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Abstract

This paper proposes a macroscopic behavioral theory of traffic dynamics for

homogeneous, multi-lane freeways.  The theory makes predictions for separate groups of lanes

while recognizing that the traffic stream is usually composed of aggressive and timid drivers.

Its principles are so simple that non-scientist drivers can understand them. The simplest version

of the theory, which is described in its full complexity without calculus, is shown to be

qualitatively consistent with experimental observations, including the most puzzling.  Its

predictions agree with the following phenomena: (i)  the ‘reversed  lambda’ pattern frequently

observed in scatter-plots of flow versus occupancy and the lane-specific evolution of the data

points with time, including the ‘hysteresis’ phenomenon, (ii) the lane-specific patterns in the time

series of speed (and flow) in both queued and unqueued traffic, and (iii) the peculiar ways in

which disturbances of various types propagate across detector stations.  The latter effects

include the evolution of both, stoppages and transitions between the queued and unqueued

traffic regimes.  The simple model is specified by means of eight observable parameters.  The

paper gives a recipe for solving any well-posed problem with this model and does so in

sufficient detail to allow the development of computer models. A few approaches and possible

generalizations are suggested.  A sequel to this paper, devoted to freeway sections near on-

ramps, will attempt to explain in more detail than previously attempted how queuing begins at

merges.
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1  A sequel to this paper will extend the theory to inhomogeneous sections that include on-ramps.

1. BACKGROUND

Empirical freeway traffic flow data have accumulated for almost 50 years.  While some

of this evidence supports certain theories under particular conditions, it is fair to say that to date

no theory explains all that is observed, and that some puzzles remain unsolved.  Fortunately,

new observations obtained with recently developed ways of processing data contain fresh clues

that should make it easier to come up with a theory that puts all the pieces of the puzzle

together.  This paper is an effort in this direction; it presents a theory of traffic dynamics for

homogeneous freeways that is qualitatively consistent with all the empirical observations (old

and new) known to this author.1 

The theoretical development will begin in Sec. 2.  The remainder of this introductory

section lists empirical evidence. Facts that have been generally known since the 1950's by

traffic engineers and/or widely reported in the literature are simply noted without discussion.

To keep a historical perspective, older works are cited when possible.  Facts have been

grouped into classes (A, B, C, ...) and labeled individually (A3, B1, C2, ...).  In this way the

reader may proceed directly to Sec. 2, and later refer to this section as needed. The list follows.

(A)  Flow-occupancy data from single detectors on a single lane:  (A1) Plots of this

type always show considerable scatter (see, e.g., Koshi et al., 1983, among many others) and

the scatter is reduced when the counting intervals are increased.  (A2) Plots for the lanes

closest to the median (passing lanes) often exhibit a “reversed lambda” shape with very high

flows and a discontinuity at the tip of the lambda; this discontinuity seems to have been first

noted in Edie (1961).   (A3) The very high passing-lane flows (exceeding 2500 vehicles per

hour) can last for many minutes as noted for example by Cassidy and Bertini (1999).  Therefore,
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these high flows (and the reversed lambda) cannot be explained away by statistical variations

due to driver differences.  (A4) Such consistently high flows have not been reported for the

shoulder lanes.  (A5) There appear to be two clearly distinct traffic regimes with different

properties: an ‘uncongested’ or ‘unqueued’ regime corresponding to the left part of the lambda

and a ‘congested’ or ‘queued’ regime corresponding to the right part; see for example Edie and

Foote (1958).  (A6) When the data for the passing lanes are recorded for a period

encompassing a rush hour with high traffic flows the sequence of points on the flow-density

plane often includes a sudden drop from the tip of the lambda (or close to it) to a point on the

right side.  (A7) The evolution of the state on the right (queued) side is somewhat chaotic (e.g.,

Mika et al., 1969)  with transitions that occur in no particular pattern, albeit grouped along an

imaginary right leg of the  “lambda”; flows rarely exceed the tip of the lambda.  (A8) The quality

of this grouping improves with the length of the sampling interval.  (A9) Toward the end of a

rush hour the data transitions back to the left side.  (A10) It usually does so toward the middle

of the leg (see e.g., Figs. 3-14 and 3-15 in M.E.A., 1971, and Figs. 2-2-31 and 2-2-32 in

J.S.T.E., 1973), and flows near the tip of the lambda are not observed again until the following

day.  This hysteresis behavior, called the “traffic collapse” by some authors, has been known

for a long time and has led many researchers to speculate about the existence of a “two-

capacity phenomenon”; see, e.g., Banks (1991).

(B) Comparison of data from different lanes at the same location:  It has also been

known for a long time (e.g., Edie and Foote, 1958, Forbes et al., 1967) (B1) that for unqueued

but heavy traffic conditions, the speeds and flows on the passing lane(s) of a freeway are

consistently higher than those on the shoulder lanes, and (B2) that in queued traffic, when
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2  Item (B2) is not necessarily true in queues caused by diverges; see e.g.  Muñoz and Daganzo (1999).

3  Lane changing and driver differences can contribute significantly to the complex behavior observed on the flow-
density plane.  Thus, it is logical to find more regular patterns on data that averages these effects.

passing is difficult, the differences across lanes are smaller.2   Mika et al. (1969) also show

through cross-correlation methods (B3) that temporal changes in the speed (or flow) time series

of detectors for different lanes are synchronized across lanes. 

(C) Comparison of data from different locations and the same (set of) lane(s):  (C1)

Small disturbances in cumulative count within a single regime have been found to move quite

regularly through the traffic stream; forward with the speed of traffic in the unqueued regime

(Hillegas et al., 1974) and backward in the queued regime (Edie and Foote, 1958, and Mika et

al., 1969).  Recent experiments with an improved methodology (Cassidy and Windover, 1995,

and Windover, 1998) show that small disturbances propagate without spreading.  (C2) Regular

propagation occurs in queued traffic even as one observes complex patterns on the flow-density

plane (Muñoz and Daganzo, 1999).3   Invariably, (C3) the forward speed of the disturbances is

comparable to the speed of traffic and (C4) the backward speed is on the order of 20 Km/hr.

Larger disturbances such as transitions between regimes also show no significant evidence of

spreading.  This can be seen for example in the flow and speed data reported in Foster (1962),

Kerner and Rehborn (1996a) and White et al. (1998), and also in the cumulative counts of

Cassidy and Bertini (1997).  The data in these studies show (C5) that the transition between the

queued and unqueued regimes denoting the onset of congestion propagates spatially in the

upstream direction rather regularly and sharply, i.e., (C6) as a non-spreading wave.  The figures

in Cassidy and Bertini (1997) also show (C7) that the transition back into the unqueued regime

at the end of the rush hour also moves in the downstream direction in a non-spreading way. 

It is also evident from Figs. 2 and 3 in Kerner and Rehborn (1996a)  (C8) that large stoppages
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can propagate with sharply defined boundaries over long distances, and (C9) that both

boundaries can travel for long distances with the same constant speed (which is again

comparable with 20 Km/hr).  It is interesting to note (C10) the absence of systematically

spreading waves in these works, and in the works reviewed in Newell (1999).    More recently,

Kerner and Rehborn (1999) and Mauch and Cassidy (1999) have both found (using different

methodologies) (C11) that large oscillations in flow, speed and cumulative count increase in

amplitude across the detectors spanning a long freeway queue and its intervening on-ramps.

These data, however, do not  reveal the cause and/or mechanism of the growth; e.g., whether

it is due to the on-ramps or it is an inherent property of queued traffic.  In any case, it has been

found from experiments on  sections without on-ramps, both on freeways and on single lane

roads (Cassidy and Mauch, 1999 and Smilowitz and Daganzo, 1999),  (C12) that cumulative

counts within a queue obey approximately the kinematic wave (KW) model of Lighthill and

Whitham (1955) and Richards (1956) with a constant wave speed of approximately 20 Km/hr;

i.e., they can be predicted as proposed in Newell (1993). In other words, (C13) accumulations

on homogeneous freeway sections appear to behave on a macroscopic scale as if there was

a linear relationship between flow and density in the queued regime.

(D) Behavior of car platoons in a moving frame of reference:   Edie and Foote (1958)

and Treiterer and Myers (1974) tracked vehicle platoons (moving queues) spatially and showed

how their flow-density-speed status evolved with time as the platoons underwent deceleration

and acceleration cycles.  Both references agreed in many details, but the Treiterer and Myers

study showed a remarkable effect (cycle B of Fig. 4 of that reference) that was absent in the

Edie and Foote data.  Treiterer and Myers showed that as the platoon accelerated from 25 to

40 mph, flow within the platoon increased  from about 1800 veh/hr to almost 3000 veh/hr without

an appreciable change in vehicular spacing (!)   This behavior (labeled “cycle B” in figures 3 and
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4    Valuable as they are, it should be remembered that the Treiterer and Myers results say nothing about the gaps
between platoons, and that as a result they offer an incomplete description of the traffic stream.

5    Lane changes are clearly identified in Fig. 1 of said reference.  In fact, the source of the main disturbance
(which has been surrounded by mystery) can be traced back to a lane change in front of a highly compressed set
of cars.  Its dissipation can also be traced to vehicles that avoid joining it by changing lanes.

4 of Treiterer and Myers) has been a longstanding source of speculation in the transportation

literature, often used to justify questionable models.4  However, there is a simple explanation

for it.  First note that the Edie and Foote data (with no “cycle B” effect) were gathered in a

tunnel, where lane-changing was prohibited, and that the Treiterer and Myers data (as stated

on Fig. 1 of that reference) pertained to the median (fast) lane of an urban expressway where

lane-changing occurred frequently.5  (Furthermore, as stated on p. 17 of that reference, vehicles

were allowed to join and leave the platoon as it was being tracked.)  Therefore, it is logical to

assume that the “cycle B” effect  is a result of lane-changing.  Quite likely, as the platoon

accelerated past 25 mph, the aggressive followers in the platoon sensed that the (timid) leader

was about to move out of the way and they followed more tightly so as to prevent drivers in the

neighboring lane from “cutting in” the queue.  Some neighbors did cut in, as can be seen from

Fig. 2 of that reference, and the combination of these two effects explains the tightness of the

platoon during its acceleration from 25 to 40 mph.  From then on, the “cycle B” pattern changed

sharply and suddenly.  The speed continued to increase but flows decreased and the platoon

expanded.  It is hard to believe that the sharp reversal could have been caused by anything

other than the clearance of the lane by the slow platoon leader.  (This, unfortunately, cannot be

verified precisely from the Treiterer and Myers figures.)  However, the expansion that ensued

is explained by additional defections from the platoon (which can be seen in Fig. 2 of that

reference) combined with drivers’ loss of incentive to close the gap and follow closely at  the

higher speeds. 
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6  This evidence will be not be used until the sequel to this paper, which pertains to merges.

7  A merge is said to be active if traffic is queued upstream and unqueued downstream; see Daganzo (1997b).  The
activation process is the process that creates a queue.

8  Periods of up to 40 minutes have been observed more recently; Cassidy and Bertini (1999).

 (E) Traffic behavior near merges and the onset of queuing:6  Although much work

has been reported to date on merges, it was not until recently that experiments were undertaken

specifically aimed at understanding the activation process of a merge bottleneck.7  The key

reference in this respect is Cassidy and Bertini (1997).   This work is particularly noteworthy

because unlike prior efforts, it tracked accumulations and delays upstream and downstream of

the bottleneck throughout the study, and in this way conclusively demonstrated that all the

observed phenomena were happening while the bottleneck was unimpeded by a downstream

queue.  The results confirm the so-called “two-capacity” phenomenon which engineers have

tried to exploit with ramp metering (see, e.g., May, 1964, and Banks, 1991).  More specifically,

Cassidy and Bertini (1997) shows that (E1) prior to activation there is a period of time where

flows on the passing lane and on the freeway as a whole are very high (tip of the reversed

lambda), and that (E2) once the queue has formed the flow past the bottleneck is reduced.  The

reduction in flow was found to be only on the order of 10% when measured across all lanes.

They further report that (E3): (i) delays for vehicles passing the merge increase very slightly

during the period of high flow, (ii) this period of high flow can last for 20 minutes,8 (iii) it is

followed by a sharp drop in flow with a rapid increase in queuing delay, and (iv) this flow finally

rises again to a level that is sustained with minor fluctuations while the queue is present.  (In

some cases there is a brief  bounce-back period with high flows between steps (iii) and (iv).) O

The empirical evidence for freeway sections near diverges is much more scant and not

always in agreement with all that has been said so far; see Lawson et al (1999) and Muñoz and
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9   This speed was estimated from low-resolution occupancy data and our estimate is therefore subject to error.
The event in question was the result of an incident that was recorded on 3/3/93 on Highway I-880 (lane-3,
southbound, leaving Oakland, California) as part of the “Freeway Service Patrol (FSP)” project.  Part of the FSP

Daganzo (1999).  Therefore, the present theory only pertains to (homogeneous) freeway

sections where diverge disruptions can be ignored.  

In developing the theory, clues obtained from single facility data and/or the author’s

informal observation of traffic will also be used as guidance, even though most of these facts

have not been independently verified. The following is a list:

(F) The “Los Gatos effect”:   It was pointed out in Daganzo (1997a) that when the

passing lanes are heavily traveled in unqueued traffic (F1) passing vehicles seem to be less

willing to follow the “rules of the road” and move out of the way to allow faster drivers to

overtake.  This may occur because drivers in a fast-moving queue (or platoon) may want to

avoid the difficulty of rejoining the fast lane from a slower speed, especially if these platoons

are long and frequent, and also because drivers within the platoon may not know for sure that

those following them are indeed faster.  When/if this happens, the shoulder lanes may be

underutilized.  The author has experienced this phenomenon at three very different sites that

were not affected by the disturbances from entrances and exits: (i) The main uphill grade of

California State Highway 17 southbound from San Jose, outside the city of Los Gatos, (ii) U.S.

Interstate 80 (eastbound, downhill) from Truckee to Auburn on Sunday evenings during ski

season, also in California, and (iii) a few times on the freeway system from Munich to Aachen,

in Germany (on level terrain).  It should be noted that these events were observed in the U.S.

and in Europe, despite considerably different speed limits and driver customs. 

(G) Existence of fast waves:   (G1) A transition between uncongested flow (about 10%

occupancy) and lightly congested flow (about 30% occupancy) has been observed to travel

upstream at speeds approaching 30 Km/hr.9   (G2)  At the same site, denser queued states
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data set can now be examined online by visiting  http://www.stat.berkeley.edu/users/fspe/  (Zhang and Rice, 1999).

10  This information will not be used until the sequel.

11   Although it would be easier to develop and test more complex models with microscopic computer simulations,
this was not done in this paper because computer testing can never rule out with certainty the presence of some
undesirable phenomena.  Continuum analytical modeling, by contrast, allowed us to eliminate very quickly many
candidates that were shown to be bad in subtle ways, and to retain a final candidate that was found to be
reasonable in all its dimensions.  The reader should be able to verify this for his or herself simply by reading this
paper.  Of course, reasonableness does not prove that the proposed theory is correct, but the existence of a simple
model that explains so much suggests that a correct theory must contain elements of human psychology, and lane-
specific passing behavior.

appeared shortly thereafter within the lightly congested state, but they seemed to grow more

slowly and not to propagate as far upstream.  (G3)  A different kind of fast-traveling transition,

which introduced a much more heavily congested state, has also been reported; see Fig. 3 in

Kerner and Rehborn (1996b). 

(H) Lane specific merging behavior:10  (H1) Cassidy and Bertini (1999) have found that

a precursor of the queue formation at a merge is a slight drop in the speed of the passing lanes.

(I)  Very light traffic: (I1)  Hurdle et al. (1997) have reported that for very light traffic the

(space) mean speed of traffic increases slightly with flow.

(J) Saturation flows: Traffic that has accelerated from a stop on a single lane (e.g., from

a traffic signal) can reach flows approaching 2000 veh/hr, but not significantly more, even on

freeways. It is conjectured that (J1) the maximum flow per lane in a queue spanning all lanes

of a freeway is also in this neighborhood.O

The remainder of this paper proposes a theory of driver behavior that attempts to

reconcile all these seemingly disparate observations and then quantifies the theory with an

idealized model.  The model is only a caricature of reality but does not introduce any  obviously

unrealistic results.11 
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2. DRIVER BEHAVIOR

This section describes the rules of driver behavior. A continuum model based on these

rules is then presented in Secs. 3 and 4.  Section 3 focuses on the steady state solutions,

including a way of displaying them graphically, and Sec. 4 on the traffic dynamics.  The paper

ends (Sec. 5) with: (i) an illustration that shows how the most puzzling facts of Sec. 1 are

explained, (ii) a brief list of new predictions that should be checked by experiment, and (iii) a

proposal for some extensions to the model within the context of the proposed theory.

Regarding driver behavior, it is argued below that a correct model of freeway traffic flow

should not only account for driver differences, as was attempted in some of the early theoretical

studies of light freeway traffic (Newell, 1955, Carlesson, 1957, and Andrews, 1970), but also

account for the changes in drivers’ moods.

Driver differences: Item B1 and clue F1 suggest that different drivers have different

tastes for driving fast.  Therefore, the proposed theory should capture this effect.  Drivers’

preferences can be incorporated into a continuum theory much like destinations are captured

in network models using the kinematic wave theory, i.e., where destinations (tastes) propagate

forward with traffic.  Unfortunately, the effects of fast drivers are more complicated than those

of destinations in the simple KW model because the propagation of tastes for driving fast affects

the character of the traffic stream.  A similar complication was overcome in Daganzo (1997c)

by means of some graphical diagrams and these diagrams, explained fully in the following

section, will be the main solution tool here too.

Driver psychology and behavior:  To complicate matters further, it appears that

variations in tastes across the population of drivers are not sufficient to explain in a simple way

the difference in flows between the high flows observed on the passing lanes (A2, A4, E1) and

the lower flows observed within queues (A7) and discharging from queues (E2, J1).  It is
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12  Such a change in psychology also seems to be the most logical explanation of effect (I1).

13  This  terminology is preferred to a more serious alternative such as ‘trucks’ and ‘cars’, because we want to stress
that rabbits and slugs are not perfectly correlated with vehicle size, and that the driver-type cannot be detected by
the usual means.

therefore proposed that most drivers change psychology when driving fast on the passing

lanes.12  For example, they will allow someone to ‘cut in’ ahead of them but will drive closer to

the car in front from then on.  (This effect has been confirmed in informal interviews with drivers

and can be occasionally observed when driving.)  Drivers in this state will be said to be

‘motivated’. It is postulated in this theory that the act of passing (or the anticipation of passing)

triggers a psychological change into a ‘motivated’ frame of mind (for all drivers doing the

passing) that allows them to accept headways as short as 1 sec.  It is also assumed that this

motivation disappears when passing on the fast lanes is no longer possible (e.g., when drivers

join a slow queue).   This behavioral pattern is consistent with the Treiterer and Myers (1974)

effect; see item (E).

In view of (F1) it is also assumed that if multi-vehicle interactions are frequent (moderate

to heavy traffic) then drivers will tend to ignore the rules of the road for passing, and will instead

try  to be in the fastest possible lane without exceeding their maximum desired speed.  It is

assumed, however, that the maximum desired speed is not changed by psychological changes.

Proposed idealization: To keep things simple, it will be assumed that there are only two

types of drivers, ‘slugs’ with a maximum speed vf and ‘rabbits’ with a maximum speed  Vf  >  vf.
13

 It will be shown that this simple model already captures the desired phenomena.  Models with

more driver types would be more realistic but also more complicated and data-intensive. This

is further discussed in Sec. 5.

It will also be assumed that there are two lanes (or two sets of lanes), that slugs do not
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14  We recognize that this is unrealistic because slow vehicles may want to pass each other, and in the process they
may create disruptions to the traffic stream on the fast lanes. However, our idealization is not unreasonable if the
interruptions are infrequent because then they can be modeled as if they were exogenous and non-interacting.

go into the passing lane(s),14  and that rabbits always place themselves on the lane(s) with the

highest speed.  That is, rabbits place themselves on the passing lanes if the speed in these

lanes is greater than vf, and they change lanes so as to equalize the speed on all lanes

otherwise.  (That speeds below  vf  cannot vary significantly across lanes is consistent with facts

B2 and B3.)

The above set of assumptions are sufficient to enumerate all the possible stationary traffic

states that can exist in this theory, as described below.  A few additional assumptions, which are

needed to describe the dynamics will be introduced in Sec. 4.

3. STATIONARY STATES

A stationary state is defined by a set of vehicle trajectories on the time-space plane that

look invariant to translations in space and time.  In view of our behavioral assumptions only two

possibilities exist in this model: (i) a “2-pipe regime” where the speed on the passing lane, V, is

higher than vf and the speed of the shoulder lane is v = vf, and (ii) a “1-pipe regime” where all

vehicles travel with a speed below or equal to  vf  .  In the 1-pipe regime vehicles are segregated

by lane, with all rabbits on the passing lane(s) and all slugs on the shoulder lane(s).

Idealizations of these regimes using perfectly straight vehicle trajectories are displayed on Fig.

1b.

All the information necessary to describe a particular stationary state can be embodied

by a set of six points on the flow-density plane, in the sense that if one was given an internally

consistent set of points  (differentiated by code as in Fig. 1a), then one could draw a set of
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15   A symbol P” for slugs on the passing lane will not be used since it is assumed that P” = 0.

vehicle trajectories with well-defined speeds and spacings for all the vehicle types, by lane.  If

diagrams such as those of parts (a) and (b) of Fig. 1 are drawn with scales such that parallel

lines correspond to the same speed (as is approximately the case in the figures of this paper)

then the time-space trajectories of each vehicle type should be parallel to the ray passing

through the corresponding point on the flow-density plane; see Fig. 1.   The average separation

between the trajectories of a vehicle type, is likewise dictated by the position of the

corresponding flow-density point along its ray.

Notation and representation of stationary states: The codes used in Figure 1 for the

various types of points on the flow-density plane, and for the displayed vehicular trajectories will

be used throughout this paper.  Note that only the filled circle, the filled square and the dotted

square are observable. In the text, the coordinates of these points (density and flow), and the

points themselves will be identified by the letters (k, q) and p, respectively.   Different fonts will

be used to identify the classes by lane as follows: 

capitals, K, Q, P ] passing lane ] solid dot; 

lower case, k, q, p ] shoulder lane ] solid square; 

boldface capitals, K, Q, P ] both lanes total ]dotted square. 

These letters will be superscripted by primes to denote rabbits and by double primes to denote

slugs; e.g., k,” q”, p” = shoulder lane slugs (white square).  Note that six points describe a

stationary state.15   Subscripts will be used to refer to a particular traffic state; e.g.,  p”A  and  p”B

identify the two white squares of Fig. 1a  that are labeled by the corresponding letters.  

Note that every state on the flow-density plane can be represented on the (t, x)-plane by

three well-defined sets of vehicle trajectories, as in Fig. 1b.  White squares  p”A  and  p”B  of part
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16    It is true in general that the superposition of two stationary traffic streams on the (t, x)-plane corresponds to
the addition of their vectors on the flow-density plane.

(a) for example correspond to the two sets of slug (slash-dot) trajectories in part (b).  Note that

only three sets of vehicle trajectories, and therefore only three of the six points defining a state,

can be chosen freely because the following is always true:

p + P = P (1a)

  p’ + p” = p,  and (1b)

  P + p’ = P’ (1c)

These expressions translate graphically onto the flow-density plane quite neatly because they

represent the addition of vectors;16 e.g., (1b) says that “white circle + white square = filled

square”.   The reader should mentally verify that (1a), (1b) and (1c) hold for the data in Fig. 1a.

Equations (1) allow us to represent a state with only three points; e.g., (p’, p”, P) or (p’, p, P). 

This will sometimes be done to avoid clutter. In those cases the reader can fill in mentally the

remaining points.

Loci of stationary states:  Figure 1a also contains a set of lines that further restrict the

possible location of points in this theory.  The bottom solid triangle defines the loci of the

possible states for the shoulder lane (solid squares), and the discontinuous upper solid line the

loci for the states of the passing lane (solid circles).  A dotted ray with slope vf marks the

separation between the two regimes.  

The three slanted lines (Q(K), q(k) and Q(K) ) with slope w are the loci of possible

stationary points (for the shoulder lane, the passing lane and the total) in the 1-pipe regime, in

agreement with fact C13.  This assumes the same wave speed for all lanes, as one would expect

in view of facts B2 and B3.  The location of the three lines is defined by means of two constants,
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17   The ray on which all the points lie is identified by (2a).  It intersects the three loci, (2b), at unique points P, p
and P.  The fraction of slugs (or rabbits) identifies the position of p’ (or p”) relative to that of p.  Eq.( 1b) then
identifies p’ (or p”) and (1c) does the same for P’.

Qm and qm , which denote the maximum flows in the 1-pipe regime on each (set of) lane(s).

These flows will be called “capacities”.  A stationary 1-pipe state is defined by a set of six points

satisfying (1) along a ray with slope V = v # vf .   If a backslash is used to denote the slope of a

vector; e.g.  \ p”A =  vf , these conditions can be expressed mathematically as follows:

     1-pipe conditions:

 (equal average speeds on all lanes)          \ P = \ p’ = \ p” = v = V # vf (2a)

(flow and density averages on the curves)     Q= Q(K), q = q(k), Q = Q(K) (2b)

Note that a 1-pipe state has two degrees of freedom, e.g., the speed of traffic and the fraction

of rabbits (or slugs) on the shoulder lane, or equivalently just the position of point  p’  (or p”).17

A  ray with slope Vf  defines the possible states of rabbits traveling at their maximum

speed (on the passing lane) in the 2-pipe regime.  Rabbits’ states can also be found to the right

of this line with a speed V, such that vf < V < Vf . In this case rabbits will be motivated and

restricted to a sub-maximal speed by other rabbits ahead; their state will be found on a curve

such as  Qc(K).  We will call this set of states a “semi-congested” 2-pipe regime because it

represents a fast-moving queue of rabbits on the passing lane and a free-flowing stream of slugs

on the shoulder lane.  Note that in both 2-pipe regimes, p’ = (0,0) and p” = p.  Thus, there is

perfect vehicular segregation by lane and 2-pipe states also have two degrees of freedom, e.g.,

the position of points P and p = p” on their respective curves. The 2-pipe conditions can be

expressed as follows:
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    2-pipe conditions (uncongested):

(speed conditions)        \ P = Vf   ;   \ p” = vf  ,  (3a)

(segregation conditions) p’ = (0,0) (3b)

(maximum flow conditions)                               Q # Qc  and  q # qm (3c)

    2-pipe conditions (semi-congested):

(speed conditions)         Vf  > \ P >  \ p” = vf ,  (4a)

(segregation conditions) p’ = 0 (4b)

(maximum flow conditions)                               Q # Qc(K)  and  q # qm (4c)

The flows Qc and Qs at the intersection points of Qc(K) and Q(K) with the Vf -ray will be

called respectively the “critical flow” and the “saturation flow”.  It is assumed that  Qc  is

considerably larger than Qs and that Qc(K) defines a straight line with slope  W < w (see figure).

The figure also includes another flow parameter, Qd, which is not needed yet.  Including this

point, the complete figure can be drawn by specifying 8 measurable parameters.  As a final

aside, note that the speed of both lanes is uniquely defined by the speed of the rabbits, V, and

that these relations are continuous and monotonic.  This is true because in all regimes the speed

of the left lane is V and the speed of the right-lane (i.e., the slugs) is: v = min (vf, V). 

4. DYNAMICS

The proposed theory applies to well-posed problems for which data have been specified

on a proper boundary.  A recipe is only given for problems in which the boundary is piecewise

linear and where the data (specified in terms of flows and/or densities, as appropriate) is

piecewise constant.  Insofar as smooth boundaries and data can be approximated arbitrarily well
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by piecewise linear (constant) functions the theory can be applied to any type of data.  This

simplification allows us to dispense with calculus formalisms, which would only lengthen the

discussion in unproductive ways.

The dynamical theory is expressed in terms of 5 reasonable postulates:

(P1) (Stationary behavior): Only the stationary states of Sec. 3 can appear in a solution.

(P2) (Vehicular conservation): Vehicle trajectories of both slugs and rabbits are continuous.

(P3) (Stability): Interfaces between neighboring stationary states on the time-space plane must

be stable to perturbations that smooth the speed of the rabbits; i.e. to all the possible

continuous changes in the speeds on both lanes.

(P4) (Queue discharge model).  There is a well-defined rate at which rabbits flow past the first

slug of a 1-pipe queue in the capacity state when the restriction is removed and rabbits

are allowed to travel at their maximum speed. (The rate could conceivably depend on the

separation between slugs in the queue, but it will be assumed that it does not.)

(P5) (Maximum wave speed for deceleration):  Cross-regime transitions for deceleration can

propagate with a maximum velocity W’ that is somewhere between w and W.  ( W’ could

depend on the upstream traffic state but it will be assumed that it does not.)

Postulate 1 is a reasonable first choice if one wishes to examine the simplest possible theory.

Postulates 2 and 3 are self-evident.  Postulates 4 and 5 could be relaxed with no substantive

changes to the theory, but complications are premature in view of the scant empirical evidence

that is available.  The physical meaning of these two postulates will be discussed in more detail

later.
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18  In reality these interfaces should have a characteristic length comparable with the sight distance, perhaps
spanning tens of vehicle spacings.  The characteristic length should be quite large (comparable with ½ Km, or
perhaps even more) if the freeway is wide and lane-changing is involved.  This means that if the interface is
moving slowly, it can take many minutes to pass over a detector.

Postulates 1 and 2 imply that neighboring stationary states must be separated by a

straight line on the (t, x)-plane (an interface) where the trajectories of slugs and rabbits may

bend, and rabbits may change lanes.  This, of course, is an idealization.18  The slope of such a

line must be such that the relative flows of rabbits (on both lanes) and slugs seen by two

observers moving on both sides of the transition are equal. Letting  UAB  denote the velocity of

the interface separating two states A and B,  we can express this condition as:

UAB = \ (PA - PB) = \ (P’A - P’B) = \ (p”A - p”B). (5a)

In the 1-pipe regime, it follows from (2b) and Fig. 1a that in addition: 

UAB = \ (PA - PB) = \ (pA - pB) = w; (5b)

i.e., that the interface propagates on both lanes synchronously with velocity w. Equations (5)

have the same geometrical interpretation as the condition for the velocity of an interface in KW

theory.  In the present theory, however, interfaces are of two types: “simple”, which correspond

to speed changes without any lane changing (as in KW theory), and “mixed” which introduce

both effects concurrently.  Equations (5) are not sufficient, however, to specify a unique solution

for all reasonable problems.  Postulates 3-5 are also needed.

It turns out that the unique solution to any reasonable problem can always be found by

putting together the unique solutions of elementary (Riemann-type) problems for which the initial

data at an arbitrary time consists of two neighboring stationary states separated by a

discontinuity.  This will be illustrated by means of an example in Sec. 5.  Therefore, the solution
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to all problems can be found if one knows the solution to all possible elementary problems.  This

set of solutions is developed from principles (P1) to (P5) in Secs. 4.1 and 4.2, below.  The first

time reader is advised just to skim the case-by-case results, and to focus on the overall logic

which is given at the beginning of each sub-section.  The list of elementary solutions is given

because it establishes unambiguously that obviously undesirable effects (such as vehicles that

respond to stimuli reaching them from behind) never arise in this theory, and because such a list

can also be used for computerization.

4.1.   Riemann problems with no regime changes.

This is the least interesting case because there is no lane-changing.  Therefore all the

interfaces are “simple”, and the solutions are always as in the KW model.  This is illustrated  in

the three parts of Fig. 2.  

Part (a) of this figure displays the typical solution for a problem consisting of two 1-pipe

states.  As required by Eq. (5) and shown on the left part of the figure, all the adjustments in flow,

density and speed (for all vehicle types) must travel through the traffic stream with the same

velocity, w, and occur synchronously.  This is recognized on the middle part of the* figure, which

shows the wave emitted after the acceleration of a lead vehicle.  The solution is similar for a

deceleration.  In both cases it consists of a simple kinematic adjustment where the proportion

of vehicle types in the traffic stream does not change.  This should not be surprising since there

is no passing in the 1-pipe state. The right part of the figure shows the solution to the Riemann

problem without the vehicle trajectories.  Note that the solution is completely specified by the

wave velocity.  In this picture (and others like it) legends next to each wave indicate the

qualitative characteristics of the traffic stream that are changed by the wave. 

Parts (b) and (c)  of the figure describe problems consisting of two 2-pipe states. In these
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cases slugs do not change their status, but rabbits may decelerate or accelerate.  The latter and

their effects on the traffic stream remain confined to the passing lane.  These effects are as in

the KW model with the flow-density curve followed by the (motivated) rabbits.  As an example,

part (b) of the figure (middle portion) shows a sustained reduction in speed of a vehicle that

blocks the passing lane of a freeway.  The freeway is initially in state A  (left side) and the

reduction is from speed VA to VB.  The decelerated vehicles will form a fast-moving queue

(platoon) behind the lead vehicle with minimum (motivated) headways. This queue will be in a

state B’, where P is at the intersection of the ray with slope VB and curve Q(K), as shown on the

left side.  The back end of this queue will move with a velocity UAB’ = \ (PA-PB’), as shown.  Note

that the interface marking the end of the queue does not affect the slugs; under the right

conditions it could even pass them.  The right side of the figure is the solution to the Riemann

problem.  Because the density of slugs may be different in states A and B, the solution includes

one more wave for the slugs.  This wave is not crossed by the slugs; it simply separates the sets

of slugs that travel (freely) with different densities.  Waves of this type will be called “slips”.

Clearly, state B’ is characterized by pA  and PB .  As in the KW model several cases can arise

depending on whether the problem involves an acceleration or a deceleration and the relative

position of PA and PB .  All cases will have a slug-slip and either one or two rabbit-waves.  Part

(c)  shows an acceleration within the semi-congested state.  An acceleration from the semi-

congested state into an uncongested  state would include a an extra wave and a wedge with the

critical state for the rabbits.

4.2.  Riemann problems with regime changes

Regime changes are more complicated than the simple problems considered in Sec. 4.1

because they involve lane-changing and therefore require the introduction of “mixed” interfaces.
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It will be convenient to consider separately three different cases:  (1) acceleration transitions

from 1-pipe to 2-pipe uncongested flow,  (2) accelerations from 1-pipe to 2-pipe semi-congested

flow, and  (3) decelerations from 2-pipe to 1-pipe flow.

4.2.1.  1-pipe to 2-pipe (uncongested) transitions

As a preliminary step, let us consider what would happen to a long 1-pipe queue of vehicles in

the capacity state, which will be abbreviated by the letter “C” from now on, if the obstruction

causing the queue was suddenly removed.  Imagine that the system is viewed from a frame of

reference moving with the traffic at speed vf and that we record the flow of rabbits passing the

first slug.  The flow in this frame of reference (the passing rate) is denoted Qp .  Figure 3(a)

shows the state in which the system may be found initially and at two future times.  Unless the

density of slugs is extremely high, there is no a priori reason (from a qualitative understanding

of what drivers might do) to expect a significant dependence between this flow and the

composition of the queue.  The figure shows how the front of the 1-pipe regime would recede (in

the moving frame of reference).  Although this front may have a characteristic width that should

encompass several (or perhaps even many) vehicles, it is assumed that its width stabilizes (see

facts C5-C9) and therefore that it should move with an average  speed in agreement with (5a)

in either frame of reference.  Before this can be determined, we need to characterize the state

downstream of the front, which we call the “discharge state” and abbreviate by the letter “D” from

now on.  (Note that “C” … “D”.)

Since the density is the same in both frames of reference the rabbit density in the frame

of reference fixed to the road can be obtained with the formula: 

(relative flow, Qp ) = (density)×(relative speed, Vf-vf)
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and PD can be identified graphically as in Fig. 3(b); the result is: 

PD = ( Qp /(Vf-vf) ; Vf Qp /(Vf-vf) ). (6)

The second (flow) component of PD is a constant of the problem which will be called the (rabbit)

discharge flow on the passing lane, Qd.  We expect Qd > Qm . Note, however, that the flow on the

shoulder lane equals the flow of slugs in the 1-pipe capacity state.  Therefore the total discharge

flow is not fixed and the velocity of the transition zone between regimes, which will be denoted

w* from now on, may vary.  The expression for w* is:

w* = UCD = \ PC - PD = \ PC - PD , (7)

as indicated geometrically in the figure.  Note that w* can be positive or negative, depending on

the flow of slugs in state C; and that it will be negative if the flow of slugs is high.  The

determining condition is QC - QD = 0 , and since QC = Qm + (qm - q”C), we find that w* will be

negative if:

q”C > Qm + qm - Qd. (8)

Since we are assuming that q”C < qm , we see that for negative waves to be possible it is

necessary that,  Qd - Qm > 0.  In view of this condition, we see that negative wave speeds are

more likely in three-lane freeways (if the two lanes closest to the median function as passing

lanes) than in two-lane freeways.

It is now possible to analyze all the Riemann problems involving a transition from a 1-pipe
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19  If Qd were to depend on the speed of the upstream state from which the discharge is
obtained, then an intermediate 1-pipe state between “B” and “C” could appear in the solution.
The solution could then look as that of part (c), with “I” substituted for “C” and UID substituted
for w*.  Because situations with w* < w are quite unlikely to arise, if they can occur at all,
resolving this issue is not urgent.

state to the (uncongested) 2-pipe state.  The three cases that can arise are summarized in Fig.

4.   If we find that w* > w , then traffic in the stable (physically possible) solution includes first a

1-pipe acceleration into the capacity state (as shown in parts (b) and (c) of the figure) and then

a transition into the  discharge state.  This is followed by slug- and rabbit-slips that connect the

discharge and the downstream state. 

It is also conceivably possible, although very unlikely (and perhaps impossible if Qd is not

much larger than Qm ) that w* < w.  In this case, state C cannot appear in the solution, and traffic

would have to transition into the discharge state from a different 1-pipe state.  Consideration

shows that if the flow Qd does not depend on the 1-pipe state that is discharging then none of

the intermediate 1-pipe states between B and C can appear in the solution, and the transition

occurs directly from state B.19  Therefore the stable solution must  look as in part (d) of the figure,

where the velocity of the transition, UBD , is given by (5) in the usual way.  

4.2.2.  1-pipe to 2-pipe (semi-congested) transitions

Now we look at acceleration Riemann problems separating a queued 1-pipe state B and

a semi-congested state A. The only difference between this case and the one just concluded is

that now one must keep track of the back of the (fast) queue on the passing lane with an

additional interface. We focus on the case with w* > w.  If the back of the queue that would be

formed on the passing lane by the discharge state moves faster than the regime transition, i.e.,

if UDA > w*, then the solution would look as in part (a) of Fig. 5.  The left side of this figure only

includes the data points relevant for the question, and the right side only includes the interfaces
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20   We note as an aside that all the solutions in Secs. 4.2.1 and 4.2.2 are stable in the sense of postulate P3.  That
is, if the initial discontinuity in any of the problems is smoothed by introducing an intermediate step (any state with
an intermediate rabbit speed) the solution does not change. (The methodology of Sec. 5 for solving general
problems can be used to check that the intermediate state does not grow into the solution.)

that affect the speed of the rabbits.  Note how they accelerate from  vB  to  vf , then to Vf when

they discharge, and how they finally decelerate to VA on reaching the back of the fast queue;

slugs remain undisturbed throughout.  The right side of the figure should also include two slips

(as in Fig. 4), which do not affect the vehicular speeds.

If UDA  # w* , then the (fast) queue could not stay ahead of the discharge front and the

discharge state could not appear into the solution.  There would be a direct transition from state

C to the semi-congested state, as shown in part (b).  The cases with w* < w are not included in

the interest of brevity.20

4.2.3.   2-pipe to 1-pipe transitions

The idea here is to recognize that the rabbits would change speed gradually from V to vf
+

(in the 2-pipe regime) and then to vf and below (in the 1-pipe regime), and that stability

considerations will tell us which of these intermediate states can grow into the solution and which

must be absorbed in interfaces. The intermediate state with speed vf
+ will be denoted “B” and the

final state, “E”.

Figure 6 shows how state  B  is determined from an initial state,  A , of high flow with the

rules of 2-pipe decelerations covered in Sec. 4.1.  It turns out that the complete form of the

transition depends on whether or not the flow after the deceleration to  vf
+,  QB , exceeds  the

capacity flow for both lanes,  QC , as illustrated by the examples in parts (a, c) and (b, d) of the

figure. To understand these examples (and the additional cases that arise when the upstream

flow QA is low) it is useful to imagine first what drivers would do as they experience the regime

transition from semi-congested state  B  to state  E ; e.g., if they had to decelerate gradually due

to a moving obstruction that gently slows to a speed vE. 
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21  The logic for this statement, given in Daganzo (1999), can be verified with microscopic simulations.

The group of vehicles immediately behind the obstruction will decelerate gradually,

initially from vf to vf
!, and they will change lanes as they do so.  This should be clear because

if rabbits and slugs decelerated on their respective lanes, the density on the passing lane would

remain considerably higher and this would induce rabbits to change lanes. Clearly, the result of

the initial deceleration to speed  vf
!  and the concurrent lane-changing should be a more even

(1-pipe) density distribution across lanes. The corresponding (1-pipe) state will be denoted  “B!”.

Further decelerations would then be achieved by our group of vehicles in a purely kinematic way

and be transmitted with velocity w, as discussed in Sec. 4.1 and shown in Fig. 2a.   

A case that was not discussed in Sec. 4.1 arises, however, if  QC $ QB  because then B!

is not an equilibrium state.  This requires an additional assumption.  Namely, that decelerations

from the non-equilibrium 1-pipe state  B!  propagate faster than ordinary kinematic waves, with

a velocity W’ < w (see postulate 5) .  This velocity could in principle depend on the state and be

a function of QB , but there is no available empirical evidence (other than fact “G”) to see if this

is the case. Thus, it will be assumed for the remainder of the paper that W’ is a constant.  A

value W’ . W will be used for illustration purposes.  The existence of the fast wave means that

vehicles upstream of our group would have to transition abruptly from state  B!  into a well-

defined equilibrium state,  “I” , when the fast wave hits them, and then settle into state E when

the slow wave arrives. This is the only possible stable pattern.21   (Figure 6b shows how state

I is identified by means of the slanted line with slope W’ that passes through PB.)  It is now

possible to solve the(Riemann) problems including a discontinuity between state A and state E,

and have an intuitive understanding for the results; e.g., the solutions given on the bottom part

of Fig. 6.

Consider first the case corresponding to the diagram of Fig. 6a, where  QC $ QB  . The
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geometry of interfaces shows that the only states that can grow into the solution as a result of

a smooth deceleration through states A, B, B!, E are corners in the convex lower envelope of the

piecewise linear curve with corner-points PA , PB  = PB-, and PE.  All other states must be

absorbed in interfaces.  Therefore, the solution may or may not include state B depending on the

relative positions of points PA, PB and PE.  The intermediate state B will appear if and only if  UAB

< UBE.  This case is shown in part (c) of the figure.  Otherwise, there is a direct transition from

“A” to “E”.

The case corresponding to part b of the figure ( QC < QB ) is similar.  One now needs to

consider the relative position of points  PA , PB  = PB- , PI, and PE . Two sub-cases can arise,

depending  on the relative position of points  PA  and  PI .  If as occurs in part (b) of the figure UAI

< w, then state B = B! cannot appear in the solution and there must be a direct transition from

state A to state  I.  This is then followed by a 1-pipe kinematic adjustment into state E.  The

prototype stable solution is as that shown in part (d) of the figure.   Note that the 1-pipe change

in speed can be positive or negative depending on the relative positions of points  PE  and  PI

on line Q(K).  For the other sub-case (with UAI > w) intermediate states (B, I) cannot appear in

the solution and there is a direct transition from state A  to state E.

Note that in every case direct transitions occur if QA is low.  Otherwise, some intermediate

states that expand into the solution occur upstream of the 1-pipe queue. Drivers would

experience these precursor states before joining the queue.  The propagation velocity of the

precursor states can be positive or negative, but never smaller than W’.  As illustrated by parts

c and d of Fig. 6, the character of the precursor states depends on state A.  In general, higher

values of QA lead to more congested precursor states.  Precursor states with V = v = vf  and V

= v = 0 are theoretically possible within the same model. This is consistent with the seemingly

contradictory observations (G1-G2), and (G3).
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22  The general procedure is explained in more detail in Daganzo (1997a and b).

5. DISCUSSION

The solutions of the Riemann problems (Figs. 2, 4-6) allow us to solve exactly any well-

posed problem with a piecewise linear boundary and piecewise constant data, simply by drawing

Riemann interfaces from every point of discontinuity on the boundary, and then stepping through

time, solving additional Riemann problems where the interfaces intersect.22  

Example

As an illustration let us examine what would happen in this theory if an incident that

blocked all flow occurred in a  free-flowing but heavily traveled freeway.  This is done in Fig. 7.

The initial state of the freeway, denoted “A”, is sustained by entering flow at x = 0 that stops at

time t = 3.  The incident is represented by segment S0,S4 in part (b) of the figure. The remaining

lines in this sketch are results of the theory, as per the flow-density diagram of part (a).

Because the incident represents an inhomogeneity, a subsidiary theory is needed.  It

consists of assuming (reasonably) that the incident will separate two regions with no flow, a

stoppage with v = V = 0 upstream, and an empty freeway downstream.  The solution for the

problem at S0 can then be constructed by considering two Riemann subproblems, one at x0
-

(between states A and F) and the other at x0
+ (between states O and A), and then piecing

together the two answers.  The result consists of two forward-moving slips and two backward-

moving waves, all emanating from S0 . Because QA is very high, the regime transition moves as

a fast wave, which is followed by a precursor 1-pipe state and then by a deceleration into the

stopped queue, as in Fig. 6d.  

The next step takes place when the rabbit-slip denoting the absence of rabbits emitted

by the boundary at t = 3 meets the fast wave at point S1.  The Riemann problem at that moment
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23  Note that if a high flow stream were to be released from the boundary at time t >3, then other precursor states
could be introduced in the solution.

24  It explains both instances because the level of congestion in the precursor state depends on QA.

is between an upstream uncongested state with p”A  slugs and no rabbits,  and downstream state

I .  With low upstream flow, the solution involves a direct transition, as discussed in sec. 4.2.3

and shown in Fig. 7.  This procedure is then repeated at every intersection point by solving

additional Riemann problems (always for a homogeneous freeway now).  The sequence of points

{Si: i = 2, ... 6} and the displayed boundaries are the result.23  From these, one can easily

construct flow-density scatter plots and cumulative N-curves.

The solution of this example is interesting because it illustrates that the proposed theory

is consistent with several of the most puzzling phenomena in Sec. 1.  Note in particular that:

(i)   The stoppage propagates without changing shape, which explains observations(C8)

and (C9).  This happens even though the flow into the stoppage is smaller than the

(capacity) flow leaving it.

(ii) The onset of congestion (the wave separating state A and I) propagates quickly

upstream and a slower wave introduces the more severely congested state, F,

which does not propagate as far upstream.  This explains circumstantial

observation (G).24

(i(iii) The flow and density scatter-plots obtained from detectors located upstream and

downstream of the incident, e.g., at x1 and x2 , are as in Fig. 7c.  The pattern

matches qualitatively observations (A6)-(A10).  

(iv) If one included periods of time earlier in the day with lighter flows, leading to state A,

and one were also to include the effects of a time-dependent bottleneck that lets

through a variable amount of flow, instead of a complete stoppage, then it is easy

to see that a reversed lambda pattern would be obtained on the flow-density plane
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25  In the author’s opinion, more detailed models of the 1-pipe regime are premature until a better experimental
understanding of the causes for instability emerges. If instabilities are triggered by lane-changing, as seems to be
suggested by the Treiterer and Myers (1974) data, then the best approach would have to be probabilistic.

for the passing lane, but not for the shoulder lane.  This is consistent with items

(A2)-(A5).

(v)  In agreement with (C10), there are no spreading waves.

Although the proposed theory is not detailed enough to explain the “stop-and-go” oscillations of

the 1-pipe regime, it should predict accumulations and cumulative flows reasonably well--see

item “C”.25

Predictions

The theory also makes some predictions that can be tested by experiment.  For example:

(i) that a traffic “collapse” from an over-saturated state on the passing lane is possible even if

the shoulder lane flow is low; (ii) that a fast wave and a precursor state occur behind the back

of a 1-pipe queue only if the approaching flows are high; (iii) that a “reverse collapse” is possible,

particularly in 2-lane freeways: i.e., that if the proportion of slugs is so low that (capacity) flow

in a 1-pipe queue is higher than the highest possible uncongested flows, then by restricting the

speed of an uncongested traffic stream with maximal flows to a value slightly below vf one could

force it into a 1-pipe regime and increase total flow; (iv) that observers downstream of an incident

that has just been removed will first see fast cars, then a 1-pipe “discharge state” with a

consistent flow on the passing lane(s)  (probably on the order of 2000+ veh/hr), and that if the

flow on the shoulder lane is  high (w*>0) this will be followed by a capacity state with slightly

higher flows on the shoulder lane and slightly lower speeds on the passing lane. (v) Conversely,

a 1-pipe discharge state may be seen upstream of the incident after the capacity state if the

stream is poor in “slugs”.

The proposed theory can be implemented by computer in a variety of ways: (i) by coding
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the exact procedure that was used to develop Fig. 7; (ii) by developing formulae for the flows

observed at the location of the discontinuity in every Riemann problem and then using this

information to predict the densities on a lattice with a finite difference approach (Godunov’s

method); (iii) by using the IT finite difference approach proposed in Daganzo et al. (1997); and

(iv) by developing a micro-simulation using the principles of driver behavior that led to the theory

and then checking that the macroscopic behavior of the simulation is consistent with what is

expected.

It is also desirable to see if the rules of the theory can be simplified when the data are

expressed in terms of N-curves (e.g., in terms of minimum principles for important special cases)

because this could facilitate the visual interpretation of detector data.

Real driver behavior and modeling extensions

It was assumed in the simplified model that there were only two types of drivers and two

sets of lanes. It was also assumed that traffic behaved as if there was a speed limit vf on the lane

(or lanes) closest to the shoulder and that drivers of both types chose to be in the set of lanes

that allowed them to travel fastest.  However, drivers never exceeded their desired speed and

always segregated themselves so as not to encroach on faster lanes.

A more refined model, still within the proposed theory, would recognize that there is a

continuum of desired speeds and would also recognize as many lane types as there are lanes,

R = 1, 2, ... L.  Such a model could still be based on the above-mentioned driving principles, using

separate speed limits, vR, for individual lanes.  If the lanes are numbered in increasing order from

the shoulder to the median, the speed limits would be assumed to satisfy:  vf = v1 # v2  # ... # vL-1

# vL = Vf .  The results of this model are not very different from those of the simple model;

especially with regards to the regime transitions.  For example, precursor 1-pipe states upstream

of a queue still arise when heavy (over-saturated) traffic is interrupted, as occurred in Figs. 6(c,
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d), and the removal of an obstruction that holds back a 1-pipe queue is still followed by a

capacity state and/or a discharge state, as illustrated in Fig. 4(b-d).  The main difference is that

in the new model there is more than one discharge state, depending on the number of low

numbered lanes that are flowing at their speed limit.  In the present case, if  R  lanes are flowing

at the limit, one would expect the combined passing rate QpR  on the remaining lanes ( R+1,  R+2,...

L ) to be fixed (and known).  Therefore, the discharge flows QdR on these lanes should also be

fixed and known. The individual flows on the lowered number lanes ( 1, 2, ...  R ) should also be

known since they are directly related to the distribution of desired speeds within the queue.

Thus, the character of each discharge state, DR , is known.  Clearly then, a group of fast vehicles

released from the queue would experience known states {C, D1, D2, ... DL-1}, in sequence.

Depending on the initial composition of the queue some of these states may or may not

propagate into the solution.  If they all do, the solution would look as in Fig. 8.  If total flow

decreases across the sequence, as it is quite likely for low R, then states with low R  would

propagate in the upstream direction, also as shown.  An upstream observer would then see a

succession of semi-congested states with increasing speeds, first across all lanes until the

shoulder lane reaches its limit, then across the remaining lanes until the second lane reaches

its limit, etc.   Conversely, a downstream observer should see the reverse process, with speed

reductions starting at the median.  Figure 8 reveals that the processes last longer if the

observers are moved away from the original obstruction.  The lane-specific form of these

adjustments is the main difference between the generalized and simplified models.

We stress that the proposed theory is not accurate for very light traffic.  Under these

conditions, drivers should normally follow the “rules of the road”, staying on the shoulder lanes

except when passing, and they may not behave as described.  As traffic increases, however,

queues of fast vehicles invariably form behind slower passing vehicles, and platoons are
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observed on the passing lanes.  As these platoons grow in length (with increasing flows), it

becomes less appealing for platoon leaders to pull off to the shoulder lane and allow the queue

to pass (see F1).  At the same time, fast vehicles may stop pressuring those in front to pull off

because they know they would find queue after queue, and that their travel time savings would

be low. Thus, one would expect traffic to self-segregate by lane for medium to heavy

uncongested flows, and in such cases the proposed theory seems reasonable.

Another generalization, still within the scope of the proposed theory, would allow vehicles

to change their desired speed slightly in response to traffic conditions.  It is not clear, however,

whether this modification is sufficiently different from the previous proposal to deserve a

separate pursuit.

Finally, note that in the proposed theory, a traffic stream can “collapse” from and over-

saturated and uncongested state with Q > Qm + qm  and  V = Vf  into a 1-pipe queue and an

under-saturated capacity state if affected by a sufficiently large disturbance, e.g., a sustained

reduction in speed to a level below vf .   The resulting traffic stream, however, cannot be put back

into the original over-saturated state without external assistance.  Thus, if there is a “collapse”

there can be no spontaneous full recovery.  In other words, over-saturated states are unstable

when subjected to certain large perturbations.  This means that one must still look for an

exogenous mechanism that induces traffic to become uncongested and over-saturated in the first

place. This author believes that merges provide the assistance through a “pumping”

phenomenon.  These ideas are described in a companion paper that attempts to explain

evidence “E”.
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