Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Electronic Theses and Dissertations bannerUC Berkeley

Nanostructure Control of Biologically Inspired Polymers

Abstract

Biological polymers, such as polypeptides, are responsible for many of life's most sophisticated functions due to precisely evolved hierarchical structures. These protein structures are the result of monodisperse sequences of amino acids that fold into well-defined chain shapes and tertiary structures. Recently, there has been much interest in the design of such sequence-specific polymers for materials applications in fields ranging from biotechnology to separations membranes. Non-natural polymers offer the stability and robustness necessary for materials applications; however, our ability to control monomer sequence in non-natural polymers has traditionally operated on a much simpler level. In addition, the relationship between monomer sequence and self-assembly is not well understood for biological molecules, much less synthetic polymers. Thus, there is a need to explore self-assembly phase space with sequence using a model system. Polypeptoids are non-natural, sequence-specific polymers that offer the opportunity to probe the effect of sequence on self-assembly.

A variety of monomer interactions have an impact on polymer properties, such as chirality, hydrophobicity, and electrostatic interactions. Thus, a necessary starting point for this project was to investigate monomer sequence effects on the bulk properties of polypeptoid homopolymers. It was found that several polypeptoids have experimentally accessible melting transitions that are dependent on the choice of side chains, and it was shown that this transition is tuned by the incorporation of "defects" or a comonomer. The polypeptoid chain shape is also controlled with the choice of monomer and monomer sequence. By using at least 50% monomers with bulky, chiral side chains, the polypeptoid backbone is sterically twisted into a helix, and as found for the first time in this work, the persistence length is increased. However, this persistence length, which is a measure of the stiffness of the polymer, is small compared to other folded helices, indicating the conformational flexibility of polypeptoid chains.

With a firmer understanding of how monomer sequence and composition influence polypeptoid bulk properties, we designed block copolymer systems for self-assembly. Because the governing parameters of block copolymer self-assembly are well understood, this architecture provides a convenient starting point for probing the effect of changing polymer sequence. We found that polystyrene-polypeptoid block copolymers readily self-assemble into hexagonally-packed and lamellar morphologies with long range order, and furthermore, sequence control of the polypeptoid block enables us to tune the strength of segregation (and therefore the order-disorder transition) of the block copolymer. Polypeptoid chain shape also affects self-assembly. In classical synthetic block copolymers, it has typically been difficult to change chain shape without also changing polymer chemistry and therefore other factors affecting self-assembly. The advantage of the polypeptoid system is that it is modular, as the side chain chemistry (and therefore polymer properties) can easily be changed without changing the backbone chemistry. Thus, we have decoupled conformational effects from chemical composition by comparing the self-assembly of block copolymers containing either a helical peptoid block or its racemic, non-helical analog. The increase in the persistence length of the peptoid block due to helicity translates to an increase in the morphological domain spacing.

In this work, we further the understanding of the effect of monomer sequence on bulk polypeptoid properties and self-assembly. Our findings pave the way for the rational design of structured synthetic polymers with tunable, sequence-specific properties.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View