Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Electronic Theses and Dissertations bannerUC Riverside

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

Abstract

There is a global effort to expand the use of alternative fuels due to their several benefits such as improving air quality with reducing some criteria emissions, reducing dependency on fossil fuels, and reducing greenhouse gases such as carbon dioxide. This dissertation is focused on investigating the impact of two popular alternative fuels, biodiesel and natural gas (NG), on emissions from heavy-duty engines.

Biodiesel is one of the most popular renewable fuels with diesel applications. Although biodiesel blends are reported to reduce particulate matter, carbon monoxide, and total hydrocarbon emissions; there is uncertainty on their impact on nitrogen oxides (NOx) emissions. This dissertation evaluated the effect of biodiesel feedstock, biodiesel blend level, engine technology, and driving conditions on NOx emissions. The results showed that NOx emissions increase with 20% and higher biodiesel blends. Also, in this study some strategies were proposed and some fuel formulations were found for mitigating NOx emissions increases with biodiesel. The impact of 5% biodiesel on criteria emissions specifically NOx was also fully studied in this thesis. As a part of the results of this study, 5% animal-based biodiesel was certified for use in California based on California Air Resources Board emissions equivalent procedure.

NG is one of the most prominent alternative fuels with larger reserves compared to crude oil. However, the quality of NG depends on both its source and the degree to which it is processed. The current study explored the impact of various NG fuels, ranging from low methane/high energy gases to high methane/low energy gases, on criteria and toxic emissions from NG engines with different combustion and aftertreatment technologies. The results showed stronger fuel effects for the lean-burn technology bus.

Finally, this thesis investigated the impact of changing diesel fuel composition on the criteria emissions from a variety of heavy-duty engine technologies. Emissions from an average diesel fuel used throughout the U.S. were compared with a 10% aromatic, ultra-low sulfur diesel fuel used in California with more stringent air quality regulations. The results showed that the emerging aftertreatment technologies eventually eliminate the benefits of the lower aromatic content/higher cetane number diesel fuels.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View