Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

A seed specific dose kernel method for low‐energy brachytherapy dosimetry

Abstract

We describe a method for independently verifying the dose distributions from pre- and post-implant brachytherapy source distributions. Monte Carlo calculations have been performed to characterize the three-dimensional dose distribution in water phantom from a low-energy brachytherapy source. The calculations are performed in a voxelized, Cartesian coordinate geometry and normalized based upon a separate Monte Carlo calculation for the seed specific air-kerma strength to produce an absolute dose grid with units of cGy hr(-1) x U(-1). The seed-specific, three-dimensional dose grid is stored as a text file for processing using a separate visual basic program. This program requires the coordinate positions of each seed in the pre- or post-plan and sums the kernel file for a three-dimensional composite dose distribution. A kernel matrix size of 81x81x81 with a voxel size of 1.0x1.0x1.0 mm3 was chosen as a compromise between calculation time, kernel size, and truncation of the stored dose distribution as a function of radial distance from the midpoint of the seed. Good agreement is achieved for a representative pre- and post-plan comparison versus a commercial implementation of the TG-43 brachytherapy dosimetry protocol.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View