- Main
The role of electronic symmetry in charge-transfer-to-solvent reactions: Quantum nonadiabatic computer simulation of photoexcited sodium anions
Abstract
Since charge-transfer-to-solvent (CTTS) reactions represent the simplest class of solvent-driven electron transfer reactions, there has been considerable interest in understanding the solvent motions responsible for electron ejection. The major question that we explore in this paper is what role the symmetry of the electronic states plays in determining the solvent motions that account for CTTS. To this end, we have performed a series of one-electron mixed quantum/classical nonadiabatic molecular dynamics simulations of the CTTS dynamics of sodide, Na-, which has its ground-state electron in an s orbital and solvent-supported CTTS excited states of p-like symmetry. We compare our simulations to previous theoretical work on the CTTS dynamics of the aqueous halides, in which the ground state has the electron in a p orbital and the CTTS excited state has s-like symmetry. We find that the key motions for Na- relaxation involve translations of solvent molecules into the node of the p-like CTTS excited state. This solvation of the electronic node leads to migration of the excited CTTS electron, leaving one of the p-like lobes pinned to the sodium atom core and the other extended into the solvent; this nodal migration causes a breakdown of linear response. Most importantly, for the nonadiabatic transition out of the CTTS excited state and the subsequent return to equilibrium, we find dramatic differences between the relaxation dynamics of sodide and the halides that result directly from differences in electronic symmetry. Since the ground state of the ejected electron is s-like, detachment from the s-like CTTS excited state of the halides occurs directly, but detachment cannot occur from the p-like CTTS excited state of Na- without a nonadiabatic transition to remove the node. Thus, unlike the halides, CTTS electron detachment from sodide occurs only after relaxation to the ground state and is a relatively rare event. In addition, the fact that the electronic symmetry of sodide is the same as for the hydrated electron enables us to directly study the effect of a stabilizing atomic core on the properties and solvation dynamics of solvent-supported electronic states. All the results are compared to experimental work on Na- CTTS dynamics, and a unified picture for the electronic relaxation for solvent-supported excited states of any symmetry is presented. (C) 2003 American Institute of Physics.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-