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GLOBAL IDENTIFICATION IN NONLINEAR SEMIPARAMETRIC
MODELS

IVANA KOMUNJER

Abstract. This note derives primitive conditions for global identification in non-

linear simultaneous equations systems. Identification is semiparametric in the sense

that the latent structural disturbance is only known to satisfy a number of orthog-

onality restrictions with respect to observed instruments. Our contribution to the

literature on identification in a semiparametric context is twofold. First, we derive

a set of unconditional moment restrictions on the observables that are the start-

ing point for identification in nonlinear structural systems. Second, we provide

primitive conditions under which a parameter value that solves those restrictions

is unique.

Keywords: identification, structural systems, multiple equilibria, semiparametric

models

1. Introduction

The problem of identification of economic relations has a long standing history,

with systematic discussions given in a collective work of the Cowles foundation edited

by Koopmans (1950).1 In a nutshell, the identification problem is concerned with

the unambiguous definition of the parameters to be estimated. Thus, it precedes the

problem of statistical estimation.

Based on the work of Koopmans and Reiersøl (1950), a complete treatment of

identification in a parametric context was given in Rothenberg (1971) and Bowden

(1973). Using an approach based on information criteria, they provided conditions

Affiliation and Contact information: Department of Economics, University of California at San

Diego, komunjer@ucsd.edu.
1A review of historical and recent developments on identification in economics can be found in

Dufour and Hsiao (2008).
1



2 KOMUNJER

under which parametric models are locally and globally identified. Unfortunately,

such results may only be applied in models in which it is possible to specify the

likelihood function of the dependent variables.

Situations in which the distribution of the dependent variables is left unspeci-

fied require conditions for identification in a nonparametric context. Those have

been derived in the work of Brown (1983), Roehrig (1988), Matzkin (1994, 2005),

and Benkard and Berry (2007), among others. Common to all the studies is an as-

sumption of independence between the (observed) explanatory variables and latent

disturbances to the structural system.

Semiparametric models, which are the focus of this paper, fall in between the

fully parametric and nonparametric models. They arise when the distribution of

the disturbances is only known to satisfy certain moment restrictions. These are

typically expressed as conditions for orthogonality between the disturbances and

instruments—functions of explanatory variables—and are hence weaker than an as-

sumption of independence.

The present paper examines identification in semiparametric models defined by

unconditional moment restrictions. Thus, its contributions are complementary to

the existing literature that considers models with conditional moment restrictions,

such as Chesher (2003), Newey and Powell (2003), Chernozhukov and Hansen (2005),

Chernozhukov, Imbens, and Newey (2007), for example. It is worthwhile distinguish-

ing these two cases, as identification in some unconditional moment models implied

by the conditional ones may fail even when the conditional model is identified. Ex-

amples of such failures can be found in Dominguez and Lobato (2004).

The basic semiparametric results for linear simultaneous equation systems under

linear parameter constraints were given in Koopmans (1950). These criteria are the

well-known rank conditions that were extended by Fisher (1961, 1965) to nonlinear

systems that are still linear in parameters. An important step towards a full treat-

ment of identification in general nonlinear models was made by Fisher (1966) and

Rothenberg (1971). Their insight was to treat the identification problem simply as
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a question of the uniqueness of solutions to nonlinear systems of equations. While

intuitive, this approach has not yet produced sufficient conditions for global identi-

fication that are not “overly strong”.2 Newey and McFadden (1994) remarked that,

as a consequence, much of the related literature has adopted an approach in which

identification is simply assumed.

This note makes two contributions to the literature on identification in a semipara-

metric context. First, we derive a set of unconditional moment restrictions that are

the starting point for identification in nonlinear structural systems. Second, we pro-

vide primitive conditions under which a parameter value that solves those restrictions

is unique. It is worth pointing out that our uniqueness results are global.

We consider nonlinear systems of simultaneous equations in which the distribution

of latent disturbances and observed instruments is known to satisfy a set of orthog-

onality conditions. In Section 2 we show how these conditions give rise to moment

restrictions on the distribution of the explanatory and dependent variables that are

the starting point for identification. The derivation of the results is made non-trivial

by the possible presence of multiple equilibria often found in models that are non-

linear. In particular, we relax the often used assumption that the structural system

can be uniquely solved for the dependent variable.

In Section 3, we consider a simple example which gives the key idea behind the

main result of the paper. By the same token, we illustrate and discuss the difficulties

of finding primitive conditions for identification in general nonlinear models.

Our main result is in Section 4. It derives a set of conditions which guarantee that

a solution to a nonlinear system of equations is unique. Two of those conditions are

key to the identification: one concerns the Jacobian of the system, while the other

excludes “flats”. In particular, we assume that the Jacobian of the system is non-

negative (non-positive). When the system is continuously differentiable with respect

to the structural parameter, this requirement is weaker than the full rank conditions

2We refer here to p.158 in Fisher (1966) as well as Rothenberg’s (1971) discussion of Theorem 7.
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given in Theorem 5.10.2 in Fisher (1966) and Theorem 7 in Rothenberg (1971).3 In

other words, we allow the rank of the derivative matrix to be less than full, provided

this only happens over sufficiently small regions in the parameter space. The latter is

our second main requirement: that the system does not have any “flats”, i.e. does not

remain constant over regions in the parameter space that have nonzero dimension.

Our results exploit well established results of nonlinear functional analysis.

We conclude in Section 5 with a discussion of our results; proofs are found in

Appendices.

2. Semiparametric Identification in Nonlinear Structural Models

Let an economic theory specify the system of nonlinear simultaneous equations:

(1) ρ(Y,X, θ) = U

The variables entering into these equations consist of: a set of observed dependent

variables Y ∈ RG, a set of observed explanatory variables X ∈ RK , a structural

parameter θ ∈ Θ ⊂ Rk, and a set of latent variables U ∈ RG. For example, U

can be thought of as disturbance or unaccounted heterogeneity in the model. In

what follows, we shall assume that θ is finite dimensional (k < ∞), and that ρ :

RG+K ×Θ → RG is a known mapping satisfying the following:

Assumption A. For every θ ∈ Θ, the mapping (y, x) → ρ(y, x, θ) is in C1(RG+K).

We begin our discussion of semiparametric identification with a description of a

structure relevant in the context of nonlinear simultaneous equations systems such

as the one in Equation (1).

3Both Fisher’s (1966) and Rothenberg’s (1971) results exploit sufficient conditions for uniqueness

of solutions to systems of nonlinear equations given in Gale and Nikaidô (1965). They require that

the Jacobian be positive, and that the symmetric part of the derivative matrix of the system be

positive semi-definite.
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2.1. Structure. Say that V ≡ (X ′, U ′)′ is a random variable that takes values v =

(x′, u′)′ in RK+G and call FXU the associated measure. When for a given value of θ,

Equation (1) can be globally “solved” for Y in terms of X and U , then one can define

(explicitly or implicitly) a single-valued map Y = m(X, U, θ) that is continuous in

X and U . The transformation T which to each v associates w ≡ (x′, y′)′ is then a

single-valued mapping (or function) T : RK+G → RK+G that is continuous. This

leads to the usual definition of the image measure FXY of W = T (V ) on RK+G:

FXY = FXU ◦ T−1. Hence, the distribution of the observables Y and X is generated

by the structure S = (θ, ρ, FXU).

When given θ, X and U multiple solutions for Y are possible in Equation (1),

we no longer deal with a single-valued map from V to W but a correspondence

T : RK+G ⇒ RK+G. Multiple equilibria for the dependent variable are likely to arise

in structural systems that are nonlinear in variables. A complete determination of

the distribution of the observables X and Y must then include a rule according to

which a particular Y is chosen from the set of solution points.

More formally, for any v = (x′, u′)′ ∈ RK+G we shall let Γv ≡ {w ∈ RK+G :

w = (x′, y′)′ and ρ(y, x, θ) = u}. Then, the correspondence T associates to every

v ∈ RK+G a set Γv ⊂ RK+G. The random variable W is obtained by transforming V

with a single-valued map t that belongs to the class of measurable selections Sel T

of T , whereby Sel T = {t : RK+G → RK+G Borel-measurable and such that t(v) ∈

T (v) for almost every v ∈ RK+G} (see Jovanovic (1989), e.g.). That the set Sel T is

nonempty is not always the case. We impose the following:

Assumption B. For every (x, θ) ∈ RK ×Θ, lim|y|→∞[ρ(y, x, θ)′y]/|y| = ∞.

Assumption B ensures that given (x, θ) the mapping y 7→ ρ(y, x, θ) is surjective

on RG, i.e. that the inverse image by ρ(·, x, θ) of any point in RG is nonempty.

The intuition behind this result is simple: say that ρ is linear in y so that for some

positive definite G × G matrix Bθ we can write: ρ(y, x, θ) = Bθy + ρ̃(x, θ). Since

det Bθ 6= 0, y 7→ ρ(y, x, θ) is surjective on RG. In addition, [ρ(y, x, θ)′y]/|y| =
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Bθ|y| + ρ̃(x, θ)′[y/|y|], which goes to ∞ as |y| → ∞. Assumption B states the same

limit condition which proves to be sufficient for surjectivity whether or not ρ is linear.

This property combined with the continuity requirement in A suffices to show that

the set of measurable selections Sel T of T is nonempty; hence W = (X ′, Y ′)′ is well

defined. We then have the following result:

Proposition 1. Let Assumptions A and B hold. Then Sel T 6= ∅, and the structure

S = (θ, t, FXU) with t ∈ Sel T generates the distribution of the observables X and Y .

In particular, the image measure of the observables X and Y is then again obtained

as: FXY = FXU ◦ t−1. Note that our construction of FXY does not allow for any

extrinsic randomness in the choice of equilibria for Y . This, however, is not a serious

restriction on the attainable distributions of Y when FXU is atomless, as shown by

Jovanovic (1989).

2.2. Identification Condition. The structural parameter θ is said to be identifi-

able in Θ if every structure S∗ = (θ∗, t∗, F ∗
XU) whose characteristics are known to

apply to S = (θ, t, FXU) and which generates the same distribution of the observables

FXY as S (i.e. is observationally equivalent to S), satisfies θ∗ = θ (see Koopmans

and Reiersøl (1950), Roehrig (1988), e.g.).

Here, we shall assume that FXU is known to satisfy:

(2) E[A(X, θ)U ] = 0

where A(X, θ) is a k × G matrix of instruments which consists of functions of X

and θ. The nature of the restrictions in Equation (2) is semiparametric: while the

functional form of the distribution of the disturbance is left unspecified, a number

of orthogonality conditions relating X, U and θ are known to hold. Weaker than

independence, such unconditional moment restrictions are typically found in models

in which the structural parameter θ is to be estimated via Instrumental Variables

(IV) methods.
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Using the results of Proposition 1, the expectation of A(X, θ)U (computed under

FXU) can be related to that of A(X, θ)ρ(Y, X, θ) (computed under FXY ). Since t is

Borel-measurable, we have FXY = FXU ◦ t−1. Then,

E[A(X, θ)ρ(Y, X, θ)] =

∫
RK+G

A(x, θ)ρ(y, x, θ) dFXY (x, y)

=

∫
RK+G

A(x, θ)u dFXU(x, u) = E[A(X, θ)U ]

by a simple change of variable w = t(v) with v = (x′, u′)′ and w = (x′, y′)′.

Under two structures S and S∗ that are observationally equivalent we then have

E[A(X, θ)ρ(Y,X, θ)] = 0 and E[A(X, θ∗)ρ(Y,X, θ∗)] = 0, where both expectations

are taken with respect to FXY . This leads to the following sufficient condition for

semiparametric identification of θ, that is valid in simultaneous equations systems

(1) known to satisfy the unconditional moment restrictions in Equation (2):

Theorem 1. Let Assumptions A and B hold. Assume that the observables X and

Y are generated by a structure S = (θ, t, FXU) where θ ∈ Θ, t ∈ Sel T , and FXU

satisfies E[A(X, θ)U ] = 0. Then θ is identified in Θ if E[A(X, θ)ρ(Y,X, θ)] = 0 has

a unique solution θ0 in Θ.

3. Example and Intuition

Theorem 1 shows that in nonlinear structural models defined by unconditional

moment restrictions, the conditions for parametric identification are like conditions

for unique solutions of systems of nonlinear equations. Before proceeding, we consider

a simple example which illustrates the difficulties associated with a general treatment

of the identification problem, and gives the insights of our approach.

Say that the parameter of interest θ is a scalar in Θ ⊂ R and that the economic

theory posits that the following moment condition holds: E[A(X, θ)ρ(Y,X, θ)] = 0

in which A(X, θ) ∈ R is an instrument and ρ : R2 ×Θ → R is a structural map. To

simplify the notation, let then

r(Y, X, θ) ≡ A(X, θ)ρ(Y,X, θ)
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The mapping r : R2 ×Θ → R (which is known) relates a dependent variable Y ∈ R,

an explanatory variable X ∈ R, and the parameter θ, in a possibly nonlinear fashion.

We shall restrict our attention to those mappings that are continuously differentiable

with respect to the parameter θ on the parameter set Θ.

Using the results of Theorem 1, the parameter θ is identified if the equation

E[r(Y, X, θ)] = 0 has a unique solution θ0 ∈ Θ. A simple way to guarantee identifica-

tion in this case is to require that the mapping θ 7→ E[r(Y,X, θ)] be strictly monotone

on Θ. Then the equation E[r(Y,X, θ)] = 0 either has a unique solution in θ, or no

solution exists. A sufficient condition for monotonicity is that ∂E[r(Y,X, θ)]/∂θ be

positive (negative) on Θ.

Example. Consider a simple nonlinear moment restriction E[Y −

θ2X + θX2] = 0 taken from Example 2 in Dominguez and Lobato

(2004). Here, ∂E[r(Y, X, θ)]/∂θ = E[−X(X + 2θ)], provided we can

exchange the orders of integration and derivation. If E(X) = 0 then

θ is identified on Θ ≡ R. If on the other hand E(X) 6= 0, then

identification holds on Θ1 ≡ (−∞,−E(X2)/(2E(X))] and on Θ2 ≡

[−E(X2)/(2E(X)), +∞).

While the discussion is simple in the case of a single parameter, complications arise

when dim Θ > 1. In that case, the condition that the Jacobian det DθE[r(Y, X, θ)] 6=

0 on Θ no longer suffices to show that a solution to E[r(Y,X, θ)] = 0 (when it exists)

is unique on Θ. A standard counterexample is the mapping c : R2 → R2 which to

each (x1, x2) ∈ R2 assigns c(x1, x2) = (exp x1 cos x2, exp x1 sin x2). It is easy to check

that the Jacobian of c never vanishes, yet the inverse image by c of any point in

R2\{0} has an infinite number of distinct elements.

Our solution is to first eliminate the mappings such as the counterexample above

by requiring that θ 7→ E[r(Y,X, θ)] be proper, i.e. that the inverse image of any

compact set be compact. This condition is clearly violated by c since for any (y1, y2) ∈

R2\{0} the inverse image c−1({(y1, y2)}) is unbounded (hence not compact) in R2.

Properness by itself does not guarantee that θ 7→ E[r(Y,X, θ)] is one-to-one on Θ.
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The latter is true, however, if one is willing to assume that in addition its Jacobian

det DθE[r(Y,X, θ)] never vanishes (see Corollary 4.3 in Palais (1959) e.g.).

In models that are nonlinear in θ, everywhere non-vanishing Jacobian might be

too strong of an assumption. It turns out, however, that restricting the Jacobian to

be non-negative (non-positive) on Θ suffices to make the mapping θ 7→ E[r(Y,X, θ)]

one-to-one on Θ, provided its inverse images of individual points are of dimension

zero, i.e. contain countably many points of Θ. In particular, the latter requirement

excludes the cases in which θ 7→ E[r(Y,X, θ)] is “flat” on subsets of Θ that have

nonzero dimension.

Working with systems whose Jacobian possibly vanishes requires additional

smoothness properties of the map θ 7→ E[r(Y,X, θ)]. In particular, we shall assume

the latter to be twice continuously differentiable on Θ. This allows us to invoke an

appropriate version of Sard’s theorem when deriving our main result, to which we

turn next.

4. Main Result

We now derive primitive conditions under which:

(3) E[r(Y,X, θ)] = 0 has a unique solution θ0 ∈ Θ

The mapping r : RG × RK × Θ → Rk is assumed known. The variables entering

r consist of: a set of dependent variables Y ∈ RG, a set of explanatory variables

X ∈ RK , and a structural parameter of interest θ ∈ Θ with Θ ⊂ Rk. In particular,

if we let r(Y,X, θ) = A(X, θ)ρ(Y,X, θ), then according to Theorem 1 the property

in Equation (3) is sufficient for semiparametric identification of θ in simultaneous

equations systems (1) that satisfy (2).

To start our analysis, we need the following:

Assumption C. (i) Θ 6= ∅ is connected and open in Rk; (ii) for any θ ∈ Θ,

E[r(Y, X, θ)] exists and is finite.
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In particular, assumption C(ii) allows us to define a mapping g : Θ → Rk as

g(θ) ≡ E[r(Y, X, θ)]. Connectedness of the parameter space in C(i) is crucial if we

want to extend local results globally. Openness on the other hand allows us not to

worry about the behavior of g at the boundary. In applications in which Θ is closed,

one needs to work with Θ̊. Moreover, since Θ is a non-empty open subset of Rk,

necessarily dim Θ = k (see Theorem IV.3 in Hurewicz and Wallman (1948) e.g.).

Hereafter, we shall work with mappings g that are twice continuously differentiable

g ∈ C2(Θ). A sufficient condition is:

Assumption D. (i) For every (y, x) ∈ RG+K, the mapping θ 7→ r(y, x, θ) is in

C2(Θ); (ii) For every θ ∈ Θ there exists δ > 0 such that for every (y, x, θ′) ∈

RG+K×Θ, |θ′−θ| < δ implies that for every 1 6 i 6 k, 1 6 j 6 k and 1 6 n 6 k, we

have:
∣∣ri(y, x, θ′)− ri(y, x, θ)]

∣∣ 6 q0
i (y, x, θ) · |θ′−θ|,

∣∣Dnr
i(y, x, θ′)−Dnr

i(y, x, θ)]
∣∣ 6

q1
ni(y, x, θ) · |θ′− θ|, and

∣∣D2
njr

i(y, x, θ′)−D2
njr

i(y, x, θ)]
∣∣ 6 q2

nij(y, x, θ) · |θ′− θ|, with

E[q0
i (Y, X, θ)] < ∞, E[q1

ni(Y,X, θ)] < ∞ and E[q2
nij(Y, X, θ)] < ∞.

The above conditions are sufficient to show (via Lebesgue’s dominated convergence

theorem) that g ∈ C2(Θ). They are, however, not necessary. For example, when

G = 1 and K = k, r(Y,X, θ) = I(X ′θ − Y ) fails to be continuously differentiable

with respect to θ at any point in Θ satisfying θ′X = Y .4 Still letting FY |X be

the conditional distribution of Y given X, and assuming the latter to be absolutely

continuous (with respect to Lebesgue’s measure) with continuously differentiable

density on Rk, we have g(θ) = EX [FY |X(X ′θ)] in C2(Θ).

In cases in which it is possible to establish twice continuous differentiability of g

directly, assumption D may be dropped without altering the validity of our results.

In what follows, we shall let Dg ∈ L(Rk, Rk) denote the derivative of g and Jg(θ) its

Jacobian at θ, Jg(θ) = det Dg(θ).

Next, we require that the mapping g be proper, i.e. that the inverse image by g

of each compact subset of g(Θ) be a compact subset of Θ. A sufficient condition is:

4I is the Heaviside function: I(x) = 1 if x > 0 and 0 otherwise.



IDENTIFICATION IN SEMIPARAMETRIC MODELS 11

Assumption E. Either Θ bounded, or Θ unbounded and
∣∣E[r(Y, X, θ)]

∣∣ →∞ when-

ever |θ| → ∞.

This property of maps is crucial in ensuring that local homeomorphic properties

of maps become global. It is worth pointing out that assuming a map is locally

homeomorphic by itself does not ensure that it is a homeomorphism: previously

defined mapping c : (x1, x2) 7→ (exp x1 cos x2, exp x1 sin x2) is a counterexample. We

are now ready to state our main result:

Theorem 2. Let assumptions C, D and E hold. If for every p ∈ Rk the equa-

tion E[r(Y, X, θ)] = p has countably many (possibly zero) solutions in Θ, and if

det E[Dθr(Y,X, θ)] is non-negative (non-positive) on Θ, then E[r(Y,X, θ)] = 0 ei-

ther has no solution in Θ or has a unique solution θ0 ∈ Θ.

The requirement that E[r(Y,X, θ)] = p have at most countably many solutions is

only binding for values of p that are not regular (such values are called critical values).

Indeed, if p is a regular value (meaning that the inverse image of {p} contains θ′ ∈ Θ

such that det E[Dθr(Y, X, θ′)] 6= 0) then the set of solutions to E[r(Y,X, θ)] = p is

finite (possibly empty).5

We note that the condition on the non-negativity (non-positivity) of the Jacobian

of E[r(Y,X, ·)] is a weakening of the condition that det E[Dθr(Y,X, θ)] 6= 0 on Θ; the

latter, combined with the continuity and properness assumptions D and E, is known

to guarantee that E[r(Y, X, ·)] is a homeomorphism from Θ onto E[r(Y, X, Θ)] (see

Corollary 4.3 in Palais (1959) e.g.).

5. Discussion and Conclusion

From Theorem 1 it follows that the semiparametric identification of the structural

parameter θ is a combined property of the structural mapping ρ(Y,X, θ) in Equation

5By properness, the inverse image of {p} is a compact set in Θ; the inverse function theorem

guarantees that this set is discrete, hence it is finite (see step (5) in the proof of Theorem by Debreu

(1970) e.g.).
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(1), the instruments A(X, θ) in Equation (2), and the parameter set Θ. While the

functional form of ρ is often dictated by an economic theory, Theorem 2 can aid

the econometrician in her choice of valid instruments and point identified parameter

sets.

For example, consider a linear structural system ρ(Y,X, θ) = Y − X ′θ, in which

Y ∈ R, X ∈ Rk and θ ∈ Θ open and connected in Rk, with instrument A(X, θ) = X.

Using Theorem 2, the parameter set Θ is point identified provided det E[XX ′] > 0

and dim(Ker E[r(Y,X, ·)] − p) = 0, where r(Y,X, θ) = XY − XX ′θ and p ∈ R.

Given linearity of r(Y,X, ·), the latter is equivalent to dim(Im E[r(Y, X, ·)]− p) = k,

i.e. det E[XX ′] 6= 0. Hence, Theorem 2 reduces to the usual full rank condition

det E[XX ′] > 0 which is sufficient for the point identification of Θ.

In structural systems that are nonlinear in θ yet with no “flats” on Θ, instruments

are valid provided the Jacobian condition det E[Dθr(Y, X, θ)] > 0 (or 6 0) holds.

This condition is weaker than the requirement det E[Dθr(Y,X, θ)] > 0 imposed in

standard asymptotic normality proofs for nonlinear IV estimators of θ (see Amemiya

(1977), e.g.). In particular, assuming det E[Dθr(Y, X, θ)] > 0 is not necessary for

identification.6 While convenient, the primitive conditions of Theorem 2 are still

likely to lead to more than one parameter set that is point identified; this was the

case in our example in Section 3. In such cases, additional economically meaningful

restrictions on θ have to be used to discriminate between different solutions.
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Appendix A. Proof of Proposition 1

The proof is done in four steps.

STEP 1: We first show that, given θ ∈ Θ, the correspondence T is closed-valued,

i.e. for any v ∈ RK+G, T (v) = Γv is a closed subset of RK+G.

Fix θ ∈ Θ and let hθ : RK+G → RK+G be such that for any w ≡ (x′, y′)′ ∈ RK+G

we have hθ(w) = v where v = (x′, u′)′ and u = ρ(y, x, θ). Since by assumption A,

hθ ∈ C(RK+G) and

hθ(w)′w

| w|
=
|x|2 + ρ(y, x, θ)′y√

|x|2 + |y|2
>
|x|2 + ρ(y, x, θ)′y

2 max{|x|, |y|}

we have by assumption B, lim|w|→∞[hθ(w)′w]/| w| = ∞. By Theorem 3.3 in Deimling

(1985), we then have that hθ is surjective, i.e. h(RK+G) = RK+G. We now show that

h is also proper, i.e. that the inverse image by h of each compact subset of h(RK+G)

is compact in RK+G. For this, note that

|hθ(w)′w|/| w| 6 |hθ(w)|

so assumption B also implies lim|w|→∞ |hθ(w)| = ∞. Let then K ⊂ h(RK+G) be

compact. Since h(RK+G) = RK+G, K is compact if and only if it is closed and
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bounded. By A we know that h is continuous, hence h−1(K) is closed in RK+G.

To show it is bounded, consider a sequence {h(wn)} in K. Since K is compact,

h(wn) → h(w0) ∈ K, which by lim|w|→∞ |hθ(w)| = ∞ implies that the sequence

{wn} is bounded. Hence, h−1(K) is bounded, therefore compact in RK+G.

We can now show that the correspondence T is closed-valued. Take any v ∈ RK+G.

Since RK+G = h(RK+G), we have Γv = h−1
θ (v) which by properness of hθ is compact,

hence closed in RK+G.

STEP 2: We next show that, given θ ∈ Θ, the correspondence T is Borel-

measurable.

A necessary and sufficient condition for T to be Borel-measurable and closed-valued

is: for any K compact in RK+G and any ε > 0, there exists H compact H ⊂ K such

that µ(K\H) < ε and T |H is closed-graph (see Proposition 2 in Berliocchi and Lasry

(1973)). Here, µ is a K + G dimensional Lebesgue’s measure. Consider the graph

of the correspondence T |K , Gr (T |K) = {(V, W ) ∈ R2(K+G) : V ∈ K,W ∈ ΓV }. We

need to show that Gr (T |K) is a closed subset of R2(K+G). We know that Gr (T |K)

is closed if and only if for any sequence {(v′n, w′
n)′} in Gr (T |K), vn → a, wn → b

imply that (a′, b′)′ ∈ Gr (T |K). Take then {(v′n, w′
n)′} in Gr (T |K). By continuity of

h, wn → b implies vn = h(wn) → h(b) = a. So, b ∈ Γa. Since K is compact, a ∈ K,

therefore (a, b) ∈ Gr (T |K).

STEP 4: Finally, we can show that Sel T 6= ∅. This is an immediate consequence of

a corollary to Kuratowski’s theorem: if a correspondence T : RK+G ⇒ RK+G, V →

ΓV is Borel-measurable, closed-valued and such that ΓV 6= ∅ for almost every V ,

then Sel T 6= ∅ (see Corollary 1 in Berliocchi and Lasry (1973), or Theorem 18.13

in Aliprantis and Border (2007), e.g.). Note that Γv 6= ∅ for every v ∈ RK+G by

surjectivity of the map hθ. Hence, W = (X ′, Y ′)′ exists.

Appendix B. Proof of Theorem 2

We proceed in six steps. The first step may be omitted if twice continuous differ-

entiability of g has been established directly.
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STEP 1: We start by showing that under assumptions C-D the mapping g is in

C2(Θ).

Recall that g maps the open set Θ ⊂ Rk into Rk. Then g ∈ C1(Θ) if and only if the

partial derivatives Dng
i exist and are continuous on Θ for 1 6 i 6 k and 1 6 n 6 k

(see Theorem 9.21 in Rudin (1976) e.g.). For θ ∈ Θ, 1 6 i 6 k and 1 6 n 6 k we

have:

Dng
i(θ) = lim

t→0

gi(θ + t en)− gi(θ)

t

provided the limit exists, where gi is the ith component of g and {e1, . . . , ek} the

standard basis of Rk. For (y, x) ∈ RG+K , let ri(y, x, ·) denote the ith component of

r(y, x, ·). From definition of g, we have∣∣∣∣gi(θ + t en)− gi(θ)

t

∣∣∣∣ 6
∫

RK+G

∣∣∣∣ri(y, x, θ + t en)− ri(y, x, θ)

t

∣∣∣∣ dFXY (x, y)

6
∫

RK+G

q0
i (y, x, θ)dFXY (x, y)

provided |t| < δ, where the second inequality uses the first condition in as-

sumption D(ii). Now, using the facts that r(y, x, ·) ∈ C1(Θ) from D(i), and∫
RK+G q(y, x, θ)dFXY (x, y) < ∞, yields by Lebesgue’s dominated convergence the-

orem (see Theorem 11.32 in Rudin (1976) e.g.)

lim
t→0

gi(θ + t en)− gi(θ)

t
=

∫
RK+G

lim
t→0

[
ri(y, x, θ + t en)− ri(y, x, θ)

t

]
dFXY (x, y)

=

∫
RK+G

Dnr
i(y, x, θ)dFXY (x, y)

where Dnr
i denotes the partial derivative of ri(y, x, ·) with respect to the nth com-

ponent of θ. Thus Dng
i exists and equals

(4) Dng
i(θ) =

∫
RK+G

Dnr
i(y, x, θ)dFXY (x, y)

for every θ ∈ Θ. Dng
i is continuous if to every θ ∈ Θ and to every ε > 0 corresponds

a δ′ > 0 such that |Dng
i(θ)−Dng

i(θ′)| < ε if θ′ ∈ Θ and |θ−θ′| < δ′. Using Equation
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(4) we have:

|Dng
i(θ)−Dng

i(θ′)| 6
∫

RK+G

|Dnr
i(y, x, θ)−Dnr

i(y, x, θ′)|dFXY (x, y)

6 |θ − θ′|
∫

RK+G

q1
ni(y, x, θ)dFXY (x, y)

provided |θ − θ′| < δ, where the second inequality uses the second condition in

assumption D(ii). Now let Mθ ≡
∫

RK+G q1
ni(y, x, θ)dFXY (x, y) < ∞. Then for any

ε > 0 letting δ′ ≡ min{δ, ε/(2Mθ)} yields g ∈ C1(Θ).

Applying the same reasoning as above with the functions Dng
i instead of the

functions ri shows that all the second order partial derivatives D2
njg

i (1 6 i 6 k,

1 6 j 6 k, 1 6 n 6 k) exist and are continuous on Θ; hence (by Definition 9.39 in

Rudin (1976)) g ∈ C2(Θ).

STEP 2: Next, we show that under assumptions C, D and E, the mapping g

is proper, i.e. that the inverse image by g of each compact subset of g(Θ) be a

compact subset of Θ. The proof is straightforward: let K ⊂ g(Θ) be compact. Since

g(Θ) ⊂ Rk, K is compact if and only if it is closed and bounded. Given that g

is continuous, g−1(K) is closed in Θ. It remains to be shown that it is bounded.

When Θ is bounded, g−1(K) ⊂ Θ is bounded. When Θ is unbounded, E implies

|g(θ)| → ∞ whenever |θ| → ∞. Let (g(θn)) be a sequence in K. Since K is compact,

g(θn) → g(θ0) ∈ K, which by assumption E implies that (θn) is bounded. Hence,

g−1(K) is compact in Θ.

Before continuing, let us note that a continuous proper map g is also closed, i.e.

g(B) closed whenever B ⊂ Θ closed (see Corollary in Palais (1970) e.g.). That g

is closed is, perhaps surprisingly, not equivalent to g being open, i.e. g(B) open

whenever B ⊂ Θ open. Having g closed or open are two possible ways of defining

the continuity of its inverse g−1; the two are generally different and coincide only if

the mapping g is one-to-one.

STEP 3: If Jg(θ) = 0 then θ is a critical point of g; the set of all such points is

called the critical set of g, Bg = {θ ∈ Θ : Jg(θ) = 0}. The image by g of the critical
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set is the set of singular values of g, Sg = g(Bg). We are now ready to prove the

following intermediate result:

Lemma 1. Let assumptions C, D and E hold. If Θ\g−1(Sg) connected, then g is a

homeomorphism from Θ\g−1(Sg) onto g(Θ)\Sg.

First, we shall establish that g̃ = g|A where A = Θ\g−1(Sg) is a local homeomor-

phism. We have g̃ : A → g(Θ)\Sg and since g−1(Sg) ⊃ Bg the critical set of g̃ is

Bg̃ = ∅. Since g ∈ C1(Θ), we also have g̃ ∈ C1(A). Then by the inverse function

theorem (see Theorem 9.24 in Rudin (1976) e.g.), g̃ is a local homeomorphism on Å.

Next, we show that g̃ is proper: let C be a compact in g(Θ)\Sg and note that

g̃−1(C) = g−1(C) since g̃−1 = g−1|g(Θ)\Sg . Then C is compact in g(Θ) so by proper-

ness of g we have that g−1(C) is compact in Θ. Since C ∩ Sg = ∅ it follows that

g−1(C)∩g−1(Sg) = ∅ and so g−1(C) is compact in A. Same reasoning as above shows

that ḡ|g−1(Sg) is proper.

Finally, we show that A is open. Consider θ ∈ Θ\Bg. Then Jg(θ) 6= 0 and the

inverse function theorem applied to g implies that there exists an open neighborhood

U of θ on which g is a local homeomorphism; so U ∩ Bg = ∅ and U ⊂ Θ\Bg,

which shows that Θ\Bg is open. Since Θ is open Bg is closed. Using our previous

observation that a continuous proper map is closed, we know that ḡ is closed. Since

Bg ⊂ g−1(Sg) we have that Sg = ḡ(Bg) is closed. Continuity of g then guarantees

that g−1(Sg) is closed as well, thus A is open.

The result of Lemma 1 follows by the global homeomorphism theorem: if A ⊂ Rk

is open connected, g̃ : A → Rk a local homeomorphism and g̃ proper, then g̃ is a

homeomorphism onto g̃(A) (see Exercise 4.3 in Deimling (1985) e.g.).

The requirement that Θ\g−1(Sg) be connected is by no means trivial to satisfy.

For example, consider the case Θ = R. It is well known that the only connected

sets in R are the intervals; then necessarily g−1(Sg) = (−∞, λ〉 ∪ 〈µ, +∞) where

(λ, µ) ∈ R̄ and 〈 denotes either ( or [ with analogous definition for 〉. So Sg =

g((−∞, λ〉) ∪ g(〈µ, +∞)), which by continuity of g and assumption E equals Sg =
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(−∞, sup(−∞,λ〉 g]∪[inf〈µ,+∞) g, +∞). Now, from Sard’s lemma (Sard, 1942) we know

that when g ∈ C1(R) its singular set Sg has Lebesgue measure zero, so that necessarily

λ = −∞ and µ = +∞; then g−1(Sg) = ∅ which implies Bg = ∅, so g is necessarily

monotone on R.

In a sense, when the dimension of the parameter set Θ equals 1 then removing

single points from Θ suffices to make the resulting set disconnected. In dimensions

k > 1, there is still hope that the set g−1(Sg) be “small enough” for Θ\g−1(Sg) to

remain connected.

Before proceeding, we note that Lemma 1 can also be shown to hold by using

the theory of space covering maps (see Palais (1959) e.g.); this approach has been

taken in Plastock (1978). An alternative proof is as follows. First, note that under

assumption D g is a C1 Fredholm map with index zero: its derivative Dg is a linear

operator from Rk to Rk, so dim(Ker Dg)+dim(Im Dg) = k. Letting the index of g be

defined as: Index g ≡ dim(Ker Dg)−dim(Coker Dg), where Coker Dg is the quotient

space Rk/Im Dg, we then have the simple equality: Index g = k−k = 0. So g is a C1

Fredholm map with index 0 (Smale, 1965). Next, we rely on the results of Theorem

3 in Plastock (1978): if g : Θ → Rk is a C1 proper Fredholm map of index 0, and

if g(Θ) 6= Sg and g(Θ)\Sg connected, then g̃ = g|Θ\g−1(Sg) is a covering space map.

Assumption E implies properness of g; continuity of g implies g(Θ)\Sg connected

whenever Θ\g−1(Sg) connected; trivially, 0 ∈ g(Θ)\Sg implies g(Θ) 6= Sg. Using

Theorem 3 in Plastock (1978) together with connectedness of the domain Θ\g−1(Sg)

of g̃ then yields the result of Lemma 1.

STEP 4: We show the following lemma:

Lemma 2. Let assumptions C, D and E hold. If for every θ ∈ Bg , rank Dg(θ) <

k − 1, and for every p ∈ Sg , dim g−1(p) = 0, then Θ\g−1(Sg) connected.

Our proof relies on the following dimension result: any connected k-dimensional

set Θ in Rk cannot be disconnected by a subset of dimension < k − 1 (see Theorem

IV.4 in Hurewicz and Wallman (1948)).
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To ensure that the inverse image g−1(Sg) of the set of critical values is of dimension

< k−1, we combine the following two results: Sard’s lemma and a dimension lowering

theorem for closed maps. By Theorem 2 in Sard (1965) we know that when g ∈ C2,

the image by g of all the critical points whose rank is < k−1 is of dimension < k−1.

In order derive a similar result for the image by g of its singular set, we apply

Theorem VI.7 in Hurewicz and Wallman (1948) to the map ḡ : g−1(Sg) → Sg defined

previously. Recall that we established ḡ closed. Then, if for every point p in Sg, the

inverse image g−1(p) is of dimension zero, i.e. countable, then dim g−1(Sg) 6 dim Sg

and so dim g−1(Sg) < k − 1, as desired.

STEP 5: Note that from the definition of Bg, we have rank Dg(θ) 6 k−1. Lemma

2 requires, however, that the latter inequality be strict. We now try to replace this

requirement with a more intuitive condition on the Jacobian of g.

Recall that under assumptions C-D, Jg is a continuous function on Θ. If Θ\g−1(Sg)

is connected, then Jg(θ) is necessarily of the same sign (> 0 or < 0) throughout

Θ\g−1(Sg); otherwise, there would exist a point θ′ ∈ Θ\g−1(Sg) such that Jg(θ
′) = 0,

which is impossible given our definition of Bg.

The natural question then is whether having Jg non-negative (non-positive) on Θ

in turn implies Θ\g−1(Sg) connected. We establish the following:

Lemma 3. Let assumptions C, D and E hold. If Jg is (non-negative) non-positive on

Θ, and for every p ∈ g(Θ) , dim g−1(p) = 0, then: (i) dim g−1(Sg) 6 dim Sg < k− 1,

and (ii) g is a homeomorphism from Θ\g−1(Sg) onto g(Θ)\Sg.

In the proof of Lemma 3, we shall again combine two results. First is: every

g : Θ → Rk (with Θ open in Rk) of class C1, such that dim g−1(p) = 0 for every

p ∈ g(Θ), and whose Jacobian Jg is non-negative (non-positive) on Θ, is open (see

Theorem 2 in Titus and Young (1952) e.g.). Second is an extension of the inverse

function theorem for open maps: if g : Θ → Rk (with Θ open in Rk) of class C1 is

open, then for every θ ∈ Bg we have rank Dg(θ) < k− 1 (see Theorem 1.4 in Church
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(1963) e.g.). Together with Lemmas 1 and 2, the above results show that Lemma 3

holds.

STEP 6: We are now ready to prove Theorem 2.

When g is open, then not only is its restriction to Θ\g−1(Sg) a homeomorphism

onto g(Θ)\Sg, but the same holds for its restriction to g−1(Sg). By construction,

ḡ : g−1(Sg) → Sg is onto. We now show that it is also one-to-one: let p ∈ Sg and

assume that g−1(p) ⊃ {θ′, θ′′} with θ′ 6= θ′′. Since Rk is separated, there exist two

disjoint open sets U ′ and U ′′ containing θ′ and θ′′, respectively. Given that g is open,

V ′ = g(U ′) and V ′′ = g(U ′′) are open, and so V ′ ∩ V ′′ ⊃ {p} 6= ∅ is open in g(Θ)

which is itself a non-empty open subset of Rk; by Theorem IV.3 in Hurewicz and

Wallman (1948) then dim V ′ ∩ V ′′ = dim g(Θ) = k. In particular, V ′ ∩ V ′′ contains

a point q ∈ g(Θ)\Sg; otherwise, V ′ ∩ V ′′ ⊂ Sg which would imply dim Sg = k and

is contradictory with dim Sg < k − 1. Now, g̃ being homeomorphic from Θ\g−1(Sg)

onto g(Θ)\Sg is in contradiction with U ′ ∩ U ′′ = ∅.

Hence, ḡ is one-to-one, onto, continuous, and both open and closed; hence its

inverse is also continuous, and ḡ is a homeomorphism from g−1(Sg) onto Sg. This

completes the proof of Theorem 2.
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