resistivity values. 

and frequency, 1 to 10 repeat measurements were made, and the 
average apparent resistivity was tabulated along with the standard 

deviation. Data reproduckbility varies, with most of the standard 

deviations falling in the range of 10 to 30 percent of the observed 

apparent resistivities. 

south and east-west apparent resistivities suggest that the geology 

is multidimensional and that a tensor survey is necessary for realis- 

tic interpretation. 

rather shallow depth of exploration associated with these frequencies 

and resistivities. m e n  at the lowest frequency, 7.5 Hz, skin depths 

are on the order of 500 meters. 

The brief openrfile report contains no interpretation, 

At each station 

Significant discrepancies between the north- 

A further limitation of the AMT survey is the 

1 

z. 
Twenty of the 23 AMT stations were located in the Klamath Hills 

area, mostly in the Lost River - Spring Lake Valley and in the Klamath 
Hills. 

resistivities at 7.5'Hz, 27 Hz and 6.7 kHz, but because of general simi- 

larities between them, only the contour map for the north-south telluric 

We plotted and contoured the north-south and east-west apparent 

hd 
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XBL 7810 - 6527 

Fig. 26. Audio-magnetotelluric apparent resistivities, north-south 
telluric orientation at 7:5 Hz., Klamath Kills area (data 
from Senterfit and Bedinger, 1976). 
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U 
polarization at 7.5 Hz is shown here (Figure 26). 
arresting feature on the map is the general northeasterly trend of 

the anomalies, particularly the low centered on station 16. 

trend is perpendicular to the regional northwest geological trend, 

and the low resistivity zone suggestive of a fault, conforms 

closely with the Olene Gap gravity lineament. The apparent resis- 

tivity low at the north end of Stukel Mountain appears at all fre- 

quencies plotted and for both directions of electric field. 

Perhaps the most 

This 

Southeast of this low is a high apparent resistivity zone followed 
by another conductive zone. These anomalies are also northeast trend- 

ing, and show up, at least in a general way, at all three frequencies. 

The high resistivity zone is centered on the town of Hosley, and its 

contours resemble those of the gravity high located in the same area. 

This reinforces the notion.of a buried basement ridge crossing the 

valley beneath Hosley. 

I 

mving Dipole Resistivity Survey 

Group Seven Incorporated (1972) conducted roving dipole resistivity 

'surveys over a 250 square kilometer area including Lower Klamath Lake, 

the Klamath Hills, and the Lost River-Spring Lake Valley. 

shows the locations of the four bipole sources. 

were placed at approximately 420 stations and apparent resistivities 

were calculated at each staeon. 

than one bipole source, the calculated apparent resistivities were 

Figure 23 

Potential dipoles 

At stations with readings from more 

averaged. 

We replotted and contoured the apparent resistivities from each 
5 

source separately, disclosing anomalies that were somewhat masked by 

the averaging process. 

values calculated for two-dimensional models. Figures 27-30 show the 

separated apparent resistivity maps. 

The results were then cokpared with theoretical 
c 

We used program FtESIS2D b y ,  1976) to generate apparent resistivity 

maps for our models. A trial-and-error process led to the two-dimensional u 
models 62D and 32D shown in Figures 31 and 32 for Sources 6 and 3, models 62D and 32D shown in Figures 31 and 32 for Sources 6 and 3, 
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Fig. 27. Faving dipole apparent res i s t iv i ty  from Source 6,  Klermath H i l l s  area. 
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Fig. 30. Roving dipole 
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respectively. The models are nearly identical. Both include a resis- 

tive dike-like body at the edge of the Klamath Hills, and a conductive 
surface block stretching southwest from the Hills. 

show the fits of the calculated maps superimposed on the observed data. 

These are very general fits, 

influenced by local surface inhomogeneities, making a closer fit diffi- 

cult to achieve. Nevertheless, the relationships amonq these models and 

their fits do provide insight into the electrical and geological structure. 

Figures 33 and 34 
0 

The observed data are probably strongly 
4 

The conductive zone in model 32D is 0.75 kilometer narrower than 

its counterpart in model 62D. 

hfidtely long along strike, but is truncated somewhere to the north- 
west. 

of Source 3 to the truncateon. e observed apparent resistivities 

northwest of the profile line w e  substantially higher than those to 

the southeast . 

This indicates that the zone is not 

The poorer fit of model 32D may be caused by the closer proximity 

The data from Source 2 (Figure 29). consistent with 

these models, but the conductive zone i 

edge of the area covered, rendering this correlation somewhat marginal. 

the southeastern 

Source 4 (Figure 30) covers RiverrSpring Lake Valley and 

the Klamath Hills. The transmi 

westerly direction. 

high, while those An 

in general, lower, 

are also lower. 

trending basement ridge. 

le was aligned in a north- 

ftfes around Hosley are quite 

ad+range of values but are, 

The values kn the valley farther away from Hosley 
s, agakn, may be related to a shallow northeast- 

c 
The data from Source 4 near: the southwestern edge of the Klamath 

9 HkUs are also consistent with Models 62D and 32D. 

high values near the edge of the HiPls, oorrespandfng to the reekstive 

deke-like feature in the models. 

Lower Klamath Lake are lower than those fn the Hills. 

There are some 

The few readings from Source 4 in 

Again, this 

hr’ is marginal data and these correlati-ns are rather weak. 
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Direct Current and Electromagnetic Soundings 

Figure 23 shows the locations of the five EM stations and 

the two dc electric sounding lines occupied by Group Seven 
(1972) in this area. Group Seven made layered-earth interpretations 

from these soundings and used them in conjunction with their roving 

dipole work. 

The dc sounding lines extend east (DC3) and west (DC4) from bipole 

source 6. The interpretation of the data from DC4 indicates a conductive 

layer (5 ohm-meters) from the surface to a depth of at least 1500 meters. 

This agrees with our roving dipole model 62D (Figure 31). 

DC3 yielded a more complicated interpretation, but the most 

important feature is a 3 ohm-meter layer between 40 meters and 430 

meters depth, underlain by more resistant rock. 

this suggests that the conductive layer in model 62D actually thins 
as it approaches the Hills. However, the layered-earth assumption 

is especially questionable here, because the DC3 line passes over a 

mapped fault (Figure 25),  suggesting that some of the distortions and 

discontinuities of the sounding curve are due to lateral resistivity 

changes. 

Taken at face value, 

Similarly, the EM soundings require two-dimensional interpretation 

in the complex geology of the Klamath Hills. 

sional fnversrons indicated very low surface resistivities extendins 

to a few hundred meters depth, underlain by more resistive rock. 

interpretations should be regarded with caution. 

Group Seven's one-dimen- 

These 

Synthesis and Geological Interpretation 

In the Lost River-Spring Lake Valley, we postulate one or more 

concealed northeast-trending faults crossing the valley northwest of 

Hosley. The southeast side of this structure is upthrown, resulting 

in a buried basement ridge trending between the Klamath Hills and 
Stukel Mountain beneath Hosley (Figure 23). 

u 

t' 
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The roving dipole, gravity,  and AMT data sets a re  a l l  consistent 

w i t h  this interpretat ion.  
running roughly from Olene Gap t o  Spring Lake. Th i s  may connect w i t h  

the.mapped north-trending f a u l t  between Spring Lake and the Hot Wells 

(Figure 27) .  

I n  par t icu lar ,  the AMT data suggest a f a u l t  

The gravi ty  data indicate  only 100 t o  300 meters of alluvium 

overlying the  inferred f au l t .  

i s  detected a t  the lowest frequencies of the AMT survey. 

however, that the  conductive zone appears a t  very high €requencies w i t h  

skin depths of tens  of meters. 

"bus it is  not  surprising t h a t  the f a u l t  
It is  surprising, 

This may mean that the f a u l t  has displaced 

a l l  but the most recent valley sediments. 

The inferred f a u l t  trends perpendicular t o  the  regional geologic 

strike,  and should in t e r sec t  several northwest-trending f au l t s  i n  i ts  
path. 

t i p  of Stukel Mountain. 

intersect ions.  

i n t e r sec t  near t he  H o t  Wells. 

Obvious in te rsec t ion  points are Olene Gap and off the  northwestern 
Geothermal activityLmay be enhanced a t  f a u l t  

For example, Figure 23 shows that two mapped f a u l t s  

The re lat ionship of the inferred 

tectonics is unclear, It may be a t rans  

west-trending normal f au l t s ,  

volcanic centers  spaced 20 to  30 km along th6 trend of 
ment may be indicat ive -of a major . f racture  zone pre-d 

obscured by-the northeast-trendinq normal fau l t s .  

However, the regular alignment of 

c 
r e s u l t  of f l  

utheast  extent 

W W 
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The 50 ohm-meter dike-like feature  i n  the roving dipole models 

may represent an impermeable f a u l t  zone or a basa l t i c  dike. Impermeable 
f au l t s  are not uncommon i n  the Klamath Bash ;  mylonitfzation and silifi- 

cation seem t o  cause this phenomenon. On the other  hand, some f a u l t  
zones a r e  highly fractured and permeable (Leonard and Harrisc 1974). 

Thus it is reasonable t o  in t e rp re t  l i nea r  r e s i s t i v i t y  anomalies whether 

conductive or  r e s i s t i v e ,  as fau l t s .  

Geothermal Targets 

W e  have presented evidence For two t a rge t s  in the  K l a m a t h  H i l l s  

area: the  Hot Wells area and the  b f e r r e d  Olene Gap f a u l t  zone, 

The Hot Wells area is an established geothermal resource, but 

the reservoir  area is sharp19 truncated by f a u l t s  t o  the east, and 

appears t o  be qu i t e  l imited in areal extent ,  For example, the 5,800 

foot  hole dr i l led  by Natomas (Figure 23) w a s  essent ia l ly  isothermal. 

According t o  our geophysical in te rpre ta t ion ,  it appears that they 

d r i l l e d  in to  the impermeable zone of model 6A, completely missing 

the zones of hydrothermal c i rculat ion.  

d r i l l i n g  be done on the southwest side of the f au l t .  More detailed 

electrical r e s i s t i v i t y  work, such as dipole-dipole o r  EM soundings, 

is needed t o  determine reservoir  extent.  

W e  recommend.that future  

Work is also needed i n  the Lost River-Spring Lake Valley, 

pa r t i cu la r ly  around the inferred f a u l t  zone. 

t i p  of Stukel Mountain, there are several  warm wells ranging i n  

temperature up t o  42OC (Sammel, 1976). 

segment of the inferred f a u l t  zone between Stukel Mountain and Spring 

Lake do not,  fo r  the  most p a r t ,  exceed 20OC. 

the t i p  of Stukel Mountain, the ex t ra  permeability afforded by two 

in te rsec t ing  f a u l t s  has enhanced hydrothermal c i r c u l a t i  

area a l s o  exhib i t s  the lowest AMT apparent r e s i s t i v i t i e s  (Station 16, 

Figure 2 6 ) .  

waters here is only about one-tenth of the values measured i n  the H o t  

Wells (Sammel, 1976) ; both measurements were made a t  a water tempera- 

t u r e  of 25OC. Thus it comes as somewhat of a surpr i se  that  the esti- 

mated formation res is t ivi t ies 'a t  a few hundred depths are approximately 

the same i n  both areas. 

A t  the northwestern 

However, the wel ls  along the  

This may mean t h a t  a t  

However, the  spec i f ic  electrical conductivity of the w e l l  

Lil 

P 

3 
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Archie's Law is u to consider here = pfe-n, where pr 
is the resistivity of ck with its flui is the resistivity 

of the fluid and $ is the porosity; n is about 2 for most rocks. We 

know that pf near the station 16 is roughly 10 times pf near the Hot 

Wells, even assuming that the fluid is the same temperature in both 

areas. This means th e rock at station 16 (at the tip of Stukel 

Mountain) must be ab0 
be substantially hotter or more concentrated at a few hundred meters 

depth for the apparent resistivity there to 

in the vicinity of the Hot Wells. 

times more porous or that the fluid must 

nearly equal to that 

uld be made to investigate this inferred fault zone 

and determine the temperature gradient. 

dipole resistivity, and self-potential surveys would be useful in 

understanding the structure here. 

be far enough away from Upper Klamath Lake so that shallow temperature 
gradient drilling might provide meaningful information. Pumping tests 

should be performed in existing wells to estimate the permeabilities 

in these rock units, and to establish any relationship between warm 

wells in the conductive zone and those elsewhere along the inferred 

fault . 

Detailed gravity, dipole- 

In addition, the area appears to 

Another interesting structure the noradtrending fault between 

few warn wells in the Spring Lake and the Hot Wells. 
Klamath Hills along fault (Sammel, 6 ) .  Phis fault may play 
an importan rethermal circulation. 

There ar 

ity, magnetic, 

rent resistivity 

AMT and MT data sets. 

prospecting tool in the Klamath Basin follaws: 

A brief assessment of each method as a geothennal 
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1. 

2.  

3. 

4.  

5 .  

Gravity and Magnetics: 
resolving s t ructure ,  par t icu lar ly  concealed s t ruc tures  
o r  those obscured by recent tectonics.  
for t rac ing  f a u l t s  and fo r  helping t o  determine al lu-  
vium/sediment thickness i n  valleys. 

mving Dipole Resistivity:  
connaissance too l ,  but  when used without othcr  resis- 
t i v i t y  methods it is of ten d i f f i c u l t  t o  in te rpre t .  
Unless the inhomogeneity comes t o  surface, t he  anom- 
a l y  may not be obvious and modeling becomes necessary 
for interpretat ion (Dey and Morrison, 1977). Computer 
modeling is expensive because of the  large amount of 
in te rpre te r ' s  time required fo r  a l l  but  t he  simplest 
conditions. 
vealed low apparent r e s i s t i v i t y  anomalies around 
the Klamath Fa l l s  "steamer zone" and the &lamath 
H i l l s  Hot Wells. 
apparent r e s i s t i v i t y  values from multiple t ransmit ters  

DC and EM Res is t iv i ty  Soundings: From our limited 
examination of scanty data we can only conclude that 
one-dimensional interpretat ions are inadequate and 
misleading i n  t h i s  area. A t  least two-dimensional 
interpretat ions are needed, and this would require 
a greater  s t a t ion  density than shown i n  the Klamath 
data. 

These methods seem sui ted f o r  

They are useful 

This can be a useful re- 

I n  the area studied roving dipole re- 

W e  caution against  averaging 

AMl' and MT: 
but more headaches i n  interpretat ion,  than the  other 
techniques discussed. 
it often allows crustal modeling t o  depths of tens  of 
kilometers. However, owing to  local surface inhomo- 
genei t ies  and three-dimensional deep s t ructure ,  it is 
rare ly  possible t o  sa t i s fy  both TE and TM data sets 
by means of a two-dimensional model. 
as performed by the U.S. Geological Survey, or 
scalar MT surveys, normally have l imited interpre- 
t a t iona l  poss ib i l i t i e s .  However, i n  the Last River- 
Spring Lake Valley, the scalar AMT data  seem to  
reveal concealed s t ructures .  

These methods o f f e r  perhaps more promise, 

A major advantage of MT is t h a t  

Scalar AMT, 

3 

b Passive Seismic: One short microearthquake survey 
gave no useful knforrnation, and the value of the 
various passive seismic techniques cannot be 
assessed. <, 
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Among the common geophysical exploration techniques, dipole- 

dipole resistivity, self-potential and temperature gradient drilling 

were not used in the areas of this report. 

has been used extensively in other areas near Klamath Falls, and an 

assessment of that work will be discussed in a subsequent report. 

In general, if one were to use roving dipole as a reconnaissance tool, 
it would be wise to conduct several lines of  dipole-dipole resistivity 
for control. 

Dipole-dipole resistivity 

Recently, self-potential has been recognized as a rapid, low-cost 

and often informative technique for geothermal prospecting (Corwin and 

Hoover, 1979). Geothermally generated electric potentials due to electro- 

kinetic and/or thermoelectric effects may produce anomalies of 50 to 200 mV. 
Self-potential surveys are recommended for use in future exploration as 
they may very well indicate regions of enhanced fluid flow along faults. 

Shallow drilling for temperature gradient and heat flow measure- 

ments is one of the principal methods in geothermal exploration, yet 
has not been applied, to o w  knowledge, in the study areas. Cold 

water influx from the lake will mask thermal anomalies at shallow 

depth around the lake, and so a shallow drilling program should be 
mindful o f  this problem. 

CONCLUSIONS 

I 

Swan Lake ValLey and Klamath Hills areal are mall parts 

of the ' Klamath Basin geothermal sys tern. 
resource being exploited n e w  the city of Klamath Falls. 

0th lie outside the known 

Swan Lake Velley and the adjacent Meadow Lake Valley, are grabens 
The southern with interior drainage, and no proven resource potential. 

end of the valleys lie along a northeast-trending gravity and aero- 

magnetic lineament (the! Klamath Falls lineament). The importance of 

intersecting northeast $and northwest-trending faults an the localiza- 
tion of fractured rock and hot water is speculative. 
notice a good correlation between these interseations and hot water 
within explored parts of the basin. 

However, we 
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A northeast-trending aeromagnetic anomaly occurs over Swan Lake 

Valley, and this may be due to a dike-swarm within bedrock. 

i 

Aside from the speculation on the importance . .  of northeast-trending 

st-mctures , the most encouraging geophysical evidence for a geothermal 
system in the Swan Lake-Meadow Lake area comes from electrical resis- 

tivity data, particularly results of an MT survey. 

tivity zones are indicated: 
Three low resis- 

(a) A 3 ohm-m zone occurs 40 m below the surface of 
Swan Lake Valley, adjacent to a fault marked by 
the Swan Lake rim and an associated steep gravity 
gradient. 

(b) A laterally continuous ( 3 )  6 to 8 ohm-m layer 
underlies Swan Lake Valley at a depth of 1 km, 
This could be an aquifer above the resistive 
bedrock. 

(c) A 3 to 7 ohm-m vertical zone exists beneath 
Meadow Lake Valley. 

The Klamath Hills and Stukel Wmntain are northwest-trending high- 

lands flanked by normal faults and surrounded by valleys filled with 

Quaternary alluvium and lacustrine sediments. Warm water has been 

found in wells west of the Klamath Hills and warm springs occur at 

the northwestern tip of Stukel Mountain and at Olene Gap. 

occurrences align with another northeast-trending lineament in the 

gravity and aeromagnetic data. 

Gap lineament, is also marked by an AMT resistivity anomaly between 

Olene Gap and the Klamath Hills. 

side to the north, is the assumed cause for both the geophysical 

and geothermal anomalies. 

is reconded. 

All three 

This lineament, called the Olene 

' A concealed fault, downthrown 
I 

I 

5 More intensive exploration of this zone 

c 
A detailed interpretation of roving dipole resistivity data 

over Lower Klamath Lake suggests that a shallow warm water zone, up 
to one km thick, could border the west side of the Klamath Hills. 

Lj ?his low resistivity zone extends four 

range-bounding fault. 

into the valley from the 
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The existence of a high temperature reservoir  remains a matter 

for speculation a 

or r e fu t e  the existence of an anomalous heat source such as a shallow 

magmatic source. W e  favor the concept of deep c i rcu la t ion  along f a u l t  

zones i n  a thinned continental  c rus t  as the heating mechanism, similar 

to  systems i n  northe Nevada (Hose and Taylor, 1974). However, the 

Klamath Basin geothermal system appears t o  contain a la rger  volume of 

water than m o s t  Northern Nevada systems. 

s t i m e .  There is  l i t t l e  evidence t o  support 

This is a progress report on an ongoing project.  W e  have not 

f inished studying the  geophysical data  i n  our hands, and more da ta  

should be forthcoming. 

expanding i n t o  other  areas of the Klamath Basin as data become 

W e  plan t o  continue our in te rpre ta t ions ,  

4 

i 

W 

available. 

. .  

. .  
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