Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Distinct metabolism of apolipoproteins (a) and B-100 within plasma lipoprotein(a)

Abstract

Objectives

Lipoprotein(a) [Lp(a)] is mainly similar in composition to LDL, but differs in having apolipoprotein (apo) (a) covalently linked to apoB-100. Our purpose was to examine the individual metabolism of apo(a) and apoB-100 within plasma Lp(a).

Materials and methods

The kinetics of apo(a) and apoB-100 in plasma Lp(a) were assessed in four men with dyslipidemia [Lp(a) concentration: 8.9-124.7nmol/L]. All subjects received a primed constant infusion of [5,5,5-(2)H3] L-leucine while in the constantly fed state. Lp(a) was immunoprecipitated directly from whole plasma; apo(a) and apoB-100 were separated by gel electrophoresis; and isotopic enrichment was determined by gas chromatography/mass spectrometry.

Results

Multicompartmental modeling analysis indicated that the median fractional catabolic rates of apo(a) and apoB-100 within Lp(a) were significantly different at 0.104 and 0.263 pools/day, respectively (P=0.04). The median Lp(a) apo(a) production rate at 0.248nmol/kg·day(-1) was significantly lower than that of Lp(a) apoB-100 at 0.514nmol/kg·day(-1) (P=0.03).

Conclusion

Our data indicate that apo(a) has a plasma residence time (11days) that is more than twice as long as that of apoB-100 (4days) within Lp(a), supporting the concept that apo(a) and apoB-100 within plasma Lp(a) are not catabolized from the bloodstream as a unit in humans in the fed state.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View