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Abstract 
 
Fisheries are subject to multiple forms of uncertainty. One of these, parameter 
uncertainty, has been largely ignored in the fisheries economics literature even though it 
is known elsewhere (e.g., macroeconomics) to play an important role in models with a 
similar structure. We model management of a renewable resource with unknown growth 
parameters and simulate estimation of the key parameters of the growth equation. Even 
with predictability high by typical standards and the true data generating process serving 
as the model, management of the fishery is problematic. A simple heuristic alternative 
making less intensive use of the data  performs better.  
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INTRODUCTION 

Fisheries managers when making decisions almost always assume that the parameters of 

the growth function are statistically identified and temporally stable. If both of the 

conditions hold then the usual political economy story of agency capture is the most 

plausible one for the declining state of fisheries in many places. However, if the growth 

function’s parameters are either not identified in the available data or the system they are 

in is not stable then there may be fundamental problems that institutional changes and 

changes in management objectives, such as those suggested by the recent Pew Oceans 

Commission and the U.S. Commission on Oceans Policy, will not solve. Several recent 

papers have looked at the case where the growth function parameters vary over time in a 

cyclical fashion (Carson, et al., 2009; Costello, 2000). Here we look at a diferent case 

where the parameters of a time-invariant function are only weakly identified in any 

feasible data set available. 

The standard natural resource economics textbook treatments of how to optimally 

manage a fishery implicitly assume that biologists have delivered to them the “true” 

underlying parameters of a stable biological growth function (Fisher, 1981; Clark, 1990; 

Hartwick and Olewiler, 1998; Perman, et al., 2003; Tietenberg, 2002). Indeed, most 

economic analysis is done as if there is not even a random element to changes in fish 

stocks. While this has allowed economists to concentrate on the “economic” part of the 

management problem, serious issues arise if the underlying biological parameters upon 

which decisions are being made are substantially wrong. Indeed, the basic theme of this 

paper is that the estimates of the biological parameters will usually be sufficiently far 

from their true values in such a manner that economists cannot ignore the implications of 
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this issue in providing policy advice. It is also a theme of this paper that the problem is 

much deeper and structural in nature than simply admitting uncertainty and invoking 

some notion of the precautionary principle to cut back on allowable catch limits.  

 To be sure, economists have not completely ignored the issue of uncertainty, 

although “relative” neglect is probably a fair assessment. Much of this neglect stems from 

a perceived division of labor between biologists and economists and a line of work begun 

by Reed (1979). Reed’s work suggested that if one simply tacked on a random term to the 

current period of growth, then the optimal policy was still the deterministic constant 

escapement rule of Gordon (1954). The reason for this is that if the error term was i.i.d. 

with an expected value of zero and observable then it was optimal to adjust to each shock 

by setting harvests to keep the stock size constant. Clark and Kirkwood (1986) made the 

more realistic assumption that the error component was not observed contemporaneously 

so that there was effectively error in the stock size measurement.  

Recently, there has a been renewed interest in looking at uncertainty, some of 

which is stimulated by a provocative biologically oriented paper by Roughgarden and 

Smith (1996) that argued that the large amount of uncertainty in biological modeling 

called for the use of some variant of the precautionary principle in fisheries management. 

This has led some economists, most notably Sethi, et al. (2005) to reexamine the 

uncertainty issue.1 Sethi et al. use three independent sources of uncertainty, growth, stock 

size measurement, and harvest implementation each modeled as a contemporaneous error 

                                                
1 Other recent papers looking at the role of uncertainty in fisheries management and the behavior of 
fisherman include Singh, Weninger and Doyle (2006) and Smith, Zhang, and Coleman (2008). More 
generally there is a growing recognition that economists need to become more actively involved in 
modeling the complete bioeconomic system. Smith(2008) points out that small changes in parameter values 
in non-linear fisheries can have a large influence on the underlying dynamics and that econometric 
understanding of these implications are woefully inadequate.  
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term. In this sense, Sethi et al. encompasses the Reed, Clark and Kirkwood results and 

the more formal parts of Roughgarden and Smith. They find that uncertainty with respect 

to stock size measurement matters the most. In particular, they find constant escapement 

rules that attempt to hold the stock size at the level that maximizes sustainable yield, and 

which often characterize fisheries management, lead to substantially lower profit and a 

higher probability that the fish stock being managed will go extinct than under the 

adaptive policy they find to be optimal.  

Sethi, et al. (2005) suggest that uncertainty is more important than economists 

previously thought but at its heart is still a stable deterministic growth function with 

contemporaneous uncorrelated i.i.d. error terms added to the growth, stock measurement, 

and harvest equations. There are two other interesting possibilities to explore. The first is 

that the system is not stable over time in the sense of having clear time series dynamics 

either in the deterministic (Carson, et al., 2009) or stochastic (Costello, 2000) part of the 

model. Here, we look at the other possibility that the system is stable but the parameters 

being used for policy purposes are fundamentally different from the true ones.  

This remainder of the paper has three parts. First, we introduce the basic model 

and discuss some of the fisheries biology literature on estimating growth equations. This 

literature shows that even simple Gordon-Shaefer logistic growth models typically 

produce poor estimates and that there has been a tendency to move to ever more 

complicated models that improve in-sample but typically not out-of-sample forecasting 

ability. Economists have paid surprisingly little attention to the technical estimation 

problems the biologists have long faced. Various shades of macroeconomic modeling and 

forecasting issues come to mind here (Hamilton, 1994). The fundamental problem is that 
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errors are propagated through a non-linear dynamic system, with the issue being 

exacerbated by a high degree of correlation between many variables, imperfect 

observability of some key variables, and a relatively short time series available on which 

to estimate model parameters.  

While the parameters of the growth equation are technically identified, we show 

that they are often only weakly identified so because of the typical lack of substantial 

variation in the stock size and because of the tightly coupled relationship between the 

growth rate and the carrying capacity. In samples of the size often used for the purpose, 

parameter estimates may be almost arbitrarily far from their true values and the property 

of asymptotic consistency of little practical import. This under identification becomes 

even more troublesome if one allows various economic factors associated with catch per 

unit of effort measurements to be correlated with the unobserved random shocks, as 

seems likely.  

We proceed to generate synthetic data for the parameter values used for growth 

rate, carrying capacity and stock size in the fisheries example in Perman, et al. (2003), a 

popular graduate textbook. Our example shows a frightening degree of parameter 

dispersion, and even with almost thirty years of data some of the parameter estimates still 

display considerable bias.  

For our manager we adopt a realistic objective2 of maximizing the sum of catches 

subject to maintaining positive stock levels with a minimum probability of collapse. We 

                                                
2 This is not the economic optimum but rather, maximum sustainable yield. This is quite realistic as a target 
for the manager as many current US fishery management plans mandate that the stock be maintained at or 
near maximum sustainable yield or a fraction thereof.  Examples include the Mid-Atlantic Flounder (Mid-
Atlantic Fisheries Management Council, 1999), the Bering Sea and Aleutian Islands Groundfish (Witherell, 
1997) and the California White Seabass (Larson, et al., 2002). 
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look at catches in management simulations treating the parameter estimates as truth as 

well as two heuristic rules of thumb one based on stock size and one based on catch. 

Traditional management is adaptive in the sense that its uses estimates of 

maximum sustainable yield (MSY) from models that are periodically updated with 

accumulated harvest and stock size or effort data. We assume the various parameter 

estimates from the previous section are treated as truth by the management agency in 

setting catch limits. This is done repeatedly with different draws on the vector of random 

error terms for the growth function. This allows us to trace out various outcome 

distributions. In particular, we focus on average catch and the present discounted value of 

catches. We also evaluate the probability the fish stock goes extinct. As a baseline we 

manage the fishery using the true biological model parameters and the same specification 

for random contemporaneous shocks over the five years management period. The profit 

distribution is not at all concentrated around that achieved if the true biological growth 

function parameters were used and, in cases were profit is high, the probability of low 

stock size and even extinction is high.  

The last part compares the performance of traditional management to a simple 

rule of thumb scheme that forsakes an effort at formal estimation of the growth function 

parameters. This too is similar to the direction that some of the macroeconomic literature 

has taken when it is clear that the true model parameters are unknown (Brock, et al., 

2007). Here rather than assuming that the parameters of the growth function are known or 

even knowable, we make the much weaker assumption than is typical and assume only 

that the growth function is stable and is single peaked. Ourrule of thumb looks at the 

difference between stock (or catch) over two periods and then determines what side of the 
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peak one is on and takes a step toward it. Because there is a true stochastic component to 

growth it is always possible to take a step in the wrong direction. Essentially, this is an 

adatpive gradient pursuit method which is always on average moving in the correct 

direction. We show that this rule of thumb can lead to higher expected yields than does 

traditional management and a lower likelihood of collapse.  

 

MODEL 

The standard textbook fisheries example is the Gordon-Schaefer model with a logistic 

growth equation (Clark, 1990; Perman, et al., 2003). The growth equation is usually 

represented as: 

 
(1) G(Xt)= rXt(1 – Xt/K), 
 
where G(Xt) is the net natural growth in the fish stock at time t, Xt, r is the growth rate 

and K is the carrying capacity. Xt+1 = Xt + G(Xt) – Ft, where Ft is the quantity of fish 

harvested. A sustainable yield occurs where Ft = G(Xt). Maximizing sustainable yield 

(MSY), which is the explicit or implicit objective written into much fisheries legislation, 

occurs when the population is set at ½K and is equal to rK/4. Adding an economic actor 

such as a rent maximizing sole owner shifts the MSY formulation of stock size a bit 

higher or lower to take account of how costs depend on stock size (stock size larger than 

MSY and increasing as degree of dependence increases) and the magnitude of the positive 

discount rate (stock size smaller than MSY and decreasing as discount rate increases). The 

optimal harvest size though is still typically driven to a large degree by the underlying 

MSY biology, as these two factors often roughly offset each other. What is crucial for the 

argument we advance is the dependence of current policies on knowing K to set the 



 8 
 

optimal stock size and rK to set the optimal harvest. Similar dependence exists for most 

of the other growth functions commonly used in making fisheries management decisions 

so the conceptual issues can all be well illustrated using the logistic function. Further, we 

note that while the Gordon-Shaefer logistic growth model can be criticized for not being 

realistic enough to fit empirical data, it is an entirely different matter if we generate data 

as if that model were true and then try to fit it. Now the Gordon-Shaefer logistic model 

with stock assumed to be observable represents the best case of having to fit only two 

parameters relative to the available time dimension of the dataset.3 While our simple 

model has but a single species and ignores spatial/temporal heterogeneity, the 

complications that arise from accounting for these factors make estimation all the more 

difficult and consequently reinforce our argument. 

 The main problem is that K in the logistic growth equation is fundamentally under 

identified unless r is known (and to a lesser degree vice versa for r unless K is known). 

The main reason for this is that unless there is substantial variation in Xt, then observing 

Xt and G(Xt) only identifies the ratio r/K. Since fisheries managers often try to hold Xt 

constant, which is optimal for MSY with i.i.d. environmental shocks to the growth 

equation (Reed 1979), little variation in St is generally observed. Under identification of 

K and r is not a new argument. It is developed at some length by Hilborn and Walters 

1992, but the argument does not seem to have permeated thinking in the economics 

literature on fisheries management. Instead, one sees explorations of other sources of 

uncertainty and of the implications of the precautionary principle. 

                                                
3 In practice stock is at best observed with considerable measurement error. Zhang and Smith (2011) 
examine statistical issues related to this problem in the context of the Gordon-Shaefer model. 
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This fundamental under identification of the parameters of the growth equation 

has a counterpart in the environmental valuation literature, where it is well known that 

because observed conditions do not vary sufficiently one must induce experimental 

variation (often in a stated preference context) in the attributes such as cost to statistically 

identify the parameters of interest with enough precision to be useful for policy purposes. 

In the fisheries context, this would require intentionally encouraging very large swings in 

G(Xt) by setting different harvest levels in order to learn about r and K. This is unlikely to 

happen as it would be fought in either direction by different interest groups. 

Hilborn and Walters (1992) note that in many empirical fishing models, because 

of the statistical imprecision in parameter estimates, K is set to the largest observed stock 

size (usually estimated via sampling or some other method). This, of course, technically 

resolves the statistical identification problem. However, the other parameter estimates can 

now be grossly wrong as a consequence, and hence, may result in policy prescriptions 

that are grossly wrong. In particular, assuming a value of K which is too small (e.g., 

because fishing effort before Xt was well estimated) will results in an estimate of r that is 

too large and a recommendation to set Xt too small, which can be potentially disastrous.  

 

SIMULATION STRUCTURE AND PARAMETER ESTIMATORS 
 
Consider a fishery manager charged with estimation of MSY with 30 years4 of fish stock 

data (observed with noise). We choose to focus on MSY rather than maximum economic 

yield for three reasons, ignoring discounting and dependence of harvest costs on stock 

                                                
4 This is a plausible sample size and, perhaps even larger than typical, for estimation. For example, the 
Bottomfish Stock Assessment for the Western Pacific in Ralston, et al. (2004) made use of 12 years of 
fishery dependent data; the Southeast Data Assessment (2003) for Black Sea Bass and Vermillion Snapper 
used 33 years; and the Southeast Data Assessment (2004) for the Gulf of Mexico Red Snapper used no 
more than 12 years. 
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size and discounting simplifies the analysis, their inclusion typically results in a rule 

calling for some fraction of MSY, and; many management documents in the United 

States still mention MSY or a fraction of MSY as the target harvest.   

Suppose that the data generating process for the fishery is known to be given by;  

(2) 
1 1

1
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t t t t t
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t t t t
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+ +
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The fish biomass at time t is given by Xt, the quantity harvested by Ft, the intrinsic 

growth rate by r, and the carrying capacity by K.  If our manager performs OLS on 30 

years of stacked data we obtain; 
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A consistent5 estimate of the maximum of the growth curve is then given by;    
 

(4) 
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−

−
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An immediate statistical difficulty is that the two OLS parameters of interest are 

highly correlated as noted by Hilborn and Walters (1992). It is also the case that as a 

nonlinear function of the regression coefficients can be shown to be biased in finite 

samples. In addition to being biased, the denominator 4r/K is likely to be quite small, 

particularly, for longer lived species (such as cod and orange roughy) which can lead to 

empirical under identification (Kenny, 1979).  

                                                
5 This follows from Slutsky's theorem (Wooldridge, 2002, p. 37) and is confirmed by simulation results 
below. 
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The next section describes the performance of a fishery managed using OLS 

estimates obtained from simulated data. We then proceed to compare these statistical 

decisions under identical draws from the error terms are to the performance of heuristic 

management.   

Statistical Management 
Parameter estimates are calculated by simulating sample data according to the model 

outlined above.  The harvest data are generated to mimic an unmanaged fishery by using 

a uniformly distributed variable that can be thought of as exogenously varying fishing 

effort.  Each period, a a uniformly distributed fraction of the fish stock is removed as 

harvest.  Figure 1 shows the average parameter estimates over 10,000 simulations for 200 

periods each.  The regression coefficients are consistent for their true values, and 

converge smoothly.  The small-sample bias in the regression coefficients leads to some 

problematic behavior in the estimates of the policy variable; estimates of MSY are 

consistent but exhibit a much less regular approach to the true value with large spikes in 

error during approach. This fits with empirical underidentification described above 

(Kenny 1979).  
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 The simulations above are presented to confirm that OLS estimates for this model 

are consistent. Using these estimates for policy is a different matter. Figure 2 

demonstrates the performance of a statistical management regime that allows harvesting 

of the estimated value for MSY beginning at period 30.6  When statistical management 

begins, catches immediately increase and the rate of collapse (stock reaching zero) 

increases, rising to nearly 90% by the 100th period.  While there may exist discount rates 
                                                
6 30 years is an unusually large sample to have both catch and stock data. For example, a recent study 
(Erisman et al, 2011) made use of some of the largest such datasets in Southern California and the largest 
sample in this paper contained 30 years.   

Figure 1:  Consistency of Estimates  
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for which this catch profile is supported as optimal, the fact remains that most fishery 

management legislation contains a mandate to prevent collapse of the resource. Statistical 

management, even for a correctly specified model with unrealistically high-quality data, 

performs poorly.   

 

 

 

Heuristic Management 

Acompeting management regime is a simple “rule of thumb” management program using 

only the most recent three period’s stock and catch data to perform a rudimentary 

gradient search for the stock which yields MSY.  The motivation for the gradient search 

Figure 2: Statistical Management 
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is that with knowledge of the stock, much can be learned from three data points about the 

current position of the stock if we presume only that G(Xt) has a unique local maximum 

value greater than zero and G(Xt) = 0 for Xt = 0 and Xt = 0 for some unknown K > 0. The 

goal is to set catch levels to send the stock level to that which maximizes the growth 

function. If the noise term can be considered small and stock values and catch values are 

known, then we can infer that G(Xt) = (Xt-1 -Xt) - Y t-1.  So at time period s, given data: {Ys, 

Ys-1, Ys-2, Xs, Xs-1, Xs-2}, we can rewrite to obtain our estimates of the realized growth in 

the previous two periods: 

G(Xs-1) = (Xs -Xs-1) - Y s-1 and G(Xs-2) = (Xs-1 -Xs-2) - Y s-2.  We now have four cases, two of 

which are informative: 

1. Xs-1 > Xs and G(Xs-1) > G(Xs): This implies that the single peak occurs at some X 

greater than Xs. 

2. Xs-1 < Xs and G(Xs-1) < G(Xs): This is not enough information to determine location of 

the peak. 

3. Xs-1 < Xs and G(Xs-1) > G(Xs): This implies that the single peak occurs at some X 

greater than Xs. 

4. Xs-1 > Xs and G(Xs-1) < G(Xs): This is not enough information to determine the location 

of the peak. 

Figure 3 summarizes the 4 cases outlined above.   

 

 

 

 



 15 
 

 

Our rule-of-thumb decision rule makes use of the implications of each case above.  In the 

informative cases 1 and 2 the rule increases or decreases the harvest by a factor, γ, 

assigned arbitrarily to be .5 in our simulations below. To summarize, the rule of thumb 

set’s period s catch as follows: 

1. Set 1)1( −−= ss YY γ  

2. Set 1−= ss YY  

3. Set ( ) 11 −+= ss YY γ  

4. Set 1−= ss YY  

 

 

Figure 3: The four possibilities for 3 data 
points for any single-peaked growth curve 
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Motivated by the statements in many fishery management plans we also track the 

probability of stock collapse. Many management plans contain statements mandating a 

maintenance of stocks at or near that which yields MSY coupled with a mandate to 

prevent the stock from crashing and to prevent the stock from dropping below some 

threshold as in Lee (2003).  

Figures 4, 5, 6 and 7 present averages of 100,000 trials for 100 periods of for 

managing fishery under different regines.  Figure 4 shows the baseline of OLS statistical 

management beginning at period 15. Figures 5 and 6 show the results of preceding OLS 

statistical management by 15 and 30 years (respectively) of tule-of-thumb (gradient) 

management. Figure 7 shows the results of using our ule-of-thumb management approach 

for the entire sample.  In every case, statistical management is dominated by our simple 

heuristic rule. Most strikingly, our rule of thumb gradient approach maintains high 

average catch levels and the longer it is used relative to the standard OLS statistical 

management regime, the more the probability of a fishery collapse declines.   
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Figure 4: Pure Statistical Management with delay 
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Figure 5: Mixed Management, Short Horizon 
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Figure 6: Mixed Management, Long Horizon 
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While we do not advocate the use our heuristic rule of thumb approach for real 

management with substantial further research; our results do suggest that it unlikely that 

any payoff-relevant information can be gained from statistical analysis of fishery data 

beyond that being used by our rule of thumb measure even if those data, by good fortune, 

were generated by the simplest model possible. It is important to remember that OLS is 

correctly specified for this model and the disturbance terms are i.i.d. normal, a rosy 

situation unlikely to occur in real management. Any change to the model to increase 

realism will only make the econometrician’s task more difficult as there is no more 

realistic growth model with fewer parameters than two.     

 

 

Figure 7: Pure Heuristic Management with delay 
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CONCLUDING REMARKS 

Of necessity, the parameter estimates upon which fisheries management decisions are 

made must be wrong. That is because they are statistical estimates and not the true 

parameter values. Economists have largely ignored this issue. Indeed, most theoretical 

and applied work has taken the parameter estimates from biologists and treated them as 

truth. When economists have considered uncertainty, it is typically in the form of random 

environmental shocks to recruitment from the growth equation. In the simplest cases, 

i.i.d. error terms allow the appropriate adjustment each time period. Recently, Sethi et al 

(2005) have shown that other forms of error, such those results from having to measure 

stock size, can create much more substantial problems for managing fisheries. This paper 

is in that spirit. 

 Measurement error in the main biological parameters, growth rate, carry capacity, 

and maximum sustainable yield in our simple Gordon-Shaefer model tends to be fairly 

large. In part that is because the regression model has two covariates, stock size and stock 

size squared, which tend to be highly correlated. This high correlation is made much 

worse by the usual management practice of trying to maintain stock size at a particular 

level. The typical error in the parameter estimates increases rapidly in the underlying 

unexplained variance. More complex (and realistic) models either in terms of more 

parameters or more complex error structures are likely to create even worse statistical 

properties for the estimates used. Here, we have given the game away to the 

bioeconometrician; estimation is made as simple as possible by with the functional form 

fit being the one used to generate the data, the error component is generated 

independently and has low variance relative to many fisheries. Further, both catch and 
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stock are assumed observable. Restricting ourselves to realistic sample sizes, it is possible 

to show that there is very little gain (if any) for using the full small sample relative 

throwing out 90% of the sample and using our simple rule of thumb.  

Increasing the number of parameters will almost surely make the problem worse. 

Some readers may argue that real stock assessments rely on fishery independent data and 

our results only reinforce the importance of that source of information. Fisheries are 

highly dimensional dynamical systems and data on variables beyond catch and stock 

levels (such as length-frequency and length-at-age) may improve estimates but only if the 

out-of-sample predictive information they provide grows at a rate substantially larger 

than the number of extra parameters that must be fit.  That is because the fundamental 

nature of the problem we point out is propagation of measurement error in the parameters 

throughout a non-linear optimization model. 

One of the immediate results of our framework  is that under- or overestimating 

the allowable catch by the same amount does not result in symmetric errors. That is 

because overestimation leads to higher catches now and, of necessity, fewer fish later, 

including substantially increasing the risk that the fishery collapses. For any given over 

and under estimate of the allowable catch there is typically a discount rate that would 

make one indifferent. Environmentalists and fishers, however, are likely to disagree on 

the discount rate and the social discount rate is also likely to be lower than the private 

discount rate. This discount rate story as a source of conflict is not new but what is new is 

the interaction between the level of parameter uncertainty and the discount rate in these 

sense that differences in discount rates are amplified by the level of uncertainty. 

Reducing the level of uncertainty can be Pareto improving for all groups and reduces (but 
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does not eliminate) the degree of conflict. This insight may be useful in implementing 

more practical variants of the precautionary principle.  

 Given the poor performance of the standard statistical estimates of the relevant 

biological parameters, it is useful to ask if there is anyway to improve the situation as 

either over or underestimation of allowable catch can reduce welfare. Given that the 

problem is essentially one of high collinearity and small sample-size, one possibility is to 

limit the range of either the carrying capacity or growth rate parameters. Interesting 

opportunities for doing this appear to be available, particularly with the recent biological 

work on estimating historical population stocks before large scale commercial fishing 

(Jackson, et al., 2001). A Bayesian framework (Gelman, et al., 2003; Walters and 

Ludwig, 1994) is natural and pinning down a reasonable narrow range for one of these 

parameters can add a great deal of stability to the estimate of allowable catch. 

 Our framework suggests   a different way of dealing with the issue that may be 

generally applicable situations where there is considerable uncertainty about the 

underlying biological growth function other than it being assumed to be single peaked. 

That is to use a rule of thumb type decision rule that simply tests what side of the peak 

one is likely to be on using very limited information and then pursued it using a fairly 

conservative step. Since there are stochastic shocks it is always possible to move in the 

wrong direction on any particular step. On average though one moves in the correct 

direction and this simple approach works reasonably well in the sense of being fairly 

close to using the growth function parameters estimated in the standard way when the 

parametric modeling being fit was the correct one. Further, there are clearly more 

sophisticated adaptive gradient pursuit methods that could be explored than the simple 
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rule of thumb approach we use in this paper that may be more statistically efficient while 

maintaining a large degree of robustness. Another  logical step would be to look at the 

performance of different adaptive gradient pursuit methods when the underlying 

parametric model being fit was the incorrect one so that there was both specification and 

parameter estimation error as is likely to be the case in realistic empirical applications.    
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