Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Electronic Theses and Dissertations bannerUCLA

Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

Abstract

The sun delivers an amount of energy equivalent to ninety billion hydrogen bombs detonating each second. Despite the fact that only one billionth of that energy falls onto the surface of the Earth, one day of sunlight would be sufficient to power the whole human race energy needs for over half a century. Solar electricity represents an environmentally-benign source of power. However, such technology is still more than twice as expensive as natural gas-fired generators. III-V semiconductor nanopillars are defined as vertically aligned arrays of nanostructures that hold the promise to aggressively diminish the cost of the active photovoltaic cell by exploiting a fraction of material utilized in conventional planar schemes. In this dissertation, we assess the viability of two classes of high-performance nanopillar-based solar cells. We begin with the incorporation of dedicated conjugated polymers to achieve a hybrid organic/inorganic heterojunction. Such configuration introduces a high optical absorption arising from the polymeric layer in conjunction with an efficient carrier transport resulting from the semiconductor nanopillar array. We extend the controllability of the heterojunction properties by replacing traditional spin-casting methods with an electrodeposition technique where the polymer is formed and doped in-situ directly onto the nanopillar facets. The rational tuning of the electrical conductivity and energy level of the polymer translates into an enhanced photocurrent and open-circuit voltage, achieving 4.11% solar power conversion efficiency. We then turn our attention to all-semiconductor radial p-n homojunctions embedded in the nanopillars. The first architecture focuses on ex-situ ammonium-sulfide passivation and correlates the optoelectronic properties of the solar cell once two different types of transparent conducting oxides are adopted. The barrier formed at the contact/semiconductor interface greatly depends on the Hall polarity of the transparent electrode. The second design delves into an in-situ InGaP passivation shell to alleviate the deleterious recombination effects caused by surface states. The efficiency improvement is over six-fold, up to 6.63%, compared to unpassivated devices. Lastly, a p-i-n radial junction nanopillar solar cell highlights external quantum efficiencies in great agreement with numerical simulations. In such framework, the dome morphology of the top transparent contact is found to concentrate and intensify the optical field within the nanopillar active volume, resulting into resonance peaks in the quantum yield measurements, at 7.43% efficiency. These findings confirm the potential of 3D nanopillar solar cells as a cost-effective platform with respect to canonical thin-film photovoltaics.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View