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Abstract

Learning from new perspectives: Using sparse data and multiple views to predict

cancer progression and treatment

by

Kiley Graim

Advancements in sequencing technology have led to an influx of cancer ge-

nomics data, transforming cancer research into a field limited by data interpretation

rather than acquisition. Machine learning methods that can make use of this wealth of

data are desperately needed. Similarly, patient stratification is a critical task in cancer

diagnosis and treatment. While stratification approaches using various biomarkers for

patient-to-patient comparisons have been successful in elucidating previously unseen

subtypes, the potential of many other sparse but rich genotype and phenotype data

(e.g. tumor images) remains untapped.

To this end, I present two methods. The first uses social network analysis tech-

niques to extract subtypes from sparse data. The second is a semi-supervised multiview

learning framework that integrates both prior knowledge and a variety of genomic data

to predict outcomes in cancer. Crucially, this method accommodates samples for which

we have different data types, paving the way for integration of data from past studies.

I apply these methods to several cancer datasets. Of note, I show that TCGA–

defined molecular subtypes of glioblastoma are independent of both tumor location and

volume, and that both the imaging and genomic data provide important perspectives of
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the disease. Analysis of a large drug sensitivity database identifies an epigenetic effect

from chromatin modifiers that lends sensitivity to Panobinostat. Multiview learning,

the second method I developed, also outperforms other methods in predicting sensitivity

in all of the study drugs. In this dissertation I begin with unsupervised single–platform

analysis, then combine multiple platforms, and finally analyze many data platforms

using semi–supervised analysis.
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Chapter 1

Introduction

Cancer is a disease of information in DNA and its ‘digital age’ has dawned;

The plummeting cost of -omics technologies is transforming cancer research from a

field limited by data acquisition to one limited by data interpretation. We desperately

need biomarkers and machine-learning methods to predict outcomes, especially those

that make use of a battery of multiple different measurement platforms to provide an

integrated view. Unfortunately the large number of variables compared to the few

samples available leads to many biologically irrelevant solutions [350].

Furthermore, I have found that we still lack flexible methods that can integrate

data from multiple studies; Most require complete data for each sample. In the case

of RNA-Seq and microarray data, investigators often subset down to the genes that

have measured expression in all samples. Tools such as ComBat [167] can combine data

from multiple expression platforms and remove batch effects, but can also inadvertently

remove key biological differences. Similarly, samples that are missing one or more data
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types used in an analysis often are excluded from that analysis, further shrinking the

sample size. Missing values can be imputed, which runs the risk of poor imputation and

cannot be done when the majority of samples are missing values, or be ignored, which

introduces bias based on the pattern of missing data.

In the past years many new data modalities have become available, for exam-

ple imaging data. Researchers can now analyze imaging, genomic, and phenotypic data

together. As more imaging data becomes available it behooves researchers to incorpo-

rate it into analysis, as another perspective of the disease. The method presented in

Chapter 3 provides a technique for analyzing such imaging data, as well as other sparse

data platforms.

In Chapter 4 I discuss my integrative clustering analysis on several collabo-

rative projects. The Cancer Genome Atlas (TCGA, cancergenome.nih.gov) began in

2005 and has been ongoing for more than 10 years now. Both the Haussler and Stuart

labs have worked as part of the TCGA core to uncover novel cancer biology in each of

the cancer cohorts. I participated in several TCGA working groups and present several

findings from that work.

The nascent sub-field of pathway-informed learning currently is in need of

methodologies that use pathway information for predicting outcomes using a principled

formulation, allowing models to be tuned to training data in a unified and consistent

manner. In Chapter 5 I present a multiview learning (MVL) framework that optimizes

learning based on not only data with known outcome but those that are missing out-

come information, and without ignoring data from any platform. My MVL framework
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incorporates all data from all samples, and will be able to do so without losing the

unique information within each data view. Through MVL learning, each data view can

be treated independently or in combination– allowing use of multiple feature transfor-

mations and selection for each without losing vital gene and pathway information.

In Chapter 3, I motivate integration of MRI with clinical and genomic data. I

then move into my contributions to several projects within The Cancer Genome Atlas

(TCGA) and in ongoing clinical trials, in Chapter 4. In Chapter 5 I combine multiple

biologically–driven views in a multiple view learning framework, and use these views to

predict drug sensitivity in the Cancer Cell Line Encyclopedia (CCLE) [17]. This method

is also applied to a combination of two ongoing projects studying treatment-resistant

prostate cancer, in which MVL is used to predict a rare histologic subtype within the

combined datasets.
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Chapter 2

Previous Work

2.1 A Brief Survey of the Literature

2.1.1 The Cancer Genome Atlas

The Cancer Genome Atlas (TCGA, cancergenome.nih.gov) is a collaboration

between the National Cancer Institute (NCI) and National Human Genome Research

Institute (NHGRI). TCGA has made cancer informatics accessible to a number of fields

by making cancer data readily available to researchers not affiliated with cancer biology

labs. It standardized the quality, format, and types of genomic data available, while

releasing patient cohorts of previously unheard sizes. Today over 11,000 patients and

35 cancers have been characterized by TCGA. Its goal has been to improve diagnosis

and treatment of cancer.
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2.1.2 Joint Analysis of Magnetic Resonance Images and Genomic Data

Brain tumors are initially diagnosed through Magnetic Resonance Imaging

(MRI). Annual competitions such as the Multimodal Brain Tumor Segmentation Chal-

lenge (BraTS, www.braintumorsegmentation.org) [237] promote development of meth-

ods to automatically segment tumor images. Similarly, TCGA efforts have been man-

ually curating images into known survival-linked features. Visually AcceSAble Rem-

brandt Images (VASARI) [131] features were selected by a cohort of domain experts

(neuro-radiologists) and from a review of current imaging literature. The largest cur-

rent database, TCGA VASARI, contains 130 curated tumor images [131].

Cancer imaging research is in its early stages. There is limited available data

and small sample sizes, leading to discordance in discoveries. For example, brain tu-

mor imaging studies have alternately found no mutations associated with imaging fea-

tures [132], or for example found TP53 mutations to be associated with either the

frontal [400] or temporal lobe [365]. While several imaging features are associated with

survival [66, 88, 132], combination with genomic data is difficult. All of these studies

quote a need for more patients, since the high dimensionality of imaging data makes it

difficult to find meaningful associations between imaging and genomic features. It is my

hope that the data from these studies will be combined in a joint analysis in the future,

to help minimize spurious results due to small sample size.
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2.1.3 Pairwise & Subspace Clustering

“The aim of clustering is to find structure in data and is therefore exploratory

in nature [159].” While clustering finds cliques of similar samples within a large group,

subspace clustering specifically aims to identify cliques of samples along a certain sub-

space within the data features, rather than the entire data [192]. The key issue is taking

into account the definition of similarity so that only certain subspaces are considered. By

looking at correlation within local structures one can identify long–range connections,

critical for finding network paths [192]. For example the ‘small world phenomenon’

claims that we are all connected via short chains of links [186].

Similarly, pairwise clustering is based on sample–sample similarities. Pair-

wise clustering techniques consider the n nearest neighbors with edge weights based on

sample–sample affinities. Pairwise clustering is widely applicable due to its ability to

find clusters with arbitrary shapes [299]. There are many instances of pairwise cluster-

ing in bioinformatics. For example clustering pre-miRNA sequences based on pairwise,

sequence, and secondary structure alignment [170]; FOLDALIGNM performs well on

samples with low sequence similarity [334]. Another example, HyperPrior, correlates

genomic features in a graph–based learning framework, to cluster gene experession and

arrayCGH data using a biological prior [332]. WGCNA is similar in that it uses weighted

correlation networks to cluster gene expression data [199]. SNN-Cliq clusters single cell

transcriptome data [377]. Pairwise clustering is also widely used outside of bioinfor-

matics, for example a recent paper proposes HD–MSL, which uses high–order distance
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learning from the hypergraph (rather than pairwise distances) to classify images [387].

Correlation clustering is a graph–based clustering approach. One can use a

linear discriminant function so that the support vector machine approach can be used

as in Finley et. al. [99] and Taskar et. al. [328]. This can then be extended to ‘higher-

order’ correlations, where features and groups of features are considered in tandem [182].

Such approaches are popular because of their speed and success in clustering problems

with latent similarities.

2.1.4 Integrated Genomics Analysis

Integrating together different genomics data requires expertise from many

fields [193]. As data becomes more available it is easier to create multidisciplinary

teams and more integrated analysis tools are available. Some tools create user interfaces

that negate the need for programming, for example the cBio Cancer Genomics Portal

(cbioportal.org) [48], Cytoscape [294, 305], and StratomeX [211]; Other tools help with

subtype identification. Jiang et. al. [164] integrate protein-protein interaction network

with gene expression and histone marks to predict gene essentiality. Another approach

uses linked 2D sample similarities to combine different genomic data [30]. Hoadley et.

al. [37, 148] use consensus clustering of 6 genomic platforms to identify cancer subtypes.

iCluster [242, 298] uses a joint latent model to cluster data based on many genomics

platforms, whereas others use multiple kernel learning so that each genomic data plat-

form comprises a kernel for combined clustering [121, 312]. PARADIGM [347] integrates

multiple platforms and outputs ‘inferred pathway levels’ (IPLs) which can then be clus-
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tered. All of these approaches attempt to identify global signals of dysregulation in

cancer using a combination of a variety of genomic data. Integrative analysis enables

us to see multiple perspectives of patient disease. I will discuss the importance of this

in more detail in Chapter 5.

2.1.5 Bioinformatics Competitions

Bioinformatics challenges are becoming more popular. They both increase

awareness of bioinformatics questions and reduce evaluation bias [31]. Challenges pro-

vide benchmarking data and methods. Similar to the UCI machine learning repository

(archive.ics.uci.edu/ml), they provide easy-to-use data and gold standards for method

evaluation. Many challenges run every year or few years. For example, there is the

(1) Critical Assessment of protein Structure Prediction (CASP, predictioncenter.org),

(2) Dialogue for Reverse Engineering Assessments and Methods (DREAM, dreamchal-

lenges.org), (3) Critical Assessment of protein Function Annotation algorithms (CAFA,

biofunctionprediction.org/cafa), and (4) Assemblathon (assemblathon.org). Methods

that performed the best in the DREAM7 Drug Sensitivity Challenge used a combina-

tion of clinical and genomic features with a biological prior [28]. Many other challenges

have similar results; methods that used biological priors and integrate multiple data

have the best performance [147].
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2.1.6 Multiview Learning

Fully labeled data is not always available; Partially labeled data, despite be-

ing tricky to analyze, is [290]. Multiview methods have been developed for just this

situation.

Multiview learning initially was introduced through co-training [29], and later

through the use of multiple kernels [15]. The International Conference on Machine

Learning (ICML) had a workshop in 2005 entitled ‘Learning with Multiple Views’ [282]

which covered a multitude of both supervised and unsupervised MVL methods. Neu-

ral Information Processing Systems (NIPS) also had a session on multiview learning in

2008 [49]. It has since intermittently been a topic at various machine learning confer-

ences and is starting be to introduced in bioinformatics problems [69, 118, 406, 312].

The canonical MVL scenario is website classification, where one has a small

subset of manually curated web pages that have been labeled ‘interesting’ or ‘not in-

teresting’ in relation to some person. A plethora of information is available on other

websites, but curation is both expensive and time-consuming. Website data innately

has two ‘views:’ the text in the document and the hyperlinks pointing to the site from

other locations on the Internet. For example, a link called ‘my advisor’ is an indication

that we will be directed to a faculty website and are on a student website, whereas

‘my research’ in the text is an indication that it is an academic site. By using the

independently sufficient views (meaning that each view is capable of accurately predict-

ing whether or not a website belongs to a faculty member), one can co-train using the
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plethora of unlabeled data to cheaply and accurately find labels.

There are 3 general types of multiview learning [321, 376]:

1. co-training [29, 73, 76, 128, 361, 362, 391, 409]

2. multiple kernel learning [14, 115, 173, 295]

3. subspace learning [94, 171, 197, 313, 354, 360]

Cited are some examples of each types of multiview learning. The 3 styles can

be thought of as early (subspace learning), intermediate (multiple kernel learning), or

late (co-training) integration approaches, each with different strengths.

Co-training relies on 3 principles: (1) sufficiency of each view (aka high ac-

curacy) (2) compatibility and (3) conditional independence [321, 376]. It can be suc-

cessful with two views or fewer by using different algorithms for each view [361, 363],

although the benefits may be directly related to sample size [21]. Recently, method

have incorporated ‘weak’ views [246, 274]. Co-training is vulnerable to mislabeled sam-

ples [321], which can be mitigated by using canonical correlation analysis to inspect

new labels [322]. It is ideal in scenarios with missing data and views with divergent

information content [376].

Multiple kernel methods construct kernels from subspaces within the full data

so as to limit the feature spaces. By using multiple kernels instead of a more stringent

feature selection method on the full data set, users can enforce domain-specific knowl-

edge [124]. Furthermore, by using multiple kernels one can find latent subspaces within

the different kernels that would not surface in the full feature set. Multiple KLM are
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most suited to scenarios where there is little missing data [376].

Subspace learning projects views into correlated subspaces, usually using canon-

ical correlation analysis (CCA), and benefits from highly correlated views [376]. For ex-

ample predicting drug sensitivity [69], and to predict Alzheimer’s disease using imaging

and genomic data [405]. It is best suited for use in problems with highly correlated

views [321]. Multiview learning relies on views being accurate and complementary; as

with ensemble learning, it benefits from have many independent representations of the

samples.

2.2 Looking Forward

This dissertation presents a method for single platform cluster analysis that

applies social networks techniques to genomic data. Chapter 3 discusses how this new

view of a single dataset helps with interpretation. The following chapter, Chapter 4,

introduces integrative clustering analysis from several collaborative projects. Lastly, in

Chapter 5, I present a semi-supervised method that integrates predictions from multiple

data platforms and prior knowledge databases. Thus I progress from a unsupervised

single platform approach, to unsupervised multiple platforms, and lastly to a semi-

supervised multiple platform approach.
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Chapter 3

HOCUS: Higher-Order Correlations to

Uncover Subtypes

3.1 Introduction

The establishment of expression-based subtypes, have shown to be of tremen-

dous use in predicting patient outcomes (e.g. PAM50 and MammaPrint subtypes for

breast cancer prognosis). Most recently, transcriptome-wide RNA sequencing data

or other high-throughput measurements have been used to segregate patient samples,

which in turn has led to changes in treatment of many cancers. A personalized approach

to medicine

Both the sparsity of mutations and mutual exclusivity common in mutation

profiles (within the same molecular pathways), complicates the task of subtyping be-

cause similarities computed from the original mutation events lack specificity and ro-
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bustness, due to the small number of overlapping events between any two samples. One

encounters a similar situation when subtyping patients based on imaging data such as

from magnetic resonance (MR), as has been recently proposed [218]. In this case, the

sparseness of anatomical/spatial MR image data is due to the fact that tumors occupy

only a fraction of the affected tissue (e.g. local area in the brain). Manual steps have

been used to aid the clustering and therefore may be viewed as subjective.

In this work, we test the use of “higher-order” similarity measures between

the samples to identify biologically relevant subsets. Intuitively, we derive a metric to

compare two samples based on how similar their sample “neighborhoods” are to one

another. To illustrate (Fig. 3.1), one can picture a first-order network created by linking

any two samples that have high first-order similarities. Then, a second order network

could be formed by linking samples with highly overlapping neighborhoods in the first-

order network. Repetition of this procedure generates higher-order networks from a

lower-order version, that could reveal community structure.

We use such a similarity transformation, here referred to as Higher-Order Cor-

relations to Uncover Subtypes (HOCUS), and show that HOCUS enhances the detec-

tion of biologically-relevant subtypes for several Cancer Genome Atlas (TCGA) cohorts.

Examples in which highly relevant subtypes are identified from cancer mutational and

copy number data are given, demonstrating the method’s usefulness applied to both

categorical and continuous data modalities. In addition, we apply HOCUS to magnetic

resonance imaging data (MRI/MR images) and establish links between MR images and

patient survival.
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We looked for inspiration from fields with similar data, such as social network

analysis. Detecting community structure is an important problem in the study of many

different types of networks including social (e.g. connected friends), online (linked web

pages), and molecular (regulatory gene signaling). In these applications, communities

represent sets of densely connected nodes within a larger set of nodes in a network.

Cliques of friends with shared interests or a gene module representing the function of

genes in a biological pathway are examples of such communities.

Community detection techniques have so far been under-utilized for the pur-

pose of subtyping patients based on shared genomic- and image-based events. Yet

the application is straightforward – the data can be converted readily into a network

of patient samples using sample-sample similarities. We hypothesize that using these

methods will boost performance of community detection especially when the data are

sparse. Mutations and MR images are sparse, since few mutation events are shared

between patients and the relative ratio of tumor to normal tissue in the brain means

that most regions are tumor-free. We demonstrate several cases in which the HOCUS

community detection approach identifies communities missed by standard clustering.

3.2 Results

3.2.1 Overview of HOCUS Clustering

HOCUS uses a technique from network analysis in which samples are compared

based on their neighborhood similarity [1, 111, 186] and can be pictured as the construc-
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tion of progressively higher-order networks (Fig. 3.1). The original data are provided as

features for each of the patient samples, and represent somatic mutations, copy number

events, or 3D images of tumor specimens. Next, sample-sample similarities are calcu-

lated using an appropriately chosen similarity metric (Fig. A.1, Supp Section A.1.2.3)

that can be viewed as a sample-by-sample network. Higher-order similarities are de-

rived from lower-order similarities by treating the lower-order similarities computed at

step k − 1 as the features used to compute new similarities at step k, similar to Yu et

al [387] and Yu et al [386], and to exponentiating a network’s adjacency matrix to re-

veal connected components linked by reachable paths. The samples can be clustered

using either the original features (i.e. use first-order similarities) or those derived from

higher-order similarities, identifying groups of patients having a higher proportion of

transitive relations.

We applied the approach to the problem of detecting cancer subtypes using

two very different data modalities - 3D tumor imaging data and somatic mutations.

Clustering patient samples by their shared genomic events or related imaging features

may reveal common disease etiology important for outcome assessment. Yet mutation

and imaging data are sparse – sample pairs have few overlapping events. It is therefore

problematic to use these data as features directly for clustering since similarities calcu-

lated from sparse spaces suffer in sensitivity and specificity [100]. Similarities based on

the network neighborhood can be more sensitive because the likelihood that two sam-

ples have an indirect coincidence through other samples is higher than having directly

coinciding events. We show that the use of HOCUS for both mutations and imag-
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ing data also adds specificity as it produces inferred subtypes that are biologically- and

treatment-relevant that were undetected by the equivalent approaches using lower-order

metrics.

3.2.2 Community Detection Reveals Cancer Subtypes Using Somatic

Mutation Data

The particular ways in which a tumor genome is damaged and altered leaves a

signature that reflects the type of cell and mutagen involved. Driving events involving

specific genes are associated with certain cancer types and not others. For instance,

BCR-ABL fusions are characteristic of chronic myeloid leukemias. The question is

whether the pattern of mutations within these cells of origin can further subdivide the

patient samples into meaningful categories that inform treatment.

We applied HOCUS to mutation data for 3 TCGA cancers: ovarian cysadeno-

carcinomas (OV), glioblastoma multiforme (GBM), and bladder urothelial carcinoma

(BLCA). We computed Hamming similarity (Eq. 3.1, sum of matched voxels) for all

sample pairs, resulting in an adjacency matrix of m × m samples. For higher-order

clustering, we raised the precomputed similarity matrix S to the d−1 power, where d is

the order of clustering. We then supplied this similarity matrix as the feature matrix for

input to ConsensusClusterPlus (see Methods). Figure 3.1 shows a conceptual example

of this principle– as the order of clustering increases, cliques in the network emerge and

form clusters.

We retained for clustering all metrics that provided a non-redundant set of
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Figure 3.1: Social network approach to clustering patient samples. First we trans-
form/encode the mutation/voxel data, then compute all patient–patient similarities.
At each order of similarities, clustering is based on similarities in that order, result-
ing in different clustering solutions. Shown here from left to right: features, 1st-order,
2nd-order, 3rd-order, ‘true’ communities.
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relations between samples not captured by lower-order metrics. To do this, we identified

all kth-order metrics and lower such that the (k + 1)th metric produced highly similar

relative similarities to the kth metric as measured by a kernel alignment test [89] (see

Fig. A.2). We sought to determine if higher-order feature-based similarity measures (i.e.

those based on mutations, images etc) had an enrichment for connecting patients with

similar survival outcomes compared to using first-order feature-based measures.

For each tumor type, we clustered the patient samples based on either Pearson

correlation, the first-order Hamming similarities, or non-redundant higher-order simi-

larities. We used K-means ConsensusClustering [372], varying the choice of the number

of clusters (K), and calculated the degree to which the solutions separated patients

with different outcomes as a measure of biological relevance. A Kaplan-Meier test was

performed on each clustering solution and the significance (-log P-value) was recorded

(Fig. 3.2).

We applied HOCUS to the TCGA GBM dataset containing 283 patients for

which 14,910 mutations were found across 7,874 distinct genes, and found 3 distinct

clusters. Survival differentiation has proven difficult to achieve in previous analyses of

GBM datasets [32, 351], however the HOCUS results show some difference in survival

between clusters. In the best surviving, cluster 1, the patients have low EGFR and

TTN mutation occurrence compared to patients in other clusters but few mutations in

either; TTN mutations are mostly in cluster 3 and EGFR distributed between clusters

2 and 3. All 14 of the IDH1 mutants are in cluster 1, as are nearly all (11 of 16) of

the ATRX mutants. Cluster 1 corresponds well with mRNA cluster 3 (LGr3) from the
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Figure 3.2: HOCUS in first- through fourth-orders, and pearson clustering of (a) GBM
(c) OV and (e) BLCA survival p-values vs number of clusters. (b) GBM, (d) OV, and
(f) BLCA Kaplan-Meier plots for selected HOCUS clustering solutions. Clusters with
fewer than 5 samples are excluded from the KM analyses.
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recent TCGA paper [42]. Thus, the HOCUS clustering on mutations seems to have been

able to tease out a low grade diffuse subtype, defined by IDH1 mutation status often

seen in younger individuals, characterized by the absence of a 1p/19q codeletion and a

lack of TERT expression and an overall better prognosis. Furthermore, every cluster 1

sample has a TP53 mutation (Fig. A.3), whereas there are none in cluster 2 and only

14 (of 105 samples) in cluster 3.

We next applied HOCUS to the TCGA OV dataset containing 316 patients

for which 14,810 mutations in 8,258 distinct genes were reported by the TCGA analysis

working group. For the OV dataset, the first order solution found the greatest separation

in survival between clustered groups. Higher-order metrics gave different solutions but

were comparable with the first order solution in separating out patient groups with

differences in outcome. One of the main divisions of the samples shows a significant

difference in overall mutation rate. In addition to TP53 mutations, several genes that are

characteristic of passenger mutations are also predominant in the highly mutated cluster

including TTN, MUC16, and RYR2. Other mutations are significantly associated with

these clusters, highlighted in Figure A.4. HOCUS OV clusters correlate with platinum

resistance, which is a survival marker.

These findings were surprising given that the TCGA OV dataset has posed a

significant challenge for analysts to identify meaningful genome-based distinctions be-

tween the patients [38, 351] One of the most successful attempts to date was reported

by Hofree et. al. (2013) [149] in which patient samples were clustered based on a net-

work diffusion transformation of the mutation data. To compare the two approaches
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we ran HOCUS using the TCGA OV data as filtered by Hofree et. al., whereas in the

main text we do not filter the mutation datasets. Our results indicate that comparable

survival differences to the Hofree approach can be obtained by using a different metric

(e.g. Hamming distance used here) and higher order HOCUS, eliminating the need

to introduce prior knowledge (Fig. A.5). A similar result was obtained when applying

HOCUS to a TCGA breast cohort (see Supplemental Information) in which both the

first order and second order results revealed similar survival separation while producing

different solutions. Thus, since the first and second order solutions for both OV and

BRCA gave different clustering solutions but comparable outcome separation, it is pos-

sible that a solution combining first and second order solutions could produce a better

outcome predictor for the patients. Furthermore, since HOCUS performed better on

the OV dataset when hypermutated samples and hypomutated genes are excluded from

analysis, it would be beneficial to experiment with more extensive data preprocessing.

As a final test for clustering patients using mutation data, we applied HOCUS

to the TCGA BLCA cohort of 394 patients for which 84,048 mutations were called based

on exome sequencing, covering 15,553 distinct genes. We inspected the BLCA clusters

for novel groupings uncovered by HOCUS clustering. BLCA 2nd-order HOCUS has

the largest separation in survival of the clustered patients. We note that, like the case

for OV, the clusters are associated with the number of mutations per sample. Indeed,

clustering by mutation rate alone yields comparable separation in patient outcomes

(P < 4e10−5; Fig. A.6) as the HOCUS solution However, the HOCUS solution also

correlates with the papillary subtype and so combines the influence of mutation rate
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and histology into its solution. Since mutation data was the only data used, we searched

for genes with mutations that discriminate the patient clusters to understand which may

underlie their different etiologies. Figure 3.3 shows the top 15 genes associated with each

cluster via a χ2 test of independence (due to overlap in the ‘top’ genes, only 20 genes

are shown). Many of these genes are associated with several cancer types, for example

LRP1B has been associated with thyroid, ovarian, renal, and brain cancers [70, 205, 324].

Other known oncogenes such as PIK3CA (p-value 3.6e−4) and TP53 (p-value 3.9e−8) are

also significantly associated with the clusters. Interestingly, the highly mutated BLCA

cluster has the best survival prognosis; approximately 2
3 of patients surviving the entire

study time period. The cluster matches well with the papillary-enriched cluster from the

TCGA study. In both cases, a higher rate of TP53 mutations was found (80% compared

to the background rate of 50%), and a slightly higher rate of smokers was in the category.

Indeed, we compared our clusters to the TCGA BLCA clusters, which were generated

using mutation and copy number data with an integrated NMF approach, and found

only a weak correspondence (Fig. A.6(b), p-value 0.128). Thus, using only mutation

data, HOCUS is able to automatically reproduce a solution with similar separation in

survival but with a somewhat different division of the patients.

3.2.3 Community Detection Subtypes Using (Continuous-Valued) Copy

Number Data

To test the applicability of HOCUS to continuous-valued data, we also applied

the technique to the clustering of patients based on copy number data. We applied HO-
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Figure 3.3: Oncoprint showing a subset of mutations in BLCA. Line plots above the
oncoprint shows the total number of mutations per sample. The grey dotted lines
indicate median mutational load across the cohort. This BLCA oncoprint includes genes
with the smallest p-values in a χ2 test of independence when compared to mutation rates
outside the cluster. We compared each cluster to all others combined.

23



CUS to TCGA prostate adenocarcinoma (PRAD) copy number data because prostate

cancers are known to harbor significant copy number events over the evolution of the tu-

mor including AR amplifications, TMPRSS2-ERG fusions, and even whole genome level

events such as chromoplexy. We used the output of the Broad’s GISTIC2 pipeline [238]

that provides gene-level associated copy number estimates as continuous-valued data

with limited range of unique values. GISTIC2 scores indicate copy number aberrations,

where 1 indicates low-level and 2 indicates high level amplifications, negative scores

indicate the same but deletions rather than amplifications, and a score of 0 indicates no

copy number alterations. For the TCGA PRAD cohort, survival rates are sufficiently

high making patient survival time an inappropriate measure of disease subtype. Clusters

show significant association (Fig. A.14) with Gleason score and PSA (prostate-specific

antigen), both of which are associated with disease aggression.

3.2.4 Community Detection from Magnetic Resonance Imaging Data

We next applied the HOCUS method to the task of grouping patients with

GBM based on the imaging of their tumors. Current practice uses MR images to

localize tumors and to characterize their appearance. MR images have not been used

extensively to subtype patients because it is not clear how to use the information. MR

images are large and human brains have variable size and shape, making it incredibly

difficult to compare between patients. By mapping to the MNI brain atlas (Montreal

Neurological Institute 152), we are able to compare between patients in the cohort, and

using HOCUS we are able to find clinically relevant imaging subtypes.
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We applied HOCUS clustering using the GBM voxel data from the TCGA col-

lection of 184 patients with first- and higher-order metrics to find community structures.

MRI data are part of the TCGA GBM cohort, downloaded from the Cancer Imaging

Archive (www.cancerimagingarchive.net) and processed by Stanford University as de-

scribed in Liu et. al [218]. To reduce noise and the size of the MR images, we first

preprocessed the data by filtering to a set of informative voxels containing tumor in

some, but not all, of the patients (Fig. A.7). We removed all noninformative voxels

mutated in fewer than 15 of the individuals from analysis. We computed sample-to-

sample similarities using the remaining voxels and performed higher order calculations

and clustering as described above for the mutation data (e.g. Hamming distance and

ConsensusClusterPlus were used). Cluster solutions revealed that the metrics converged

by the fourth-order (Fig. 3.5).

We sought to determine which metric based on the imaging data best matched

up with the observed differences in patient outcomes. We defined the outcome-based

similarity metric by computing all pairwise absolute differences between the survival

time of every pair of patients, dij = |T (i) − T (j)|, where T (i) is the survival time in

days of patient i. These distances were converted to similarities via the linear transform

sij =
1−dij
m , where m = maxij(dij) is the maximum absolute differences between any two

patients. We then quantified the correlation between imaging-based and outcome-based

similarity measures using a normalized version of the kernel alignment method [72] that

calculates a centered correlation between two full sample-by-sample similarity matrices.

We repeated the kernel alignment comparison to survival for 1st order and higher order
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HOCUS metrics (Table A.1).

To visualize the results of the kernel alignment comparisons, we used a con-

ditional density visualization. Through visual inspection, and reflected in the kernel

alignment correlation score, we found that the third- and fourth-order had the highest

scores (Fig. 3.4). Interestingly, second-order had a lower association than first-order

for this dataset, illustrating the benefit of attempting higher order metrics that look

beyond the immediate network neighborhood. This could indicate that, while no as-

sociation may be present at a lower order, the higher order may detect associations

among combinations of lower order features that could be the critical factors. We note

that second-order HOCUS stratifies MR images into tumor groups by anatomic location

(Fig. A.8(a)). On the other hand, third-order clusters were driven by a combination of

location and volume. In addition, third-order produced a larger separation of survival

in groups than location or volume alone.

Each clustering solution based on different metric orders identifies unique char-

acteristics in the MR images that are associated with survival prognosis. While first-

order clusters (Hamming similarity) align with tumor volume, and second-order with

anatomic location, third-order clustering captures aspects of both tumor volume and

location (Fig. 3.5(c-d)). Each solution has statistically significant separation in survival

(Fig. 3.5(a)), with third-order having the greatest separation in survival of image cluster

groups. Patients with tumors in the frontal lobe and which are smaller in volume have

significantly better survival than larger tumors in the lower rear portions of the brain.

Interestingly, the third-order solution pulled together patients that made up
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two separate poor surviving clusters in the second-order solution. To better understand

the third-order subtypes revealed by the imaging data, we inspected the genetic path-

ways that distinguish the poorer surviving subtype from the others using RNA-Seq gene

expression data. We computed a differential expression score for each gene to indicate

whether a gene’s expression level was higher or lower on average in the poorer surviving

cluster (cluster 3) relative to the others using the Statistical Analysis of Microarrays

technique [343]. We then connected any gene with an absolute differential expression

higher than one standard deviation above the average of all genes. Finally, we retained

pathway interactions connecting only those genes that were both in this set and plotted

them with the Cytoscape viewer [305]. Several pathways involved in major growth and

proliferation signaling were implicated from these networks (Fig. 3.6). ERK (MAPK1)

was found to be significantly overexpressed in cluster 3 tumors along with JUN-kinase

(MAPK8). In addition, AKT1 and PLK1 were also found to be higher in cluster 3,

both known to drive cell cycle progression.

3.3 Discussion

As demonstrated here, community detection approaches may have merits for

subtyping patients when using sparse data (few events in any single patient sample).

To explore how patient-to-patient similarity transformations influence subtyping, We

used a method called Higher-Order Correlations to Uncover Subtypes (HOCUS) that

iteratively calculates higher order metrics using each similarity space to define patient
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Figure 3.4: Visualization of joint and conditional densities of image-based metrics com-
pared to survival outcome metric; results on the (a)first-order, (b)second-order, (c)
third-order, and (d) fourth-order HOCUS.

clusters. HOCUS uses network connectivity to define groups or ‘communities’ of pa-

tients, related by both direct and indirect connections, reinforced by transitive relations

in a local subnetwork. The higher-order metrics incorporate information from local

neighborhoods to assess if two patient samples are related. In several cases we find that

HOCUS provides an improvement over methods that use the molecular features directly

to compare samples (Fig. 3.2). We find that higher order metrics yield better clusters

for BLCA and GBM patients based on mutations, as well as GBM patients based on

their tumor images.

We introduced a visualization method to augment the quantitative kernel align-

ment for identifying when a similarity measure is associated with an outcome measure

of interest. The visualization inspects the conditional distribution of the outcome sim-
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Figure 3.5: HOCUS of GBM MR Images. (a) P-values of survival separation for each of
the orders of clustering across a range of k clusters. (b) Kaplan-Meier plot of the third-
order HOCUS clusters. (c) Images of tumors within each cluster projected onto the
MNI brain atlas. Showing saggital, coronal, axial views. Brightness of color indicates
the number of patients with tumor at a given location. Generated using Slicer [97]. (d)
Violin plot showing tumor volumes within each third-order cluster. (e) Molecular (gene
expression based) subtypes within the clusters.
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Figure 3.6: PathMark analysis of the poor surviving third-order cluster vs others. Node
size and color indicates differential expression levels.

ilarities as a function of the feature-based similarities. In several cases tested, the

procedure revealed that a higher-order metric was more associated with survival than

non community-informed metrics. This supports the notion of using community detec-

tion techniques for the analysis of genomics and imaging data, especially given sparse

feature spaces.

In the case of BLCA cancer, the second order metrics revealed groupings of the

patients where tumors with higher mutation rates are separated from the other tumors

and these patients have an overall better survival outcome. Most notably, the solutions

for BLCA and OV separate tumors with higher mutation rates from the others and

those patients with higher mutated tumors have a better survival outlook relative to

the other patients. This result may reflect that highly mutated tumors are more sensitive

to DNA damaging agents (e.g. cisplatin treatment for OV patients). Alternatively, a

higher mutation rate could increase the number of neo-antigens present on tumor cell

surfaces, helping a patient’s innate immune system to identify and eliminate tumor cells

30



that lack immunosuppressive protection such as through the expression of PD-L1 and/or

CTLA4. Consistent with this idea, recent clinical trials have found that combining DNA

damaging agents with immunotherapies can have synergistic effects [326]. Alternatively,

tumors with higher mutation rates could reflect a different subtype with an intrinsically

distinct progression pattern. In support of this, we do find a somewhat higher proportion

of papillary BLCA tumors in the higher mutated cluster (44% of papillary BLCA tumors

are in cluster 3), but this association is not significant based on a χ2 test.

Medical images are an underused resource that have vital information [6, 43,

46, 60, 79, 82, 134, 163, 176, 229]. However, important information for comparing

tumors is clearly present in the imaging data. A key piece of data conveyed by imaging

is the location of a tumor in the brain, which can influence when the tumor is detected

due to the tumor affecting certain location-associated brain functions. For example,

some tumors may be detected early because they reside in regions that induce extreme

nausea in patients. Furthermore, some tumor locations may be more resectable than

others, such as the frontal lobe and surface [304]. Thus, imaging data carries important

aspects for subtyping patients according to disease outcome and treatment selection. In

the TCGA data, molecular subtype is independent of both tumor location and volume

(Fig. A.9, Fig. A.8(c)).

HOCUS clustering using GBM imaging data automatically clustered the pa-

tients into groups by anatomic tumor location, citing no need for expensive and time-

intensive expert manual curation. Our work corroborates that of others in finding

regions associated with poor survival in GBM patients as the third-order solution incor-
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porated both location and size [218]. By mapping MR images to a reference brain atlas

we are able to compare physical tumor characteristics between patients and combine

this with more common genomic analyses. Here and in previous works [66, 218, 380]

we highlight the benefit of combining genomic and image data to better predict cancer

progression. We also show how location influences genomics in GBM independently of

molecular subtypes. Both image and genomic data are key to understanding GBM. Of

note, IGF1 was found to be the most differentially expressed gene in cluster 3. Higher

levels of the insulin growth factor receptor could point to an alternate metabolic re-

quirement for these tumors. It would be interesting to follow up on this observation by

testing if the protein is present on tumor cell surfaces to support the possible role of

this growth pathway. If tumor growth is dependent on this pathway than blocking IGF

receptor activity may show benefit in these patients.

HOCUS is applicable to both binary (ie mutation and voxel) data and contin-

uous data (CNV). HOCUS is simple and flexible enought to be used wherever a suitable

similarity metric between individuals can be generated, even for non-sparse data such

as expression or methylation data. As we have shown, its application has the potential

to reveal groupings missed when using standard metrics.
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3.4 Methods

3.4.1 Data Preprepocessing

3.4.1.1 MR Images

Tumor location was extracted as previously described [218]. Patient tumor

was identified in the MR images by having two experts delineate tumors’ regions of

interest, then feeding through the image processing pipeline developed in an earlier

paper submitted by the collaboration group [218]. This results in a per-patient 3-

dimensional binary matrix of tumor-containing and tumor-free voxels (3-dimensional

pixel) in the brain. Each 1 millimeter MR image slice was rotated and fitted to a

brain atlas (Montreal Neurological Institute [93]), to make voxels comparable between

patients.

3.4.1.2 Mutations

Mutation data was downloaded from firehose (firebrowse.org) and separated

into silent/nonsilent mutations. It is translated to a patients by genes matrix of mutated

vs not mutated binary information. We consider genes that have at least one nonsilent

mutation within the cohort and patients with at least one nonsilent mutation.

3.4.1.3 Copy Number

GISTIC2 [24] copy number variation data was downloaded from firehose (fire-

browse.org). Patient-patient networks were calculated based on Hamming distance us-
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ing the GISTIC scores ([−2,−1, 0, 1, 2]). Thus any similarities between patients are

considered a match. For example, −1 would not be considered a match to a score of

−2.

3.4.2 Visualization of Joint Densities

To visualize the association between feature- and survival-based measures, we

plotted the the proportion of sample pairs with similarities in both metric spaces. If the

distribution of survival similarities for sample pairs changes as a function of the feature-

derived similarities, it suggests that the feature-based metric carries outcome-relevant

information. For example, if we restrict the pairs to those with high similarity in mu-

tation space and we observe that there are more pairs with similar survival compared

to the background (or to pairs with low mutation-based similarity) it would indicate

mutation-based similarity carried information about survival outcome. To view such a

dependency, we group sample pairs into bins of approximately equal feature-based sim-

ilarity. Then, for each bin, we plot the distribution of outcome similarities, shown along

the left-hand side of each joint density plot. A distribution that changes significantly

across the bins reflects an association between the feature- and outcome-based similar-

ities. In the case of patient survival, we are interested in whether higher similarities

computed from the feature data reveal a higher proportion of patient pairs with similar

survival times.
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3.4.3 Community Detection Using Higher-Order Sample Similarities

Our analysis is similar to the common inference-by-transitivity technique used

in social networks, summarized by the statement ‘a friend of my friend is also my friend.’

This technique finds cliques of similar patients in a network by connecting patients that

are similar in the original network and then clustering based on those similarities. Given

samples j and k, and feature vectors X, we calculate the similarity matrix S(1) (using

Hamming similarity (S
(1)
(H)) when the features are binary such as for mutations and

imaging voxels).

S(1) : s(1)(j, k) =
1

n

n∑
i=1

I(xi,j , xi,k), (3.1)

where n is the number of features (e.g. voxels), I(a, b) is the indicator function that

returns 1 if its first argument equals its second and returns 0 otherwise. Using this

similarity metric, we compute the 2nd-order similarities from the 1st-order matrix. Let

m be the number of samples in the cohort. The second order metric is calculated as:

S(2) : s(2)(j, k) =
1
m

∑m
l=1 S

(1)(j, l)× S(1)(l, k)√∑m
l=1 S

(1)(j, l)×
∑m

l=1 S
(1)(l, k)

= corr(S(1)(j, ∗), S(1)(∗, k)). (3.2)

For higher-order clustering, the precomputed similarity matrix is raised to the d power,

where d is the order of clustering. Because the ConsensusClusterPlus R package [372]

that we used computes an internal metric prior to clustering and only takes as input

a feature matrix, we would raise the matrix to the (d − 1)th power and supply this
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matrix as the feature matrix to ConsensusClusterPlus as input. Using centered Pearson

Correlation as the metric is then equivalent to squaring the feature matrix. In this

way, we tested all even powers of d when using ConsensusClusterPlus. For example,

our ”third order” solution effectively uses a fourth order metric since S(2) is squared

and our ”fourth order” solution is actually a sixth order metric since S(3) is effectively

squared inside the ConsensusClusterPlus package.

3.5 Integrated Analysis using HOCUS

Our next step was to use HOCUS in an integrated data setting. Section A.1

outlines experiments where we used HOCUS on non-binary data such as CNV, and

a similar and highly cited approach called WCGNA (Weighted correlation network

analysis) is designed for co-expression data [200]. Thus the approach can be applied to

many types of data individually.

There is a ongoing project at UCSC called Tumor Map (Newton 2016, in

review) [250], where correlation networks of different types of cancer data are being used

to visualize ‘maps’ of cancer genomes. Tumor Map uses the Google Maps framework

to visualize patient–patient similarities in a 2D space. Correlation networks can be

combined using this method. Map layout is determined by the data layers, and HOCUS

is used for the mutation layers.

The mutation layer is built from 313 high–confidence mutation calls within 2

TCGA studies [174, 325], both of which analyze the PanCancer12 data [39]. Applying
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HOCUS to this data transformed the layer from one large ‘island’ to many islands

(Figure 3.7(a)). This indicates HOCUS was able to find distinct mutation–derived

subgroups within the data. Other approaches were unable to differentiate between

patient groups because of the sparsity of the mutation data. Since HOCUS also uses

indirect shared mutations, it is able to find distinct patient groups. Of note, HOCUS

identifies a key difference in the COAD&READ tumors (Figure 3.7(b)). The most

frequent mutation differentiating these groups is KRAS, however that single mutation

is not the only difference– were that the case, the groups would be physically closer in

the Tumor Map. There is a network of indirectly shared mutations within each group

that makes them distinct.

While the mutation–only maps are of interest, Tumor Map is able to combine

many maps into one integrated data map. The HOCUS mutation maps are combined

with somatic copy number to create what we call the ‘Genome Space’ map, and with

several combinations of data platforms in the ‘Integrated Space’ maps. These maps are

described in detail in Newton et. al., currently in review. Tumor Map visualizes inte-

grated data and incorporates the (sparse) mutation data by using HOCUS to compare

samples. Thus, HOCUS is becoming part of an integrated analysis framework.
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(a)	 (b)	

Figure 3.7: PanCan12 Mutation Map using HOCUS identifies a KRAS–dependent sub-
type in COAD&READ cancers. In (a) samples are colorcoded by TCGA–defined cancers
by tissue type and in (b) samples are colored by presence of a KRAS mutation.
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Chapter 4

Integrative Clustering Analysis

4.1 Introduction

In this chapter I transition from the single data platform clustering in Chap-

ter 3 to integrated analysis. TCGA network and others recently have shown the benefits

of integrated clustering methods, for example iCluster [298] and PARADIGM [347]. I

participated in several of these projects, and this chapter covers a few of them. First is

an ongoing project about an asbestos–related cancer, mesothelioma. Second is another

TCGA project, hepatocellular carcinoma, whose manuscript is in review. Last is a

meta–analysis of prostate cancer datasets, initiated by my work in the TCGA prostate

adenocarcinoma group but which includes 8 prostate cancer studies. The last project

was done together with Yulia Newton.

This chapter contains text from the paper ‘Integrative Molecular Characteriza-

tion of Malignant Pleural Mesothelioma’ (TCGA Network 2016, in prep) in Section 4.2,
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and the paper ‘Comprehensive and integrative genomic characterization of Hepatocel-

lular Carcinoma’ (TCGA Network 2016, in review) in Section 4.3. I present my inte-

grated analysis contributions to these cancer working groups as well as highlights from

the manuscripts. I focus on the UCSC contributions, and encourage readers to access

the complete published papers.

4.2 Integrative Molecular Characterization of Malignant

Pleural Mesothelioma

4.2.1 Introduction

We report a comprehensive molecular analysis of 74 primary, non-pretreated

Malignant pleural mesothelioma (MPM) samples. The sex (6274 , [83%] male), age (median

64 years) and tumor histological type (5074 , [67%] epithelioid) distributions in our cohort

are typical of MPM [13, 258]. Recurrent somatic mutations were detected in BAP1,

NF2, TP53, LATS2 and SETD2, all known drivers of MPM. Moreover, a significant

number of cases were found to have extensive (> 50%) loss of heterozygosity (LOH).

Among these, 3 were found to have > 80% LOH.

4.2.2 Methods

We used median centered, log scaled mRNA expression and SCNA GISTIC2 [238]

data to calculate inferred pathway activity levels using PARADIGM [347]. I clustered

the PARADIGM data using ConsensusClusterPlus [372], and identified 4 distinct clus-
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ters. To compare Cluster 1 (worst prognosis) to Cluster 3 (best prognosis), I ran Path-

Mark [143] on the statistically significant differential activities obtained from SAM to

extract connected components of the global PARADIGM regulatory network. Activities

that fall outside 2 standard deviations of the empirical distribution of the statistically

significant differentials are included the final result. A network connection is extracted if

both vertices connected by that connection pass the filter. Networks are then visualized

using Cytoscape [294] and CircleGraph (Figure 4.2).

4.2.3 Results

4.2.3.1 Pathway Level Expression Changes

The most up-regulated network difference between the worst and best progno-

sis groups is centered around AURKA (Fig. 4.2(b)). Fig. 4.2(a) shows the full PathMark

network found and highlights several subnetworks of interest. Best prognosis cluster pa-

tients have upregulated androgen receptor and TP63 networks. Furthermore, the poor

surviving cluster has increased expression in several subnetworks commonly associated

with aggressive disease– ERBB, PLK1, VAV1, and the Alpha/Beta integrin subnet-

works. The good prognosis subgroup is relatively copy-number quiet and all but one

patient have BAP1 alterations (compared to 50% in other groups). This is true even

when we compare only the epithelioid samples.

Across multiple tumor types, MPM possessed the second highest overall EMT

score after sarcoma. EMT score correlated with histology, with lower EMT scores in

epithelioid MPM. Cluster 1 patients have higher EMT scores and Cluster 3 have lower
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Figure 4.1: Overview of the PARADIGM results. (a) KM of PARADIGM clusters. (b)
Histology enrichment. (c) ‘Best’ (blue) and ‘worst’ (red) survival groups recapitulated
in the single platform clusters. (d) EMT scores by cluster.

scores than average within the cohort (Fig. 4.1(d)).

Cluster 1 patients have significantly worse survival and have higher in AURKA,

E2F targets, G2M checkpoints, as well as PI3K and mTOR pathway expression. A

drug currently in a phase 2 clinical trial inhibits AURKA activity [47] and may be an

effective treatment. Furthermore, this cluster recapitulates platform-specific clustering

of miRNA data (Figure 4.1(c)).

Cluster 3 patients have the best prognosis, and have upregulation in EGFR

signaling; Kinase subnetworks are downregulated. There is an enrichment of epithelioid

patients in this cluster (Fig. 4.1(b)), however after correction for this enrichment, the
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Figure 4.2: (a) Overview of the PathMark results. This shows the connected subnetwork
fo genes that are greater than 2 standard deviations outside of normal expression of
patients within the best and worst surviving clusters. Red means upregulated in the
poor prognosis group and blue is upregulated in the best prognosis group. Brightness
of color shows the degree of difference between the two groups. (b) Differential analysis
finds this AURKA subnetwork upregulated in the worst prognosis cluster. Showing
circleMaps with PARADIGM cluster, PARADIM IPL, mRNA expression, and CNV
data for each patient. (c) PathMark subnetwork for AURKA.
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Table 4.1: TCGA tumor types included in the PanCancer Tumor Map.

Name Acronym # Patients

Malignant pleural mesothelioma MPM 74
Sarcoma SARC 469
Skin cutaneous melanoma SKCM 469
Lung adenocarcinoma LUAD 516
Lung squamous cell carcinoma LUSC 501
Uterine corpus endometrial carcinoma UCEC 194
Uterine carcinoma UCS 57
Basal breast invasive carcinoma BRCA 143

Total 3,176

group remains distinct. Patients are also more likely to have undergone pneumonectomy.

Patients in clusters 2 and 4 have similar prognosis, but are genomically distinct. Cluster

2 patients have lower stage (N1) and cluster 4 is predominately epithelioid.

4.2.3.2 Tumor Map

PARADIGM data is projected onto a Tumor Map to visualize the similarities

between patients (Fig. 4.3(a)). The Tumor Map represents a dimensionality reduction

and visualization method for high dimensional genomic data (see Newton et. al. for

a detailed explanation of the method). Samples are arranged in a 2D space and then

assigned to hexagons in a regular grid. Relative distances in the map approximate

relative similarities between the samples, so that samples with similar genomic profiles

are placed near each other in the map. Thus, clusters of samples that appear as ‘islands’

in the map share genomic and/or epigenomic events.

We built a multiple cancer map using mRNA expression from 3,176 patients

across 8 cancer types (Table 4.1). Map layout is constructed using the 6 nearest neigh-
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bors for each sample based on pairwise similarity. While the driving factor in the map

was the tissue of origin, we found that MPM clustered near SARC tumors (Fig. 4.3(b)).

Furthermore, some of the MPM samples co-clustered with the SARC tumors in that

group. This SARC group is enriched for undifferentiated phenotypes, specifically dedif-

ferentiated liposarcoma and undifferentiated ‘pleomorphic’ sarcoma. MPM tumors that

directly clustered with or near these undifferentiated sarcomas are enriched for bipha-

sic and sarcomatoid histology and belong to the poor survival subtype defined by the

PARADIGM analysis. This result leads us to hypothesize that poor prognosis MPM

might be associated with de-differentiation and stem-like molecular signatures.

4.2.4 Conclusions

Comprehensive molecular characterization of 74 MPM cases confirms that

MPM is driven by loss/inactivation of tumor suppressors, not by aberrant activation of

oncogenes. MPM in the PanCan analysis (Fig. 4.3(b)) shows an association with dedif-

ferentiation. These cases are marked by low mutation rate and gene expression profile.

They cluster close to sarcomas, have high EMT score, and high VISTA (C10orf54) ex-

pression. The PARADIGM clusters offer an update on diagnosis that may eventually

augment/replace histologic subtypes.

Unsupervised clustering showed good concordance across several analysis plat-

forms (Fig. 4.1(c)) and several potential therapeutic targets are supported by our find-

ings, of note the AURKA pathway and VISTA. Integrated clustering was able to identify

a signal that persists in part in every data platform, but is most clear in the PARADIGM
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Figure 4.3: Tumor Maps for the MESO project. (a) PARADIGM map colored by
PARADIGM clusters. (b) PanCancer-8 map showing the Sarcoma-like MESO tumors.
Breakout windows show PARADIGM clusters, histology, and dedifferentiated SARC
types.
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results.

4.3 Comprehensive and Integrative Genomic Characteri-

zation of Hepatocellular Carcinoma

4.3.1 Introduction

Hepatocellular carcinoma (HCC) is the second most common cause of death

from cancer worldwide. There have been 700,000 annual deaths recorded globally in

recent years [381]. HCC has several known risk factors including chronic HBV and

HCV infections, autoimmune hepatitis, diabetes mellitus, obesity, alcohol abuse, and

several metabolic diseases [96]. There has been a worldwide rise in HCC incidence, and

in developed nations this is partly attributed to its association with known risk factors

such as obesity and diabetes [96, 381]. While initiation and progression of HCC is

considered a multi-step process, the underlying driver mutations and molecular events

remain only partially understood.

Recent HCC genomics studies have identified frequent mutations in TERT,

TP53, and CTNNB1 (β-catenin)3−8. Response to Sorafenib, a kinase inhibitor which

is the only drug approved for HCC management, can be predicted based on FGF3/4

and VEGFA amplifications [222]. Unfortunately, since its approval more than ten other

drugs have failed to meet clinical end points in phase III trials. Thus there is a need for

new drug discovery for HCC [221].

As part of The Cancer Genome Atlas (TCGA) project we have analyzed ge-
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nomic data from 196 HCCs to understand the genomic landscape of HCCs. The recog-

nition of new mutations and the characterization of robust subclasses with prognostic

implications in this study have the potential to influence clinical management of HCC

and target identification for drug discovery. To this end, UCSC provided integrated

PARADIGM analysis and identified both clinical and genomic events related to the

pathway-level differences between patients.

4.3.2 Methods

PARADIGM [347] was run on 188 cases with mRNA expression and copy

number data. Expression data was log2 scaled and median-centered; copy number

was taken from the GISTIC output. We then used consensus kmeans clustering [372]

to cluster PARADIGM IPLs with greater than 0.5 standard deviation, using pearson

correlation.

Clustering identified 5 distinct PARADIGM clusters. Fig. 4.4(a) shows the

difference in survival between groups, and Fig. 4.4(b) shows sample–sample similarities

in PARADIGM space; Several of the platform–specific clustering solutions overlap with

the PARADIGM solution. While there is little difference in survival between most

groups, the cluster 3 patients have the worst prognosis. To identify genomic differences

between these patients and the others in the cohort, we run differential expression

analysis on the PARADIGM IPLs, comparing cluster 3 patients to the entire cohort.

PathMark computes SAM [61] scores then projects connected subnetworks onto the

superpathway used in PARADIGM. From this we extract connected networks that are
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Figure 4.4: PARADIGM clusters: (a) KM plot and (b) sample-sample IPL similarity
matrix ordered by PARADIGM cluster and annotated with platform–specific clusters.

significantly differently expressed in the poor surviving group.

4.3.3 Results

PARADIGM cluster 3 has the worst survival of and contains the majority of

HBV+ patients. Furthermore, the HBV infected patients are much younger than the

others (Fig. 4.7(c), median 53 vs 65 years). PARADIGM clusters are also enriched for

obesity, BMI, and grade (Fig. 4.7(a-b,d)). Obesity and high BMI are known risk factors

for HCC.

The group found that some samples appear to be HBV+ in mRNA expres-

sion but are not clinically HBV. We were unable to determine if these patients had

an unknown HBV infection. Similarly, the group identified a TGF-β factor associated

with poor survival, reminiscent of triple–negative breast cancer. When comparing the

worst surviving PARADIGM cluster (3) to the other clusters, we identified a prolifera-

tion subnetwork expressed much higher than expected (Fig. 4.6(a)). Another analysis
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(Fig. 4.5) found a prevalance of TP53 mutations in cluster 2 whereas PathMark anal-

ysis of PARADIGM IPLs show the TP53 subnetwork to be downregulated in cluster 3

(Fig. 4.2(b)).

4.3.3.1 TP53 Pathway Alterations

Mutations involving TP53 were found in 31% (n=60) of patients. Here we

used an alternate methodology to determine p53 functional status by assessment of p53

target gene expression. The degree of p53 target gene upregulation is used as a surro-

gate for p53 functionality. Tumours were stratified based on p53 target gene expression

(Fig. 4.5(a)). While virtually no HCCs with high p53 target expression had TP53

mutations, 11 out of 48 (23%) samples in the low p53 target expression were TP53

wildtype. Thus, many HCCs without TP53 mutations appear to have dysfunctional

p53, consistent with the known existence of non-mutational p53 inactivating mecha-

nisms [310]. We examined specific inhibitors of p53 function and found that MDM4 was

significantly increased in copy number and expression in low signature WT TP53 HCCs

relative to other HCCs (p = 3.6× 10−4 and p = 5.4× 10−4, respectively) (Fig. 4.5(a)).

Thus, increased MDM4, a molecule that binds to p53 and inhibits its transcriptional

functions [230], may provide a mechanism for low p53 signatures in non-TP53 mutated

HCCs [85].

We further analyzed clinical and molecular correlations with the p53 expression

signature clusters. Tumors having low p53 target expression exhibited significant asso-

ciations with increased copy number instability (including high frequency chromosome
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Figure 4.5: P53-induced gene target expression signature, with biological attributes
and clinical outcomes. PARADIGM Cluster 2 is enriched for the TP53 signature found
by the TCGA working group. (a) Clustering of 191 HCC by expression of 20 known
p53-induced target genes that are frequently upregulated in HCC with wildtype TP53
relative to mutant TP53. Ranked lowest to highest by composite signature expression.
We include 20 induced targets and 10 p53-repressed genes. (b) overall survival of the
low, high, and intermediate quartiles of the p53 signature (c) model of key pathways
likely regulated by the p53 signature, effecting clinical and molecular parameters.

Figure 4.6: Differential analysis using PathMark identified (a) a TP53 subnetwork and
(b) a proliferation subnetwork.
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Figure 4.7: PARADIGM clusters are enriched for (a) BMI and (b) obesity. Obesity is
a known risk factor for HCC.

4q loss71), higher pathological grade, reduced expression of mature hepatocyte marker

genes, and increased risk of tumor recurrence (Fig. 4.5(a)). The lowest p53 signature

quartile patients had a median overall survival of 596 days versus 2,542 days for the

highest quartile (p = 0.0018) (Fig. 4.5(b)). Among the p53-regulated HCC target genes

PTCHD4 showed a 28-fold increased expression in the highest p53 expression quartile

relative to the lowest p53 quartile (Fig. 4.5(a)). PTCHD4 suppresses sonic hedgehog

(SHH) signaling in colorectal cancers [63] and SHH signaling is important in liver re-

generation and HCC [36]. Expression of SHH pathway gene expression was significantly

upregulated in low p53 signature tumurs relative to high p53 signature tumors by GSEA

analysis [316].
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Another p53-repressed target gene, EZH2, was significantly upregulated in low

p53 signature HCC (Fig. 4.5(a)). EZH2 encodes a histone methyltransferase that epige-

netically regulates stem cell maintenance [357] and its enhanced expression in low p53

signature HCC coincides with increased stem/progenitor gene expression. The low p53

signature HCC also showed increased expression of the p53-repressed cell cycle regula-

tory genes CCNB1/2, E2F2/3, and FOXM1, consistent with enhanced stem cell gene

expression phenotypes, and robust global upregulation of G1/S and G2/M promoting

genes. We hypothesize that p53 regulates HCC phenotypes through at least three ma-

jor signaling arms, the sonic hedgehog pathway via PTCHD4, the polycomb repressive

complex 2 via EZH2, and cell cycle progression pathways via cell cycle regulatory genes

(Fig. 4.5(c)).

4.3.4 Conclusions

This comprehensive integrated analysis of 196 hepatocellular carcinomas en-

hances our understanding of the molecular genetic events relevant to this cancer. The

mutation and pathway analyses provide potential directions for future therapeutic ef-

forts. Aside from the RTK inhibitor, sorafenib, no targeted therapies are clinically

available for this disease [220, 239]. We showed that WNT or p53 signaling or the

telomerase promoter are altered in 77% of HCC. WNT pathway small molecule in-

hibitors are currently in preclinical and clinical development [264]. Moreover, targeted

approaches that restore wildtype p53 activity to tumours with TP53 mutations have

been in clinical testing [57]. Because p53 can be rendered dysfunctional by alterations
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in upstream regulator function (e.g. MDM2, MDM4, p14ARF), p53 signature analysis

may provide a more accurate representation of p53 functional activity and may better

predict clinical outcomes than previous mutation-based studies.

Interestingly, we showed that a significant fraction of HCC with WT TP53 have

elevated MDM4 expression, hence currently available MDM4 small molecule inhibitors

might be efficacious in these HCC [166]. The very high frequency of TERT promoter

mutations suggests that upregulated TERT expression in HCC might be targeted with

telomerase inhibitors currently in development and clinical testing [281]. The activated

TGF−β signature observed in a high fraction of HCC indicates that TGF−β signaling

presents an attractive target, and this is supported by preliminary studies showing that

TGF−β inhibitors have HCC anti-tumor activity in initial clinical trials [110].

Computational pathway analysis of less frequently mutated genes implicated

alterations in the SHC-RAS-MAPK related pathways, consistent with sensitivity of

HCC sensitivity to the RTK inhibitor Sorafenib. The high expression of immune check-

point genes CTLA-4, PD-1, and PD-L1 in 20% of HCC make this subset of tumours

particularly attractive candidates for monoclonal antibody-based therapies specifically

targeted to these genes [146, 201, 269, 339]. In conclusion, established and novel ana-

lytic approaches have been applied to multiple data platforms from a large number of

clinically annotated HCC to provide a better understanding of molecular targets that

may lead to better therapeutic strategies.
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4.4 A Signature of Metastasis in Prostate Adenocarci-

noma

4.4.1 Introduction

Prostate Adenocarcinoma (PRAD) is the most common form of prostate can-

cer, with 180,890 diagnoses and 26,120 deaths estimated in 2016 [301]. One in every

seven men will be diagnosed with the disease in his lifetime [301]. Together with Yulia

Newton, I analyzed tumor progression in a combined set of prostate cancer patients.

Our goals were to identify patients whose disease are likely to metastasize and to identify

genomic mechanisms causing metastasis. To do this we combine the datasets, determine

subtypes for primary and metastatic samples, train predictors and finally use those to

link the primary and metastatic subtypes (Fig. 4.8). Tumor cells undergo very specific

molecular changes during invasion and metastasis that allow cells to be detached from

the tumor, travel to another location and successfully start a new colony. Some of such

changes include epithelial-mesenchymal transition (EMT) in preparation for invasion

or intramural growth and micro-colony formation by circulating tumor cells (CTC). As

a result, metastatic tumors have distinct molecular signatures that are responsible for

activating signaling pathways in the cell that are specific to metastasis. For example,

NOTCH signaling is known to be activated in metastatic tumors [268, 393]. We identify

early metastatic signature that can be detected in primary tumors, predicting likelihood

of metastasis.
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4.4.2 Methods

Dataset Normals Primes Mets Genes Platform

Cai [35] 0 22 29 10,523 Microarray
Chandran [50] 0 10 21 14,997 Microarray
Grasso [125] 28 59 32 15,830 Microarray
GTEx [223] 42 0 0 13,256 Microarray
Monzon [345] 52 65 25 9,383 RNASeq
Taylor [329] 29 131 19 19,923 Microarray
TCGA [41] 21 246 0 20,500 RNASeq
Erho [91] 0 545 0 20,500 Affy Human Exon

Joint 172 1,078 126 4,895

Table 4.2: Datasets used in the meta-analysis.

Preprocessing the Data We combined the eight datasets in Table 4.2 into a new

dataset of 1,659 samples and 4,894 genes. Dataset batch effect was removed with an

Empirical Bayes approach (ComBat, [167]), which was given dataset as a batch and the

type of sample (normal, primary, or metastatic) as biological covariates. Fig. 4.9 shows

principle component analysis of the data before and after ComBat, showing that the

batch effect has been successfully eliminated.

Subtyping Primary and Metastatic Prostate Adenocarcinoma In order to

identify molecular subtypes of the primary and metastatic prostate adenocarcinoma

we performed consensus k-means clustering [372] on the ComBat-transformed data.

Clustering was performed using 1,313 genes after variance filtering. The 785 primary

samples and 126 metastatic samples were clustered separately.

Based on silhouette score, we identified four primary and three metastatic
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Figure 4.8: Workflow for predicting metastatic signal in primary samples.
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Figure 4.9: PCA plots of the mRNA expression data (a) before and (b) after ComBat
application for batch effect removal with respect to the dataset source distribution in the
data. Also colored by platform distribution (c) before and (d) after ComBat application.
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subtypes (Fig. 4.10). In most cases, subtypes are dataset and platform independent.

Grasso2012 is the only exception, however this is expected since the Grasso2012 dataset

was obtained from autopsy biopsies and the rest of the metastatic samples were live

biopsies. We hypothesize that this Grasso2012 cluster reflects true biology of samples

from a dead tissue, exhibiting different molecular signal than sampled from live patients.

Primary Subtype Predictor Applied to Metastatic Samples We trained a

multi–class elastic net model on the primary data using the glmnet package in R [102].

Models were trained to predict the primary cluster memberships. Success rates for each

class is high, and the balanced success rate (BSR) is 0.991 (Eq. 4.1).

n∑
i=1

tpri
posi

(4.1)

We next applied the trained primary subtype predictor to the metastatic sam-

ples, to find predicted primary cluster for metastatic samples. The ribbon plot in

Fig. 4.10 shows the distribution of predicted primary cluster within each metastatic

cluster. While the metastatic clusters do not correlate with predicted primary sub-

types, the majority of metastatic samples are predicted as primary subtype 2. We call

these the met-like primaries. Fig. 4.11 shows enrichment of clinical covariates with the

primary clusters. The met-like primaries have higher Gleason score, which suggests that

the met-like primaries have more aggressive disease
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Figure 4.10: Ribbon plot showing distribution of the predicted primary subtype labels
in each metastatic cluster, suggesting a stronger association between one of the primary
subtypes and the majority of the metastatic samples. Enrichment analysis of the clinical
phenotypes in the primary clusters suggests that this subtype is more aggressive.

60



Figure 4.11: Clinical enrichment in the primary clusters of (a) celluarity (sample tumor
purity) and (b) Gleason score (histologic appearance). Gleason scores of above 7 are
considered high risk. The met-like primaries (cluster 2) tend to have higher cellularity
and Gleason scores.

Figure 4.12: The top 20 PanCancer event signatures that overlap the most with the
met-like primaries signature.
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4.4.3 Results

4.4.3.1 Correlation with Existing Mutation Signatures

To determine if metastasis is driven by specific mutation(s), we compared our

aggressive primary prostate signature to mutation signatures from the TCGA Pancan12

dataset [39]. Unfortunately there is no mutation data for several of the prostate studies,

so we compare to expression signatures as an alternative. There was little correlation

between our signature and the 5,000 PanCan mutation signatures. Fig. 4.12 shows the

top 20 mutation signatures (columns) and the genes (rows) that overlap between those

signatures and our derived signature. This result support the hypothesis that metastatic

activity in prostate cancer is not driven by any specific mutation or set of mutations.

Next, we looked for relationships between our signature and predictors of clin-

ical attributes in cancer. We built 50 linear predictors of several clinical labels, then

computed Spearman rank correlation between those signatures and mRNA expression

of every sample in the primary prostate cancer cohort. For each set of correlations be-

tween a signature and the primary prostate samples we computed, there is enrichment

score for cluster 2 samples in the positive correlation tail. Three signatures were signifi-

cantly enriched: increased monocyte count, CACNA1A BRD4 NOTCH3 amplification,

and IDH1 mutation in leukemia.
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Figure 4.13: (b) Success rates per cluster and (a) balanced success rates for 100 tests of
randomly assigned clusters, retaining original cluster sizes.

4.4.3.2 Cluster Stability

Cluster sizes are irregular, and the cluster sizes can contribute to the classifier

performance. We randomly assign samples to the clusters 30 times, and calculate BSR

for each cluster for each of these random assignments. The scores from these help put

the scores from the true model in perspective.

I randomly assigned cluster labels to the samples, retaining original cluster

sizes, then used 10-fold cross validation to test the predictability of each ‘new’ cluster. I

repeated this test 100 times and calculated BSR for each. In general, the models trained

found no traction and simply assigned samples to the two largest clusters. Fig. 4.13

shows violin plots of the ranges of scores for each cluster, as well as balanced success

rates for each of the tests. To compare to the true clusters, I also trained a model

on the true cluster assignments using 10-fold cross validation (Fig. 4.13a). The true

cluster assignments has a much higher balanced success rate than the randomly assigned
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clusters. Furthermore, the randomly assigned clusters tend to perform well in one or

two classes at most.

4.4.3.3 Validation Using Matched Primary–Metastatic Samples

We validate our results on a held-out validation set; Erho et. al [91] analyzed

545 prostate cancer patients from the Mayo Clinic Registry, from 1987–2001. Median

followup for these patients was 17 years, as reported by Erho, and of these patients 212

were identified as early metastasis. Metastatic patients were grouped into no recurrence

and recurrence within 5 years of biochemical reccurence. Erho used a random forest to

classify patients into metastatic vs. not, and randomly split the data into training and

test sets. Of the control patients, 21 had clinical metastasis.

While microarray, patients in this dataset have matched primary and metastatic

tumors. This makes it ideal for validation of our metastatic detection signature. We

apply our trained predictor to this dataset, to determine if the metastatic samples are

also classified as met-like primaries. In order to validate our model using this data, we

first transform it to exist in the same space as our other datasets, then apply the trained

primary subtype predictor to the primary samples. We then compare the predicted pri-

mary subtypes to the actual final sample classes– ones that did not metastasize and

those that did (Fig. 4.16). Our approach improves over the original by using several

types of data, introducing cross-validation into the model, and by using an independent

dataset to validate the results. We also include many more samples, increasing the

power of the analysis.
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Metastatic Event
No Yes

1 249 156
Predicted Primary Cluster 2 31 20

3 0 4
4 53 32

Table 4.3: Predicted primary clusters are enriched in samples that metastasized early.

4.4.3.4 Differential Expression Networks

Fig. 4.14 shows several subnetworks of interest from PathMark [251] analysis of

the two more aggressive primary clusters versus the others. First, there is a proliferation-

related subnetwork that includes master regulators PLK1 and FOXM1. Enrichment of

cellularity (aka tumor purity) within the clusters (Fig. 4.11) shows that the met-like

primaries have higher cellularity. In some cases higher cellularity has been linked to

more aggressive cancers, however it has also been attributed to the ease of acquiring

samples in larger tumors. There is also a transcription regulation subnetwork focused

on MYB/MYC, which is also independently found by GSEA [316] and overlaps with

our predictor signature.

As stated above, GSEA results corroborate with PathMark, indicating more

aggressive disease in the met-like primaries. Several cancer pathways are up-regulated

in these samples, and several metastasis-linked pathways and genes are dysregulated

in both PathMark (several MMP genes are directly associated with metastasis) and

GSEA results. Specifically, several MMP genes are identified as differentially regulated

in the met-like primaries, and Fig. 4.15 shows GSEA-identified pathways linked to cancer
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Figure 4.14: PathMark–derived differential subnetworks, based on mRNA expression.
Red colors correspond to genes upregulated in the met-like primaries. Node sizes are
by edge count; Larger nodes have more edges.

Figure 4.15: Two results from GSEA using the trained primary subtype predictor
signatures.
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Figure 4.16: Spread of samples that metastasized early, compared to predicted primary
clusters.

metastasis.

4.4.4 Conclusions

Identifying which patients have aggressive cancer which will metastasize is vital

in treating the disease. Such knowledge enables doctors to aggressively treat the patients

early, and will give a better understanding of the survival prognosis of the patient, since

metastasis generally leads to patient death. Our analyses have identified a signature

for metastatic disease progression. The signature is validated in an external matched-

sample dataset. Prognostic markers such as this signature can be used to determine

the treatment regimen for new patients, and to help understand how aggressive that

patient’s disease is expected to be.
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4.5 Conclusions

All of the projects in this chapter integrate several genomics data types to

find biological drivers of the tumors. Using both integrated analysis and single data

type analysis provides distinct perspectives of the disease. For example, the signature

derived from PARADIGM MPM subtypes may either replace or supplement histology

in the near future. This signature is partially seen in individual platforms, whereas the

integrated view captures it much more completely. By combining the data we were able

to identify links between patients that was other difficult or impossible to see.
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Chapter 5

Multiple View Learning

5.1 Introduction

Cancer is a disease of information in DNA and its ‘digital age’ has dawned;

the plummeting cost of –omics technologies is transforming cancer research from a field

limited by data acquisition to one limited by data interpretation. Biomarkers and

machine learning classifiers are desperately needed for predicting outcomes, especially

those that make use of a battery of different measurement platforms to provide an

integrated view of the data.

While the number of genomic datasets have increased dramatically in recent

years, there are major complications in using them for inference because each dataset

is missing key features. Data platforms and methods often do not overlap between

studies, few of which have comprehensive clinical outcomes (e.g. survival, drug sensi-

tivity). At the same time many studies have samples that would be useful to analyses
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other than their original purpose, yet cannot be included because they lack outcome

data. Non-uniformity of large composite datasets, such as The Cancer Genome Atlas

(TCGA, cancergenome.nih.gov), leads many existing methods to ignore data that it is

not available for all samples.

Unfortunately the large number of variables compared to the few samples

available leads to many biologically irrelevant solutions [350]. Overfitting issues due

to small sample size can be minimized by using prior knowledge-driven feature selection

techniques. For example, genes operate in pathways (multi-protein complexes, signaling

cascades, transcriptional regulons, shared chromatin domains, etc), and gene modules

can be used effectively to summarize activity in individual genes [56]. Concomitantly,

several approaches that incorporate database-mined gene-gene interaction information

have shown promise for interpreting cancer genomics data and utilizing it to predict

outcomes [62, 151, 157, 162, 291]. Additionally, ensembles can be used to reduce error

caused by small sample sizes [279].

We present a multiple view learning framework that improves classifier ac-

curacy and interpretation by using multiple biological priors. Each prior generates a

specific view of the data and an ensemble of the views provides a more complete and

diverse understanding of the underlying biology. The framework ‘learns’ outcome labels

for unlabeled samples, thus including more of the data in the classifiers. It minimizes

overfitting caused by small sample sizes both by learning unlabeled samples and by in-

corporating prior knowledge. This also serves to improve interpretability of the classifier

results.
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5.2 System and methods

Many current machine learning classifiers train on a subset of samples contain-

ing all data [255], impute missing data, or train ensembles based on data availability

[86, 392], but are generally restricted to samples with the majority of the data for each

sample [192]. Multiview learning (MVL) trains a classifier on single or multiple data

platforms (hereafter referred to as a ‘view’), then constrains on the unlabeled samples.

MVL is a semi-supervised approach that learns missing patient outcome labels, allow-

ing use of all available labeled and unlabeled datasets. By doing this MVL can make

predictions on any patient regardless of data availability. This increases overall classifier

accuracy while also finding solutions that generalize to the entire population– which has

proven extremely difficult in such high-feature, low-sample problems [2, 138, 350].

Multiview learning has been used in bioinformatics problems; in prostate chem-

ical recurrence prediction [114], and in a recent DREAM competition [69] where several

competitors use forms of multiview learning to predict drug sensitivity. However, using

multiple kernels is not a true multiple-view approach when also using a biological prior

as many of the competitors did. While previous work has used multiple kernel learning

to combine different biological data types [275, 307], using a biological prior to break

data into kernels by, for example, pathways, is more similar to a single view classifier.

Another approach in the challenge uses a form of multiview learning, one that cannot

use samples with missing data, and furthermore it works by using Canonical Correla-

tion Analysis (CCA). While using CCA is appropriate in situations where views are
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highly correlated [53, 371], in biological problems the data is incredibly noisy and dif-

ferent biological perspectives of the data (e.g. immunologic response vs tissue–specific

gene interactions) are dissimilar, leading to low-correlated views. Furthermore, both

multiple kernel and CCA-based multiview methods do not gracefully handle missing

data [276, 376]. The MVL approach in this paper instead uses co-training, which both

uses samples with missing data and benefits from views without high correlation. This

method is a more flexible form of MVL that is also more tailored to biological problems.

This approach has several important advantages. First, it allows for the use

of different classification methods for each data type, capturing the strengths of each

data type and increasing flexibility in the framework. Second and third, it is ideal in

scenarios with missing data and views with divergent information content. Finally, co-

training combines predictions at a later stage in the algorithm, such that the views are

trained independently. This is a better scenario for ensemble learning, which as a rich

literature has shown, thrives when views are independent even if the accuracy of the

views is low [274, 279].

Co-training works by training separate classifiers for each view, making indi-

vidual predictions, and incorporating disagreement into the loss function. Each view

trains on the labeled data, then predicts labels for the common unlabeled set. High

confidence labels are passed as truth in the next iteration. Co-training methods iterate

until either convergence or some threshold is reached– a minimal change in label defini-

tion on the unlabeled samples, or a max number of iterations (for scenarios where the

views will never agree on these samples).
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After co-training, each view can be used as a standalone classifier that in-

corporates learning from on one or more data platforms (or feature transformations)

without relying solely on that data platform. Since view are trained in conjunction,

the trained models will incorporate the perspectives of all views. Thus we have some

measure of influence from all views when applying any of the classifiers to new data,

without requiring data for those views when making new predictions.

In some cases, a new sample may be missing all or most of the data types.

MVL is able to predict outcomes for this sample without retraining, by including only

those views for which there is sample data. For example, a sample with only expression

data would be predicted using only the expression–based views. Label confidence will be

much lower since there are no scores from the missing views, thus labels for samples with

missing data will be inferred in later iterations than those with complete data. Since

the MVL model was trained on the full set of data types there is still some influence

from the missing data. MVL model predictions are constructed such that the user does

not need to specify a new weighting for the view predictions. Thus, future predictions

are not constrained by available data.

5.2.1 Interpreted Views

Biological experiments of the past century have helped build new perspectives

of the underlying rules of biological processes. A plethora of databases have arisen

that focus on divergent perspectives. For example, regulation networks for all different

kinds of cell states provide information about the ways proteins influence each others
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activity. Comprehensive gene annotations make it possible to find connections between

distinct genes, e.g. shared motifs in non-coding gene sections or genes sharing the

same cell location. In a big science community effort, a competition for breast cancer

drug sensitivity predictions was recently conducted where the winning method used

multiview learning by integrating many biological priors [69]. In addition, multiple

recent studies show an overall correlation between the use of outside information and

method performance [116, 162, 385].

We create ‘interpreted’ views (described in Section 5.3.4), each of which incor-

porates one data type and one biological prior. Several priors are included with MVL,

as well as a feature transformation function that takes as input a data set and a prior,

and outputs features for that new view. Datasets such as the Cancer Cell Line Encyclo-

pedia (CCLE) [17] have information from multiple data types; copy number, mutation,

expression, and clinical/phenotypic covariates. Views can be built from each datatype,

although oftentimes there is a discrepancy in datatype performance. Combining the

expression data with different biological priors boosts the predictive power and creates

many semi-independent views, each with high prediction accuracy. Together, baseline

and interpreted views can be used to train an MVL model, one which pulls in multiple

prior knowledge databases. This minimizes reliance on user knowledge (poor fit priors

have minor effects on the final model due to low model accuracy), while allowing many

different perspectives to lend interpretatability.
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Figure 5.1: Introductory methods figure describing MVL. The MVL framework. This
figure shows two views being used in MVL. (a) Creation of the single views using
sample data and prior knowledge. (b) The learning process, where each view maximizes
prediction accuracy of the labeled samples, and unlabeled samples with high confidence
are added to the known sample set. This phase is an iterative process that continues
until no new sample labels are learned. (c) Models from the final iteration of MVL
training can be applied to new data either independently or using the MVL framework.

5.3 Algorithm

The semi-supervised nature of this MVL framework works by inferring outcome

labels from unlabeled data at each training iteration in order to improve the learning

process. Fig. 5.1 shows an overview of the MVL framework, where data ‘views’ are

first created from one or multiple data types, which can be combined with one or more

priors (Fig. 5.1(a)). While this example uses two views, the number of views used by the
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MVL framework is unlimited; we use up to 10 views at a time in our tests. Section 5.3.4

describes the views created in this project.

The second phase in MVL (Fig. 5.1(b)) simultaneously trains the views on

labeled data and jointly infers labels for unlabeled samples. Each view is trained to

maximize prediction accuracy on the labeled samples. Single views are then combined

in an ensemble to predict labels for the unlabeled samples; Labels with high confidence

predictions are then added to the existing known labels set. The training process con-

tinues until a convergence criterion is met: all labels have been learned, no new labels

have been learned in the last iteration, or a user–specified maximum iterations has been

reached.

After termination of the learning progress, the trained predictors can be used

independently or as an ensemble (Fig. 5.1(c)). In order to validate the learning process,

we develop a procedure called label-learning validation (LLV, Section 5.3.2, Fig. 5.2(c-

d)) which masks out labeled samples, then re-learns the masked labels. This process is

similar to cross-validation.

5.3.1 Implementation

There are 2 main inputs to the MVL algorithm: (1) binary outcome labels

(‘sensitive’ or ‘non-sensitive’) of the labeled samples and (2) the data view objects.

View objects contain the feature matrix, learning algorithm type, optimized parameters

for the algorithm (optional), and MVL weight for that view (optional).
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w(a) = −log(1− a− 0.5

0.5
) (5.1)

In each iteration the views are first trained on the labeled data, then used

to predict the unlabeled data. The vote from each view is weighted either by a user-

provided value or by AUC. Weights can be static or updated at each iteration, as

specified by the user. Accuracy is rescaled from [0.5, 1] to [0, 1] and log-scaled (Eq. 5.1,

where a =accuracy and w =weight). Views with an accuracy lower than 0.5 are given a

weight of 0, since it indicates worse than random predictions. Predicted label confidence

for each sample is then derived from the weighted votes sum.

λ
∑
v∈V

w(av) (5.2)

At every iteration, MVL updates the confidence threshold defining whether or

not a predicted label is added to the known label set. Votes for each sample are summed

up separately for the two possible class labels. The maximum sum over all samples

(max.vote) defines the threshold a sample has to meet in order to be included in the

training data, thus assuring that only the most confident predictions are chosen. In order

to favor missing data over a contrary prediction, we define a second threshold based

on the minimal contrary prediction vote among all samples that meet the max.vote

requirement (min.max.vote). Samples meeting both requirements are added to the

labeled data. The training iteration procedure stops when either the max.vote value

drops below a user-defined threshold (λ = majority.threshold) or no unlabeled samples
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remain. By default λ is 75% of the maximal reachable voting value (Eq. 5.2).

5.3.2 Label-learning Validation

To validate the label learning process we create a function for k-fold validation

of the labeled data. Similar to cross-fold validation approaches, label-learning validation

(LLV) masks a subset of the labels then trains the model using the remaining labeled

samples. Masked samples are treated as unlabeled data . MVL then learns labels for the

masked samples. LLV compares the learned labels to the (masked) true labels. Views

are trained using the unlabeled data and the (k − 1) folds of labeled samples. After

performing all k folds, labeled samples have an additional learned label (except in cases

where it could not be learned either because of strong disagreement between the views

or extensively missing data).

Fig. 5.2(c-d) shows a label-learning visualization of PD-0325901. In this visu-

alization, MVL has correctly relearned the majority of labels. This example may have

benefited from stopping at at earlier iteration of MVL, since the majority of incorrectly

learned labels are from later iterations. A user parameter sets the maximum number of

MVL iterations and LLV is a useful tool for choosing an appropriate cutoff. Fig. 5.2(d)

also shows that labels are not learned linearly. LLV highlights MVL confidence in the

predicted labels, and also that MVL does not force a label on samples. Fig. A.19 shows

the LLV visualization for each of the 24 CCLE drugs. For each drug, MVL successfully

learns the majority of sample labels correctly. The learning processes differs between

drugs and so we postulate that there is no specific number of iterations that MVL should
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run. By default it runs for 100 iterations. However, by using LLV a user can see how

MVL performs on the labeled data and can then extrapolate its performance on the full

(labeled and unlabeled) data.

5.3.3 Baseline Views

‘Baseline’ views do not use prior knowledge. The four baseline views in this

paper are derived from platform-specific data; Copy number, mutation, expression, and

clinical/phenotypic. The mutations view contains a binary mutation feature vector for

each gene, where ‘1’ represents presence a non-silent mutation in that gene within in

a given cell line. Data in the expression view is reduced to the 5,000 genes with the

highest variance over all cell lines, in essence the 5,000 most frequently mutated genes,

since mutation data is so sparse. Similarly the CNV data view includes the 5,000 most

variable genes by copy number. Note that in the example, PD-0235901, in Fig. 5.2(b),

3 of the baseline views are top performers and used in the MVL models.

The ‘clinical’ view is a collection of binary features based on tissue, histologic

type, and gender. Additionally, it includes two categorical features representing the

genomic instability of the cancer: The number of mutated genes, and the sum over all

absolute CNV values in each cell line. These are grouped into ‘low’, ‘medium’, and

‘high’ instability.
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Figure 5.2: An example MVL run on the drug PD-0325901. (a) Baseline view AUC
for each drug in CCLE, with the PD-0325901 sensitivity rank plot showing the binary
labels, (b) AUC for PD-0325901 sensitivity predictions for each view, colored by view
type (top 10 views are used in (c-d)), (c) Label-learning validation plots, top to bottom:
the accuracy in the labeled set at each iteration for two types of MVL models and for
each view, the number of samples for which labels have been learned, and the amount
of disagreement in the label scores. (d) visualization of LLV showing confidence of
predictions for each cell line at every iteration. (c-d) We added a dashed vertical line to
show a likely user-defined stopping point for the method, where the overall disagreement
in predictions between the views has started to increase and before the model AUC starts
to significantly decrease.
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5.3.4 Interpreted Views

Genes operate in pathways (multi-protein complexes, signaling cascades, tran-

scriptional regulons, shared chromatin domains, etc), and gene modules can be used

to summarize activity in groups of genes [56]. Concomitantly, several approaches that

incorporate database-mined gene-gene interaction information have shown promise for

interpreting cancer genomics data and utilizing it to predict outcomes [62, 151, 291].

We use these to add prior knowledge-based views, called ‘interpreted’ views.

Using multiple views both helps improve accuracy and, if using a relevant

biological prior, can help with downstream analysis and interpretation. Views can be

data platform specific (ex. expression), integrated data platforms (ex. both expression

and copy number), and can use a biological prior to transform the data platform features

into features based on that prior. View signatures can be combined to help identify new

potential drug targets. Furthermore, each view brings in a distinct biological perspective

and, when combined with expert knowledge, can help guide treatment decisions. MVL

has the flexibility to add and remove biological priors easily, and builds on current state-

of-the-art methods by integrating more than one prior and machine learning method.

Prior knowledge databases mitigate overfitting issues and to help with down-

stream analyses. Furthermore, incorporating several biological priors adds expert knowl-

edge to the learning process. We generate feature sets based on expression data that

has been transformed using one of several prominent biological priors.
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5.3.4.1 Biologically-Driven Gene Network Views

Pathway–based predictors are often easier to interpret and more descriptive

of the processes being disrupted in cancer. We include several biologically-driven views

to capture these underlying structures. Users can create new views using the MVL

function to calculate gene set values, which takes as input the data, prior knowledge

information, and summary statistic. We test mean, median, and kurtosis of gene sets

over many different prior knowledge databases. Views are composed of each of these

values for each gene set.

Spatial form of the genome and chromatin structure are closely tied to biolog-

ical function and, as such we create a view based on physical structural proximity. A

recent study found that chromatin interaction domains are both highly stable and have

few boundaries that differ between cell types [81]. It also deconvolves tissue-specific

noise, which have been strongly correlated with expression [148, 297, 308].

We use the Molecular Signatures Database (MSigDB) [214] to create a pathway-

specific view to help elucidate pathways dysregulated in cancers. Inclusion of the Drug-

Gene Interaction database [126] clarifies the effects of mutations on the response of cell

lines to chemical agents. Both of these databases provide insights into the function of

drug sensitivity, and knowing which genes a drug interacts with helps focus attention

to that subset of genes and their interactors. The use of pathways as gene sets has been

shown [330] to be effective at increasing interpretability of the systemic changes in the

system by the cancer, thus motivating their use as a view.
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Additionally, master regulator analysis provides a view that summarizes ag-

gregate expression of a transcription factor’s downstream targets, which has been shown

to identify key transcriptional regulators driving the cancer phenotype [207].

5.3.4.2 Biological Gene Sets

Biological gene sets can be used as priors, where a subset of the data (e.g. a

list of chromatin–modifying genes) is used to create a new MVL view. In this paper, the

gene set views are built with expression data. Gene sets used in this paper are described

in detail in Section A.2.2. We also created these views with CNV data, however they

are excluded due to poor predictive power (average AUC 0.53).

5.4 Data

The Cancer Cell Line Encyclopedia (CCLE, www.broadinstitute.org/ccle/home)

contains genomic, pharmacological, clinical, and other annotation data for about 1,000

cancer cell lines [17] (Section A.2.3). At time of download there was drug sensitivity

data for approximately 500 cell lines and 24 drugs. Drug response was converted to a

binary label, in order to transform the regression problem into a classification problem.

For each compound, cell lines were divided in quartiles ranked by ActArea; The bottom

25% are assigned to the ‘non-sensitive’ class and the top 25% to the ‘sensitive’ class.

Cell lines lying in the middle are marked with ‘intermediate’ and considered unlabeled

in this analysis (see Fig. 5.2(a) and Fig. A.15).
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5.5 Discussion

5.5.1 Experiments

We ran MVL using 3, 5, 7, and 10 views for each of the 24 CCLE drugs.

Fig. 5.3 shows the highest accuracy MVL run as well as each of the single view scores.

In almost all cases MVL significantly outperforms single view models, most notably

the MEK inhibitors AZD6244 and PD-0325901, and HDAC inhibitor Panobinostat.

Furthermore, within 10 iterations most MVL runs added 90% or more of the unlabeled

cell lines to the labeled set, effectively doubling the number of samples on which the

models trained. We look more closely at the results from the best overall performing

MVL model, PD-0325901, in Section 5.5.2, as well as important features from each of

the models.

Fig. 5.2(d) and Fig. A.19 show LLV for each of the 24 drugs in CCLE. While

most of the drug models learn labels correctly, cases with noisy labels (e.g. no/few

sensitive cell lines) tend to learn new labels incorrectly. Over many iterations this can

lead to a model where the majority of labels are learned incorrectly, such as Nutlin-3

(see Fig. A.19).

5.5.2 Results

PD-0325901 has the highest MVL scores of all experiments in this paper,

with near–perfect accuracy.. It was initially tested in papillary thyroid carcinoma cell

lines [144] and is known to be especially effective in cell lines with BRAF mutations.
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Figure 5.3: MVL results. Boxplot showing performance (in AUC) sorted by MVL score,
of all single views and the best MVL score. MVL score for each drug is the highest from
the 3,5,7, and 10 view MVL runs.

Since these are frequent in the CCLE data, the high accuracy of the single view models

is expected. However, all MVL tests in this drug have a significantly higher AUC than

single view models. A more in depth look at the features forming these models (Fig. 5.2

and Fig. 5.5) shows that there is more than simply a mutation plus drug combination

that affects sensitivity.

Part of the success of the MVL framework is in the ensemble learning. It is

well established that combining multiple weak but independent models will result in

much higher model accuracy [192, 279]. The way in which models are combined is a key

part of an ensemble; We tested several approaches. Initially we used a predetermined

weighting where each view contributed to the final prediction, however this made the

85



model sensitive to information-poor views. For the analyses in this paper we used AUC-

weighted voting. This allows the user to include a large number of near random views,

in the hope that they will become more informative as more cell lines are added to the

training set, and so that the user does not have to perform a pre-processing step of

selecting views. Furthermore the results from these models can help with downstream

interpretation.

Similarly, previous work has shown that using multiple biological priors can

help minimize the ever-present noise in biological data [62, 151, 157, 291, 298, 347]. By

using an ensemble of different biological priors we both improve the model accuracy and

help minimize downstream analysis required. Since the user is already provided with

pathways, functions, and genes associated with the predicted outcome, there is no need

to re-identify them.

In coming years, CRISPR knockout screens have helped to more fully map

individual interactions between genes. Cell lines with induced mutations in possible drug

targets will open up a new world of targetable drugs without requiring living patients

with those mutations. This will generate a huge data resource that is patient agnostic

but that would dramatically change the way that we determine patient treatment.

One drug, LBW242, had almost random scores in all models (including MVL,

Fig. 5.3). However this is unusual; In other drugs with near random single view model

scores, for example PHA-665752 and Nutlin-3, the MVL models have much higher

accuracy. LBW242 scores are likely low because there are few CCLE cell lines that are

sensitive to that drug, meaning that the binary class labels are not reflective of the data.
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It’s also possible that the metric for drug sensitivity is ineffective. Traditional methods

to quantify sensitivity are dependent on population growth and thus slow-growing cell

lines may appear to be resistant to all drugs [135]. In future work we would like to use

multiple measures to calculate drug sensitivity in each of the drugs.

These results are consistent with previous findings; sensitivity to some com-

pounds is easier to predict than others [69]. Fig. A.16 shows an overview of the prediction

accuracy of single data views. The two MEK inhibitors (PD-0325901, AZD6244) and

Panobinostat have higher overall accuracy in the single view models. In Panobinostat,

the ‘Chromatin Modifiers’ and ‘Positional Gene Set’ views have higher single view accu-

racy than the baseline expression view, which suggests that there is an epigenetic effect

from chromatin modifiers. We postulate that a small region of the genome has been

unwound, lending sensitivity to Panobinostat.

5.5.3 Tissue-Specific MVL

By restricting to one tissue we can identify tissue–specific drug sensitivity

factors. While this reduces the number of samples used in analysis, it can help uncover

signals that are only present in the given tissue. Fig. A.17 shows results from models

trained on single tissue types. Unfortunately most tissues have too few samples to run

robust analysis, and so we include lung and blood specific analysis. Since the number

of cell lines influences model AUC, we label the number of samples included in each

analysis as well as predictor and view types. In most cases there are fewer than 50

labeled cell lines in the tissue-specific models (Fig. 5.4).
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Figure 5.4: Cross-validated AUC of single views with their optimized parameter settings.
This compares the tissue–specific setting using blood cancer cell lines to the complete
CCLE on AEW541 and AZD6244.

Blood MVL (180 cell lines) had less success than experiments on the full CCLE

data. Most of the drug models converged within 10 iterations. Despite this, the single

view accuracies before LLV are higher than the full data (Fig. 5.4 and Fig. A.20). This

is in part due to the number of samples (see Fig. A.17). AZD6244 (MEK inhibitor) and

AEW541 (Tyrosine Kinase inhibitor) especially perform well in the blood data.

5.5.4 Pan-Tissue MVL

The clinical view has the highest performance of all the baseline views in most

drugs, with AUC ranging from 0.6 to 0.8. In some drugs (e.g. MEK inhibitors) the

mutation view is effective. None of the CNV views have high AUC and thus are excluded

from the rest of analysis, except as the ‘aggregated copy number changes’ feature in the

Clinical view.

Interpreted views, however, often outperform the clinical view. There are many

examples of a biological prior view outperforming the data-specific view, e.g. Metabolic
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Enzymes, Drug Targets, and Chromatin Modifying Enzymes are more useful for La-

patinib sensitivity prediction than the Expression predictor. The Drug Target Gene

Set Hallmark predictor outperforms data-specific views in Irinotecan and Panobinostat

sensitivity predictions. Such examples can be found for all compounds except for the

MEK inhibitors, for which the mutation predictor is always the top performer.

In general, views incorporating expression data seem to help in many cases

(Fig. A.16), whereas the views using mutation data are comparable to a random pre-

diction. These views were built by measuring mutation enrichment in the different

collections of gene sets and do not capture drug sensitivity information. The Drug

Target Mutation predictor is more accurate compared to the simple Annotated Target

Mutation predictor, suggesting that it overcomes limitations identified in Section A.2.1.

In all drugs except AZD6244, the Drug Target Expression view is more accurate

than the Drug Target Mutation view. This might be due to the expression of a gene

being closer to biological effects in the cell than a mutation, which can only translate into

an effect if the resulting altered protein is expressed or the expression rate is influenced

by the mutation. Overall, mutation-based views have low accuracy despite mutations

being key to drug sensitivity, indicating that other representations of this data should

be explored in future work, perhaps using a diffusion kernel in a support vector machine

model.

The Drug Target Gene Set views created from Molecular Signatures Database

(MSigDB) gene set collections (Fig. A.16) perform well overall, and especially on Irinote-

can, Topotecan, and Panobinostat. For most compounds the Drug Target Gene Set
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Hallmark is more accurate compared to Oncogenic and Immunologic. A possible rea-

son is that these gene sets are from the Hallmark collection; They are re-occurring,

high reliability gene sets built from combinations of other gene collections. Therefore,

the similar performance could be due to overlap in the gene sets [184]. A future im-

provement to MVL would be to test for, and subsequently remove, highly correlated

views before running label-learning. In addition to the MSigDB gene set views, master

regulator-based predictors via Virtual Inference of Protein-activity by Enriched Regulon

analysis (Viper) [4, 5] were tested but are not among the top performing ones for any

compound.

VIPER performance is much higher in the tissue–specific MVL runs than in

the full CCLE MVL runs (Figs. 5.4, A.20). This could be caused by our use of a generic

regulon as VIPER input rather than a tissue–specific one.

5.5.5 Key Features from MVL Models

Each machine learning algorithm used by an MVL view has its own internal

feature selection. We extracted features from each model to find the most informative

features. Fig. 5.5 shows highly ranked features from the top 10 views for each drug,

after MVL training. We normalized feature weights across models and select the top 10

features per view. Many of the highly ranked features are known oncogenes, for example

ETV4 is known to be fused with TMPRSS2 in prostate cancer gene fusions [210, 333,

359]. However there are less than 10 prostate cell lines in CCLE. ETV4 was also

previously found to be correlated with MEK inhibitor sensitivity [210].
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All of the genes labeled in Fig. 5.5 are all related to at least one type of

cancer. CDT1, DUSP6, SPRY2, and ETV4, are associated with many types of cancers

and are involved in at least one key cancer-related pathway [106]. DUSP6 negatively

regulates MAPK family genes, which are associated with cell proliferation [169, 206].

Deactivating this gene allows MAPK genes to be over-expressed and MAPK pathway

over-expression has been associated with aggressive disease [37, 39, 40, 84]. SPRY2,

another kinase inhibitor, is associated with many forms of cancer including prostate. It

is also associated with signaling pathways, several microRNAs associated with cancer,

and glioblastoma signaling pathways [33, 42]. Lactate Dehydrogenase B (LDHB) has the

largest negative correlation to AZD6244 sensitivity. It a known oncogene for different

cancer types [208, 395] especially in combination with KRAS amplification [235]. The

Raf-MEK-ERK pathway targeted by AZD6244 is also suspected to be involved in DNA

damage response [370].

CDT1 has large weights in several single view models after MVL training, and

is associated with the RB pathway (implicated in aggressive cancers), as well as with

genomic instability [263, 411]. DUSP6, ETV4, and RNF125 are associated with metasta-

sis [396]. RNF125 inhibits several receptor tyrosine kinase signaling proteins [141, 180].

ARHGAP19 is associated with cell migration, differentiation, and proliferation [226].

Finally, CDCA7 is a c-Myc responsive gene that behaves as a direct c-Myc target gene

and is linked to breast cancer [240]. Overexpression of CDCA7 is involved in lym-

phoblastoid cell transformation [129].
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5.6 Conclusions

Features extracted from MVL-trained models are frequently known oncogenes.

Together with the interpreted view features (e.g. RB pathway activation), they reiterate

known cancer models. By combining extracted features from each of the MVL model

views, the user is provided a clearer picture of the key facets of sensitivity to each drug.

Furthermore, in almost every instance the MVL models outperform the single views.

In all cases MVL AUC is higher than the majority of single views, often by more than

one standard deviation of the expected scores. Thus it makes sense to use MVL for

training, since it never hurts performance and is likely to significantly increase overall

performance. MVL also returns several sets of features independently, which can be

used in a variety of downstream analysis.

Several cell lines are never learned by the MVL label-learning process. These

may be of more interest in future studies since they are likely very different even in

the interpreted view feature spaces. Perhaps they are an unusual form of cancer with

distinctly different mutations. Outlier detection methods could help identify the unique

aspects of these cell lines.

Label-learning validation (Fig. 5.2(c-d)) is effective in many of the drugs. A

few cases, such as Nutlin-3 (Fig. A.19), have little success with learning new labels,

which as previously mentioned are likely due to the lack of CCLE cell lines sensitive to

the drug in question. Overall, LLV shows the effectiveness of bringing in new labels,

improves model stability by nearly doubling the number of cell lines included in analysis,
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Figure 5.5: (a) Top 10 features for each view in each drug, with weights rescaled to be
[0,1.5] and (b) GeneMania [368] plot showing an interaction network for the PD-0325901
MVL features, with the known drug targets highlighted in purple.

and helps to identify outlier cell lines.

MVL includes both unlabeled samples and missing data. When compared to

a traditional ensemble and to single view predictors, MVL has often higher prediction

accuracy (Fig. 5.3). Furthermore, the biological perspectives innately provided in the

interpreted views make analysis of the models easier. Label-learning validation shows

that, in most cases, labels are learned correctly and improve model performance. This

also helps identify outlier samples in the unlabeled data, since the MVL model will

return a vector of ‘unlearnable’ samples which can then be more closely analyzed. The

MVL models have higher accuracy than the majority of single views, and are able to

incorporate significantly more cell lines. Combined with the ability to highlight outlier

cell lines (not learned during label-learning), and the greater interpretability provided

by the use of many biological priors, makes MVL an effective choice.
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5.7 Identifying Patients with Rare Histology in a Com-

bined Treatment–Resistant Prostate Cancer Clinical

Trial

We participate in a prostate cancer project through Stand Up to Cancer

(SU2C, www.standup2cancer.org). Reduction of testosterone can slow tumor progession

in some patients diagnosed with prostate cancer, however in some cases patients do not

respond as expected. These are called treatment–resistant prostate cancer (TRPC). To

investigate this more, we collaborated with several West coast labs to treat and analyze

a cohort of TRPC patients. New treatment approaches are developed by scientists such

as myself, then presented to the medical team who use the new information to guide

patient treatment. In order to join this study, patients must no longer be responding

to current treatment options.

While the prostate cancer dream teams are split by the two coasts (the East

Coast Dream Team (ECDT) and West Coast Dream Team (WCDT)) each with a dif-

ferent cohort of patients and researchers, there is collaboration between the groups. I

was asked to perform joint analysis on the two datasets. The goal was to identify a

rare subtype of patients within the ECDT samples, which do not yet have histology

calls. WCDT has been working to subtype their patients and has identified a new rare

subtype.

There are 235 samples in the combined dataset. We have training data for 46

samples; 10 small cell and 36 adenocarcinomas. There are also labels for some mixed
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histology samples, which we use in later validation.

I ran ComBat [167] on the combined WCDT&ECDT data, and used the com-

bined data for downstream analysis. With this, I trained the 9 single views described in

Table 5.1. For each view I trained the model 100 times using the same folds for crossfold

validation. The three views with higher than 0.80 AUC on average were used to train

the MVL model: ‘Hallmark Genes’, ‘Expr5k’, and ‘Chromatin–Modifying Enzymes’.

MVL trained for 8 iterations with the user–specified parameter for label con-

fidence set to 70%. Initial training set included 10 small cell samples and 36 adeno

samples. After training, MVL had learned 10 additional small cell samples and 178

adeno, for a total of 214 adeno samples and 20 small cell. Only 1 sample, TP2061 from

the ECDT data, remained unlabeled. Furthermore, after label learning all of the train-

ing samples are correctly predicted, whereas beforehand there is 1 mislabeled sample

(Figure 5.1).

Of note, I included samples with mixed histology in the unlabeled sample set

(Figure 5.7). Two of these MVL predicts to be small cell; DTB-120 is Adeno&IAC, and

DTB-040 is IAC&Small Cell. We do not know the histology calls for the other eight

samples but hope to validate them in the near future.

An MVL test using all views was unable to identify more small cell samples,

likely because of the small training set size and high label–confidence threshold. A

lower threshold test recapitulated some of the small cell predictions in the 3 view test.

However, these tests all converged in a few iterations.
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Figure 5.6: Scores for the training set labels before and after MVL label learning.

Figure 5.7: MVL was not given labels for mixed histology samples. Several are small
cell mixed samples, and are predicted small cell by MVL.
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Table 5.1: Single views considered for the combined run of ECDT&WCDT data. AUC
is average calculated from 100 tests each with a unique sets of folds. The same fold
sets were used on all views. Views with greater than 0.8 AUC are included in the MVL
experiments. Type labeled as ‘s’ for summary and ‘gs’ for geneset.

View Name Type # Features Origin AUC

Hallmark Genes s 50 MSigDB 0.87
Expr5k gs 5,000 Varying Genes 0.84
Chrom. Mod. Enzymes gs 65 Allis et al 2007 0.81
Oncogenic Genes s 189 MSigDB 0.79
Positional Gene Sets s 343 MSigDB 0.77
Druggable Genes gs 4,963 DrugBank,DGIdb,TTD 0.75
Trans. Factor Targets s 615 MSigDB 0.72
Motif Gene Sets s 836 MSigDB 0.70
Immunological Gene Sets s 1,910 MSigDB 0.62
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Chapter 6

Conclusions

Cancer is a complex set of diseases, questions about which may appear simple

yet be incredibly difficult to answer. And yet, it is one of the most common causes

of death in the US [10]. Someday, when we understand much more about the human

body, these questions will be easier to answer. Until then computational techniques

are absolutely essential. As Carl Zimmer once said, “Early telescopes weren’t terribly

accurate, either, and yet they still allowed astronomers to discover new planets, galaxies,

and even the expansion of the universe.”

Just as radio, infrared and ultraviolet telescopes provided new perspectives

on the universe that were not available from the classic optical telescopes. So too,

new techniques allow us to measure what we do understand about cancer, and I hope

that the work in this dissertation has helped us to understand more. I worked to

add new types of data to our analyses; Imaging data is often ignored because it is

so large and requires yet another type of medical expertise. Once we were able to
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use this data well, I combined it with more traditional data types to analyze tumors

through a integrated–data perspective. Finally, I combined together all of these data

and develop a semi–supervised prediction framework which uses prior knowledge when

making decisions. By doing this, I help make it easier to repurpose genomic data.

Each of these methods has both found new results and reiterated findings from the

literature. For example, HOCUS subtypes are biologically- and treatment-relevant, and

are undetected by equivalent approaches using standard clustering.

Such findings can inspire new biological questions. While each publication may

seem to provide only a tiny change in our understanding of the world, together we have

created incredible change.
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by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity.

Genome research, 21(10):1757–67, October 2011.

[309] Xiaomu Song and Alice M Wyrwicz. Unsupervised spatiotemporal fMRI data

analysis using support vector machines. NeuroImage, 47(1):204–12, August 2009.

[310] Thierry Soussi. The tp53 gene network in a postgenomic era. Human mutation,

35(6):641–642, 2014.

[311] Karen Sparck Jones. A statistical interpretation of term specificity and its appli-

cation in retrieval. Journal of documentation, 28(1):11–21, 1972.

[312] Nora K Speicher and Nico Pfeifer. Integrating different data types by regularized

unsupervised multiple kernel learning with application to cancer subtype discov-

ery. In Bioinformatics, volume 31, pages i268–i275, 2015.

[313] Karthik Sridharan and SM Kakade. An Information Theoretic Framework for

Multi-view Learning. COLT, 2008.

150



[314] Andreas M Stark, Julia van de Bergh, Jürgen Hedderich, H Maximilian Mehdorn,

and Arya Nabavi. Glioblastoma: clinical characteristics, prognostic factors and

survival in 492 patients. Clinical neurology and neurosurgery, 114(7):840–5,

September 2012.

[315] Cynthia M Stonnington, Carlton Chu, Stefan Klöppel, Clifford R Jack, John
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Appendix A

Some Ancillary Stuff

A.1 Supplement for: HOCUS: Higher-Order Correlations

to Uncover Subtypes

A.1.1 Processing the Data

HOCUS can also be improved by filtering the data. We explore filtering MR

image data. Mutations and copy number data may benefit from filtering, for example

excluding patients with more than 200 mutations as is often done in TCGA analysis.

Removing singleton gene mutations would also be beneficial, since a friend-less gene

provides little insight as to the mutational network structure. Even without filtering,

HOCUS applies well to mutation data as well as MR image data.

MR images required high levels of filtering (Fig. A.7) to mask out the non-

brain regions of the images since brains have slightly different shapes and also because

tumor appears in only white tissue, not grey. Similarly, many genes are mutated in only
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1 sample in a cohort, which makes them difficult to use as a social connection; they are

essentially friendless and can never contribute to building similarities between pairs of

patients. Eliminating them would reduce similarity score inflation.

A.1.2 Imaging

A.1.2.1 MR Image Preprocessing

Size of the MR images is prohibitive to analysis. We filtered the MR images

to remove non-informative voxels prior to clustering. Because GBM occurs primarily in

the white matter of the brain, most voxels elsewhere (ex. gray matter) do not contain

tumor. By filtering out voxel locations in which no patients have GBM we eliminate

80% of the voxels without losing any information.

After this step 1 million voxels per sample remain, a large number of features

that is impractical for use in most clustering algorithms. Especially since we have so few

samples, we add another step to the filtering. Voxels that have little variation across

the cohort – usually those in which only a few patients had tumors that overlapped the

voxel – are uninformative for clustering patients into subtypes. Retaining only voxels

having a minimum frequency of tumor occurrences across the cohort (Eq. A.1) results

in a set of voxels with a spectrum of tumor event frequencies. We measured in units of

tumor volume loss (Fig. A.7).

We denoise the voxel data by applying a tumor threshold filter. For each

threshold, voxels having fewer tumor events than the threshold are masked from the

data. M is the samples by voxels matrix, D is the denoised matrix. x and y are the
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row and column identifiers and i is the specified threshold.

Dx,y =


Mx,y, if

∑
My ≥ 1

0, otherwise

(A.1)

We calculate tumor volume loss at each threshold, for sample x. X is the

vector of voxels (binary values) and n is the length of the voxel vector.

log10
∑

n
i=1Xi == 1 (A.2)

A minimum threshold of 15 tumor occurrences preserved voxels with an en-

richment for high variability (high entropy) that would be informative for subtyping

patients. Restricting to these voxels provided sufficient data for most of the patients

in the cohort (Fig. A.7) and did not seem to bias the set around any particular subset

of tumors. Tumor voxels removed by this threshold are those that buttress the most

dense tumor regions. By removing these voxels we minimize relationships defined by

the uncommon tumor regions– in most patients these will be completely non-tumor,

inflating the patient-patient similarity scores. This also forces the clustering methods

to focus on the core of common tumor regions, which are of more interest in this study.

A.1.2.2 2nd-Order HOCUS GBM Imaging– Location-Finding

While appearing to be symmetric, clusters of patients on either side of the brain

(Fig. A.8(a)), clusters 4 and 5 are distinct from 3 in that there are 2 focal points of the

tumors. Cluster 3 tumors show mid-region focus on the right side of the brain, whereas
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clusters 4 and 5 split into 2 clusters on the left side. Tumor focal points of the patient

groups are on the edges of that region– cluster 5 patients have tumor higher in the brain

whereas cluster 4 patients have tumor much lower and closer to the base of the skull.

Thus we do not see symmetry in tumor growth based on brain hemisphere. Despite close

physical proximity, clusters 4 and 5 have wildly different survival prognoses– cluster 5

having a long projected survival whereas clusters 3 and 4 have the worst in the cohort

(Fig. A.8(d)).

In previous works, Jain et al [160] and Liu et al [218] find a correlation be-

tween volume of tumor in MR images and patient survival. Our data shows a similar

trend. To illustrate this we divided the tumors groups based on tumor volume (Sup-

plemental Fig. A.9(a)), finding poor prognosis for large tumors. HOCUS clusters show

larger separation in survival than the volume-based groups (Supplemental Table A.2),

indicating that tumor volume is one of many vital components of the image data. Fur-

thermore, there is no distinction in survival separation between tumors grouped by the

expert annotations of anatomic location (p-value 0.596, Fig. A.10). HOCUS clusters

span multiple locations specified by expert anatomic annotations.

There is little enrichment in HOCUS clusters of age, race, ethnicity, tumor sta-

tus, gender, or surgical resection (Supplemental Table A.2). These are also independent

of tumor volume. However, the clinical marker denoting ability of self-care, Karnof-

sky Performance Score, is enriched in first-order (direct comparison between samples)

HOCUS clusters. First-order clusters are heavily volume-dependent.
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A.1.2.3 Alternative Similarity Metrics

We tested alternative similarity metrics on the MR Imaging data– voxel-

frequency scaled, Jaccard similarity, and tumor volume scaled (Supplemental Table A.3,

Fig. A.11). Of these, scaling Hamming similarity by the volumes of the two tumors being

compared led to inflated similarity scores of the same values which could not be clus-

tered into meaningful groups. Voxel-frequency scaled clusters appeared to negate the

volume-dependence of Hamming HOCUS, however it ignores negative matches (voxels

where neither patient had tumor) and thus loses the anatomic dependence.

We selected voxel-frequency weighting because clustering using Hamming sim-

ilarities can to build a cluster of small volume tumors, without appropriate filtering.

To avoid this, we add weighting to the voxel matching, using term (aka voxel) fre-

quency [311] such that in addition to summing the number of matched voxels, we scale

the weight of the matches by the relative frequency of tumor in that voxel within the

cohort. The similarity metric now also ignores tumor-free voxels when doing patient-

patient comparisons, greatly reducing the number of voxels compared.

The two solutions are nearly identical except in two respects. First, voxel-

frequency HOCUS disperses the Hamming HOCUS small-tumor cluster into the other

4 clusters. Second, it creates a new cluster with the 3 samples that have no visible

tumor in the post-processed tumor data. Voxel-frequency clusters are still correlated

with tumor volume and lose the location-dependence of the Hamming HOCUS clusters

(Fig. A.1).
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Figure A.1: Alternative similarity metrics used to compare patients. (a) P-values of
survival differences between clusters for each similarity metric over a range of clusters,
(b) tumor volumes of second-order TFIDF clusters, (c) molecular subtypes within each
second-order TFIDF cluster. (d) Tumors volumes of Jaccard clusters, (e) barplot of
molecular subtypes by Jaccard cluster, (d) brain images of Jaccard clusters.
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Jaccard similarity is often used in analyzing social networks. Using this metric,

HOCUS finds 5 clusters that are volume dependent and molecular subtype independent

clusters (Fig. A.1). Survival separation is comparable to the Hamming HOCUS clusters,

however the most different (and best surviving) cluster is composed mostly of small

tumors.

Supplementary Table A.3 shows the correlations between each similarity metric

clustering solution and tumor volume, molecular subtype, and survival. Equations for

calculating each similarity metric are also in this table. Figure A.11 shows patient

cluster membership changes between all clustering solutions.

A.1.3 Genomics

A.1.3.1 HOCUS of TCGA BRCA Mutations

Because of their demonstrated clinical import, BRCA subtypes are often de-

fined using gene expression data. It has been shown that clusters based on mRNA

transcription data readily identify luminal-like from the more aggressive basal-like tu-

mors. While luminal tumors tend to be associated with the expression and presentation

of the estrogen receptor, the basals tend to be less differentiated and lack this and other

hormone receptors (such as progesterone receptor).

The BRCA subtypes identified by the second order HOCUS algorithm are dis-

tinct from the more established expression-based subtypes (e.g. basals and luminals).

However, since the mutation-based clusters provide independent information for pre-

dicting patient survival in a multivariate analysis (P < 5.428232e − 17), it is critical
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Figure A.2: Visualization of association between mutation-based and outcome-based
similarity measures for TCGA cohorts: a) OV, b) BLCA, and c) GBM. Data was re-
stricted to patients with a death event, then pairwise correlations were calculated in
each feature space (pearson, 1st-, 2nd-, 3rd-order HOCUS) as well as difference in the
length of survival, in days, between each pair of patients. A series of plots, one for each
metric (pearson correlation, hamming similarity, or higher-order) for three different tu-
mor analyses. In each plot, the joint density is shown in which the distribution of all
sample pairs are depicted as density maps. On the left-hand side of each plot, a series of
plots are shown in which the feature-based measure is divided into five bands of equal
size, and differences in survival time (the outcome metric) are plotted in histograms
for those samples restricted to each band. In every case tested, a higher-order met-
ric could be found that had a positive association with the survival similarity metric,
whereas pearson correlation, based on the original features, had seemed to have a low
and sometimes negative association. For example, the surprising negative association
of the pearson-based first-order measure is evident where most highly correlated sam-
ple pairs actually show an appreciable increase in samples with very different survival
outcomes (seen as the introduction of extra ”modes” in the top histograms). For BLCA
and GBM cohorts the higher-order clustering solutions revealed subtypes with better
survival separation than first-order metrics. For OV, the higher-order metrics performed
comparably with Pearson just outperforming.
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Figure A.3: Oncoprint showing a subset of mutations in GBM that are associated with
cluster 1 via a χ2 test and are mutated in at least 10 samples. Line plot above the
oncoprint shows the total number of mutations per sample, and the grey line indicates
median mutational load across the entire cohort. We show 5 frequently mutated genes
that are associated with GBM mutations HOCUS result via a χ2 test of independence,
cluster 1.

Figure A.4: Oncoprint showing a subset of mutations in OV. Line plots above the
oncoprint shows the total number of mutations per sample. The grey dotted lines
indicate median mutational load across the cohort. A combination of the most frequently
mutated genes in the OV cohort (colored black) and the genes significantly associated
with any 1st-order HOCUS cluster through a χ2 test of independence are shown. Colors
in the oncoprint indicate which cluster the mutation is associated with. TTN, a known
passenger mutation, is associated with clusters 2 and 3.
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to incorporate the SNV-based subtypes into categorization as has been shown by [65].

As might be expected, the first major split of the data separates tumors with elevated

mutation rates (cluster 1 in Fig. A.12) from those with fewer mutations, such as cluster

3 that has the least. Cluster 4 is predominantly luminal A while the other clusters

contain a mixture of the expression-based subtypes (see Fig. A.12). The samples in the

cluster with elevated mutation rate are enriched for mutations in TP53 (50%), which

may be an early event in these tumors enabling global loss of genome integrity. Con-

sistent with this statement is the observation that these tumors also have the highest

levels of copy number alterations as well (Fig. A.13). The hyper-mutated group also

contains PIK3CA mutations that are often mutually-exclusive with TP53. In addition,

the cluster contains mutations in what are thought to be passenger genes frequently

mutated in some cancers possibly due to their location with respect to late replication

fork timing during mitosis [107] such as TTN and MUC16. Taken together, the results

suggest cluster 1 represents more advanced tumors.

On the other hand, cluster 3 not only contains the fewest mutations but also

lacks mutations in TP53 or PIK3CA. Nearly all normal-like tumors fall into this group,

which recapitulates the expression-based designation for these tumors. Samples in clus-

ter 3 have mutations characteristic of luminal-A tumors such as in the PI3-kinase path-

way (MAP3K1 and CDH1) and GATA3. Interestingly, several tumors classified as

basal using expression data fall into this group. It would be interesting to determine

if these tumors do indeed have TP53 mutations that were not detected through the

TCGA’s whole exome sequencing analysis (e.g. through regulatory mutations in pro-
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Figure A.5: Comparison to Network-Based Stratification [149] using the TCGA OV
data used in their publication, and the same filtering.

moter elements) or through other mechanisms (e.g. epigenetic silencing) or genes that

can influence TP53 function.

The HOCUS method identifies a PIK3CA mutated group (cluster 4), a clear

hallmark of luminal-A breast cancers. This group also has enrichment for other PI-3-

kinase pathway mutations such as in MAP3K1 and CDH1, underscoring the selective

pressure to enhance signaling in this growth-related pathway for this tumor type.

Cluster 2 samples are notable for mutational frequencies equal to that across

the cohort, and yet having neither TTN nor PIK3CA mutations. Approximately 30%

of these samples have TP53 mutations.
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Figure A.6: (a)KM plot where samples are grouped by overall mutational frequency.
P-value 4.7e− 05 (compared to HOCUS p-value 1.59e− 05), and (b) Alluvial diagram
showing the difference in HOCUS 1st-order BLCA clusters and the TCGA-defined clus-
ters based on mutation and CNA data. P-value 0.128 in a χ2 test of independence.
This diagram compares the 125 samples that are defined in both cluster sets.
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Figure A.7: MR images were filtered on a voxel level to indicate presence/absence of
tumor in that region, after images were fit the the brain atlas. At each level of activity
(number of patients having tumor in a given voxel) we calculate the −log10(tumor)
visible after filtering below the given threshold. Cutoff was selected based on tumor loss
per patient.
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Figure A.8: (a) Sagittal, coronal, and axial views of the tumors within each image
cluster (b) Violin plots of tumors volumes for each cluster. (c) Comparison to molecular
subtypes defined by TCGA. (d) Kaplan-Meier plot of image clusters, showing clusters
3 and 4 to have poorer overall survival. (e) Consensus clustering matrices for 2nd- and
3rd-order HOCUS clusters, connected by an alluvial diagram showing that the majority
of patients in 2nd-order clusters 3 and 4 (the poor survivors) make up the 3rd-order
cluster 3.
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Figure A.9: (a-c) Patients grouped on tumor volume and (d-f) by TCGA defined molec-
ular subtypes for MR image patients. (a) Images of patient tumors grouped by tumor
volume (b) molecular subtypes (c) KM survival. (d) Images of patient tumors grouped
by molecular subtype, (e) tumor volume per group, (f) KM survival.

Figure A.10: KM plot of survival when patients are grouped by anatomic location of
the tumor. Annotations indicate laterality (right/left) and lobes (parietal, occipital,
frontal, temporal).
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Figure A.11: Alluvial diagram of the different MR image clustering solutions. From
right to left, voxel frequency, jaccard, second-order Hamming, third-order Hamming
clusters.

Figure A.12: Oncoprint showing the HOCUS BRCA clusters and associated mutations.
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Figure A.13: Visualization of the BRCA copy number clusters and their correlation with
the mutation-based subtypes from HOCUS. Heatmap made using the UCSC Cancer
Genomics Browser [113], showing TCGA CNV subtypes and CNV alterations in the
HOCUS clusters.

Figure A.14: (a) Pathlogy T stage of the HOCUS copy number clusters. (b) Enrichment
of Gleason scores in the HOCUS clusters. Scores are normalized by column and color
represents percentage of the cluster with a given combined Gleason score. (c) Boxplot
of the number of lymph nodes each cluster’s samples have invaded.
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Table A.1: Kernel similarity scores between each HOCUS feature space, survival in
days, and age.

GBM MRI pearson 1st order 2nd order 3rd order 4th order

surv diff 0.966 0.814 0.977 0.977
standard
1st order 0.902 0.992 0.992
2nd order 0.846 0.846
3rd order 1.000
4th order

OV Mutations pearson 1st order 2nd order 3rd order

surv diff 0.277 0.978 0.976 0.978
standard 0.265 0.274 0.264
1st order 0.997 1.000
2nd order 0.997
3rd order

GBM Mutations pearson 1st order 2nd order 3rd order

surv diff 0.180 0.990 0.985 0.990
standard 0.174 0.184 0.173
1st order 0.997 1.000
2nd order 0.997
3rd order

BLCA Mutations pearson 1st order 2nd order 3rd order 4th order
surv diff 0.260 0.981 0.981 0.981 0.981
standard 0.314 0.311 0.314 0.314
1st order 0.997 1.000 1.000
2nd order 0.996 0.996
3rd order 1.000
4th order
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Table A.2: P-values from χ2 tests between image clusters of all types and clinical
covariates.

Clin First Second Third Jaccard FreqW By Vol.

karnofsky score 0.00495 0.255 0.0955 0.0642 0.281 0.0745
race 0.0834 0.0893 0.0363 0.172 0.687 0.863
history lgg dx 0.2 0.646 0.293 0.681 0.624 0.153
days to last followup 0.361 0.483 0.472 0.442 0.52 0.498
history neoadj. treat. 0.384 0.413 0.384 0.112 0.624 0.504
days to birth 0.389 0.389 0.455 0.389 0.401 0.415
patient id 0.44 0.44 0.44 0.44 0.445 0.451
days to death 0.476 0.482 0.486 0.388 0.44 0.409
ethnicity 0.666 0.248 0.635 0.199 0.324 0.385

perf. status timing 0.684 0.839 0.936 0.676 0.827 0.677
hist. diagnosis 0.735 0.377 0.606 0.216 0.602 0.755
initial path dx 0.76 0.446 0.267 0.204 0.272 0.42
gender 0.76 0.661 0.197 0.816 0.867 0.46
vital status 0.85 0.36 0.937 0.757 0.655 0.424
tumor status 0.879 0.455 0.819 0.273 0.332 0.104
age at init. path. diag. 0.894 0.461 0.228 0.3 0.433 0.789
form completion year 0.943 0.107 0.892 0.212 0.358 0.504
init. path. dx year 0.953 0.474 0.693 0.35 0.512 0.507
tissue source site 0.957 0.273 0.94 0.508 0.732 0.355
form compl. month 0.961 0.0429 0.942 0.0965 0.162 0.868

Table A.3: P-values for each similarity metric in a χ2 test of independence.

Metric Formula Surv. Assoc. Volume Dep. Molec. Subtype

Hamming
∑n

i=1(xi == yi) 2.02e-02 4.10e-01 4.19e-01
FreqW Eq. A.3 1.52e-01 1.58e-01 2.91e-02

Jaccard X∩Y
X∪Y 1.98e-02 4.72e-01 2.39e-01
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n∑
i=1


zi if xi == yi

0 otherwise

s.t. zi =
m∑
j=1

(mj == 1) (A.3)

A.2 Supplement for: Multiview learning

A.2.1 Mutation Issues

Sensitivity cannot be predicted using single genes for several reasons. For ex-

ample, KRAS and BRAF mutations are common in the CCLE data. For some drugs

that should be sensitive in presence of a KRAS mutation, BRAF mutations in the KRAS

wildtype patients make them also sensitive, so that overall the drug does not appear

correlated with KRAS mutation status. When BRAF mutants are removed, KRAS mu-

tations are predictive of drug sensitivity. The opposite also occurs, where many BRAF

mutants share another mutation that is unrelated to a specific drug sensitivity, but be-

cause of the shared BRAF mutation the other mutation appears to confer sensitivity.

Looking at the mutation status of one gene is not enough to make conclusions about

the sensitivity to a drug.

A.2.2 Biological Priors

A.2.2.1 Biological Gene Sets

Metabolic Enzymes: The metabolic enzymes gene set was created by collecting all

genes in the CCLE data belonging to the Cytochrome P450 (CYP) family. CYP proteins
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Figure A.15: The ranked ActArea values of each CCLE cell line for the 24 CCLE
compounds. Blue dots are cell lines labeled as ‘non-sensitive for the correspondent
drug, red ones are labeled ‘sensitive, gray ones ‘intermediate. The number of cell lines
in the non-sensitive class corresponds to the bottom 25% of cell lines the drug response
was measured for, the sensitive class to the top 25%.
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Figure A.16: AUC for each view when predicting sensitivity to each drug in CCLE.
Grouped by data type. The cross-validated AUC of single views with their optimized
parameter settings. All values ≤ 0.5 (AUC of a random predictor) are shown in white.
The simple Annotated Target Mutation predictor (Section 4) is shown in A. The follow-
ing single views are grouped according to Section A.2.2. GS = Gene Set; DT = Drug
Target; Expr = Expression; Mut = Mutation.
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Figure A.17: Tissue-specific run of MVL.

are the key players in drug metabolism; They deactivate or facilitate the excretion of

most drugs, but they also transform many drugs into their active form [127]. There are

53 CYP proteins in the CCLE expression data.

Multi-Drug Resistance Proteins: Expression data was subset to a list of multi-

drug resistance proteins based on [175]. All 12 defined proteins are present in the data

set.

Drug Targets: This view includes all proteins targeted by the 24 anti-cancer com-

pounds in the CCLE data set. The information about drug - protein interactions was

collected from DrugBank [203], a recent review of drug targets [278], the Drug Gene
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Figure A.18: Interpreted views can be created from any of the baseline data platforms.
In this example, mRNA expression data is subset to a list of known chromatin–modifying
genes [3]. The new view has higher AUC than the baseline view. One of the largest
differences is in Panobinostat, which AUC is highlighted in red.
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Interaction Database (DGIdb) [126], and manual literature curation for drugs without

an annotated target in the sources named before (see Table A.4 ). In total, 142 genes

found to be drug targets were present in the gene expression data set. In addition to

the expression-based view, this view was created using the mutation data, in which 82

of the drug targets are present.

Chromatin-Modifying Enzymes: This gene set includes chromatin-modifying pro-

teins [3, 152]. It contains 65 proteins, of which 56 are present in the gene expression

data.

Druggable Genes: The druggable genes view was created from DrugBank [203],

a recent drug target review [278], cell surface proteins as defined in [74], membrane

proteins and genes on the druggable genome list from DGIdb [126], a manually curated

list of kinases (Table A.4), and the Therapeutic Target Database (TTD, [410]). In

contrast to the Drug Targets view, the proteins in this set are not limited to the 24

CCLE compounds. Proteins that are not a target of any existing drug, but have the

characteristics to serve as one, are included. A total of 4,632 genes from this gene set

are present in the gene expression data.

Essential Genes: The information about essential genes in cancer cell lines was re-

trieved from Project Achilles [71], an effort to identify genes having an effect on cell

viability by using short hairpin RNA (shRNA) screens. Two versions of Achilles were

merged in order to maximize the overlap with the cell lines in CCLE: Achilles v.2.11
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Table A.4: Drug targets manually curated from a literature review.

CCLE Compound Target Source

L-685458 PSEN1 [213]
L-685458 PSEN2 [213]
LBW242 XIAP [92]
Nutlin-3 MDM2 [348]
PHA-665752 MET [382]
TAE684 ALK [103]

and v.2.4.3. The 30 most essential genes for each cell line present in both CCLE and

Achilles were retrieved. CCLE expression data was subset to the union of these genes

resulting in 2,064 features for this view.

A.2.2.2 MSigDB Gene Sets

The Molecular Signatures Database (MSigDB) [316] provides biological gene

sets in different collections. Median, variance, and kurtosis values of gene expression in

each gene set was calculated and defined as a feature. For using CCLE mutation data

with MSigDB gene sets, the enrichment of the mutated genes of a cell line in a gene

set was tested using hypergeometric distribution (R function phyper). The following

MSigDB collections were chosen:

Hallmark Gene Sets: A collection of gene sets created from overlapping gene sets.

It features reduced noise and redundancy and contains 50 gene sets.

Motif Gene Sets: 836 gene sets containing genes that share conserved cis-regulatory

motif [375].
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Transcription Factor Targets: A gene set contains all genes sharing a transcription

factor binding site defined by a TRANSFAC record [233]. There are 615 gene sets in

this collection.

Positional Gene Sets: Gene sets corresponding to the position of genes on the human

genome regarding chromosome and cytogenetic band. The collection holds 326 gene sets.

Oncogenic Signatures: Signatures of 189 cellular pathways which are often dis-

regulated in cancer.

Immunologic Signatures: The 1,910 gene sets represent cell states and perturba-

tions within the immune system.

A.2.2.3 Drug Target Gene Sets

For each drug target defined in Section A.2.2.2, all genes occurring in at least

one gene set together with the target gene were unified to build one drug target gene set.

The MSigDB collections Hallmark, Oncogenic, and Immunologic were used separately.

As before, median, variance, and kurtosis of the expression values were calculated for

each drug target gene set and used as features.

A.2.2.4 Regulator Activity by Viper

Virtual Inference of Protein-activity by Enriched Regulon analysis (Viper) is

a tool to transform gene expression features into regulator activity [5]. It takes as input
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gene expression, a regulon (bipartite regulation network of regulators, e.g. transcription

factors), and the genes that are regulated by them. Here, a general regulon called

‘multinet’ [177] and the CCLE expression data were used. Viper was run in R as part

of the Bioconductor project [4].

A.2.3 Data in detail

Mutation CCLE includes mutation data in the form of Single Nucleotide Polymor-

phism (SNP) and insertion or deletion (Indel) events for 1,651 genes. These were as-

sessed by targeted massively parallel sequencing and later filtered, e.g. for presumably

neutral variants or common polymorphisms. Additionally, 392 mutations in 33 genes

known to be associated with cancer [227] were assessed by mass spectrometric genotyp-

ing. SNPs and Indels were combined into a set of non-silent mutations that include all

events changing the amino acid composition of the resulting protein, including Indels

or missense SNPs in the coding region, splice site, and stop or start codon alterations.

Expression Gene expression data measures expression over 18,900 genes using Affymetrix

U133 plus 2.0 arrays, converted to single gene values by Robust Multi-array Average

(RMA) and quantile normalization.

CNV Copy Number Variation (CNV) data covers 23,316 genes and was determined

using Affymetrix SNP6.0 arrays, and normalizing the values with the most similar

HapMap normal samples. In the CNV data, some genes have the same value for each

cell line because they lay on the same genome segment varying in copy number. Each of
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these gene sets was merged into one feature in order to reduce redundancy in the data,

resulting in 20,247 features.

Clinical Sample annotation data for the CCLE cell lines contains the gender of the

cancer patient and information about the cancer origin (i.e. 24 different tissue types,

21 histology types, and 67 histology subtypes).

Drug Sensitivity There is drug response data to 24 anti-cancer drugs for about 50%

of the cell lines in CCLE. A fitted dose-response curve from eight measurements is given,

together with the inferred values for EC50, IC50, and Activity Area (ActArea), the

area over the dose-response curve (see Fig. 2b from Barretina et. al.[17] for definition).

ActArea was used for all analyses in this work for three reasons:

1. ActArea captures more information about the dose-response curve than a single

point like IC50 or EC50, i.e. the angle of the curve and initial points of sensitivity

changes.

2. ActArea is always given. EC50 in contrast is set to NA if no sufficient response

was measured with the maximal tested dose.

3. ActArea has no artificial values, whereas IC50 is set to the maximal tested dose

if no response was measured.
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Figure A.19: Label-learning validation for all 24 CCLE drugs. Drug names in bottom
right corner of each LLV plot.
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Figure A.20: Cross-validated AUC of single views with their optimized parameter set-
tings. This compares the tissue–specific setting using blood cancer cell lines to the
complete CCLE.
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