Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Title
JETS IN e+e- ANNIHILATION

Permalink

https://escholarship.org/uc/item/8nr9170t

Author

Cooper, Susan Catherine.
Publication Date
1980-08-01
Peer reviewed

IB Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

Physics, Computer Sc ience \& Mathematics Division

JETS IN $e^{+} e^{-}$ANNIHILATION

August 1980

LEG/L NOTICE

This book was prepared as an account of work sponsored by an agency of tiee United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any intornation, apparatus, product, or process disclosed, or represents that its use would trot infringe privately owned rights. Reference herein to any specific conmercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its cedorsement, recomumendition, or favoring by the United States Govermment or any agency thercof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Jets in $e^{\dagger} e^{-}$Annihilation

Susan Catherine Cooper

Lawrence Berkeley Laboratory
 University of California
 Berkeley, California

Auyust 1980

ABS'PRACT

The properties of jets produced in $e^{+} e^{-}$anninilation have been investigated using data taken witi the ilark l detector at SPEAR. The momentum distributions parallel and perpendicular to the jet axis were measured for all charged tracks, fork $k^{0} s$, and for $\rho^{0} s$. The k^{0} and $\rho^{0} p t^{2}$ distributions are well fit by the form $\mathrm{dn} / \mathrm{dPt}{ }^{2}=\mathrm{A} \exp \left(-\mathrm{B}^{2}\right.$. $P t^{2}$) with $B=4.6+/-0.2$ for $K^{\circ} s$ and $5+/-1$ for ρ^{0}. The charged particle pt^{2} distribution cannot be fit with a single exponential, but is similar to that of $K^{O_{s}}$ and $\rho^{O_{s}}$ above $P t^{2} \sim 0.2 \mathrm{GeV}^{2}$. The charyed particle and K^{0} parallel momentum distributions are similar in shape and
approximately exponential. The production of $\rho^{O_{s}}$ at low parallel momentum is suppressed. The average number of $\rho^{0_{s}}$ per event is $0.4+/-0.1$.

ACKNOWLEDGEMEn'I's

The data used in this thesis were taken with the SLAC-LBL magnetic detector before I joined the collaboration. I wisn to thank all those who participated in the construction and running of SPEAR and the magnetic detector. for their particular contributions at various t ines in hy graduate career, I thank willy Chinowsky, Jin 'Niss, Jin Sieyrist, Gail Hanson, and Vera Luth.

This work was supported by the U.S. Department of Energy under Contract W-7405-ENG-48.

＇TABLE：OE＇CUNALN＇I＇

AC＇KNOwaLEDGEMEAN＇S i
Chabter pace
I．INAROMJUCNON 1
Discovery of Jets in $e^{+} e^{-}$Anniailation 2
＇rhe jet model lu
angular Listribution of Jet axis 10
Detailed Jet lroperties 12
1．DE＇T＇じ口OK 1.5
Trijuer 21
Trackjiky 23
Event Selaction 23
monte Carlo Detectot Simulation 26
III．UL＇A＇ERMINATIOS！OH JE＇I AXI． 26
sulticity $2 \dot{ }$
Thrust and Spherocity 30
inalysis of shericity axis Error 31
Visible Eneryy Cut 34
aijg momentum＇l＇tack Cut 33
 42
Method of tificiency Calculations 44
monenta Parallel to the Jet axis 49
pomenta Traniverse to the Jet axis 59
V．K^{0} mRUDUCTION 69
$k_{K_{0}^{0}}^{0}$ molectiontum inistrivutions 77 34
VI．ρ^{0} RHODUCTION 90
backijrunad Leteraination ¢3
method l 93
method 2 Y 6
metion 3 100
Results 101
Conparison wita Previous ineasurements 10s
mass 105
kate 110
domentun vistributions 111
VII. CUIVCLUSIUN 117
$A_{i \cdot}$ uendix paye
A. KADIAIIVE COKRECIIONS 120
-. LIMITED 'fRANSVE'RSE' MOIVAN'TUM MODEL 128
 137
LIS'T' Un' 'IAbLES
'lable pave

1. mark 1 Detector Conronenis 19
2. x_{11} 53
3. $P t^{2}$ 64
4. L. timate of Stranye Sea Juark fraction 74
5. ρ^{0} Production 103
ó. Initial State radiation. 125
6. Parameters for LIifPr model 136

LIS' OF FIGURES

Figure paje

1. Observed Pt ${ }^{2}$ Distribution 5
2. Ouserved Sphericity Distributions 6
3. Uuserved x vistrisution B
A. Uisserved Sphericity vistributions 9
勺. (Distridution of Observed Jet Axis 14
4. Ubserved inclusive α vs. χ 15
5. Mark l Detactor 17
6. mark l Detector 13
y. 'rish efficiency 22
7. Vertex Position 25
ll. Shtericity Axis Error. 33
8. Visiole Eneryy 35
9. Averaye Sraticity Axis Etror 36
10. Averaye Event Properties 37
11. averaye Jet axis error vs. Laryest ïll 39
12. averaye ivent properties for K_{H} Cut 40
13. Naw Distrinutions in $X_{l l}$ and $p t^{2}$ 43
14. Uncorrected, Iau Subtracted all 50
1y. Error in K_{11} 51
15. Efficiency for \boldsymbol{K}_{11} 54
16. Corrected $x_{\|}$Distrivution 55
17. x_{11} in reyman-rield model 57
18. $x_{l l}$ of primary hadrons 54
19. I'au subtracted, Uncurrected $\mathrm{t}^{2}{ }^{2}$ 50
20. Comparison of Lata and monte Carlo. 61
2万. Efificiency for pt ${ }^{2}$ 62
21. Corrected Pt^{2} Distribution 63
22. Error in pt^{2} GG
23. Pt^{2} in leyman-rield rodel 67
3u. Pt ${ }^{2}$ of prinary hadrons uy
24. $k(k)$ vs. center-of-inass uneryy 71
25. Average number of kaons per event 72
26. K^{0} Production in Feyman-lield Model. 76
27. Uncut $\pi^{+} \boldsymbol{\pi}^{-}$mass Distribution $7 i$
28. $\pi^{+} \pi^{-}$inass Distribution with Final Cuts 30
3n. Plots of cut yuantities \& 2
29. Primary vertex position 33
30. K Efficiency 36
31. κ^{0} Monentun Distrioutions 37
32. K° monentum Distributions 88
33. K^{0} sources. 39
34. M($\left.\pi^{+} \pi^{-}\right)$for various mass bins. 92
35. Sane-sign Back:jround 95
36. Fits to p nass with same-sign backyround. 37
37. Fits to p mass with exponential backyround. g
38. Comparison of inethods 1,2s3 102
39. Corrected x_{1} and pt^{2} of $\rho^{U_{s}}$. 105
40. ρ^{0} prouuction in the Feyman-ifield model. 107
41. ρ^{0} monenta in Feyman-tield model. 108
42. $1\left(\rho^{0}\right)$ vis. E'Cll 112
43. f^{0} production 113
44. p^{2} distrisution of p_{s} 115
45. $x_{\|}$Listriaution of $f^{D_{S}}$ 116
46. Feynman jraphs for ${ }^{+} u^{-} \longrightarrow 4 \bar{y}$ 121
SS. Effect of Radiation on Jet Axis 127
47. Flow Chart of Duarh Fragmentation 139
48. ieyman-tield Charyed particle $X_{\|}$ 142
49. Jhe Joining of 'i'wo Jets. 141
5y. Iotal inneryy and monentun before ke-scaliny. 145

Chapter I

InTRODUCTIUN

According to the quark-parton model, nadronic final states are produced in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation via a throe step process: the electron and the positron annihilate to Eora a neavy virtual photon, the photon produces a yuark and an anti-ifuark, and they in turn produce hadrons. Dhe Eirst tivo steps are described by vell-understood kuantun Electrodynadics and are exactly the sane in lowest order as for the process $e^{+} \epsilon^{-} \longrightarrow \mu^{+} \mu^{-}$except that the juari ciar.je replaces the muon charye. Inins the ratio R of the cross sections for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons and $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$should be constant and eyual to the suin of the siquares of the yuark charges hultiplied by 3 because eacin yuark can have eacin of 3 colors. In fact the datal show two refions of nearly constant R, in approximate ajreemert witi proctuction of u_{i}, down and strange fuarks (charyes $2 / 3,-1 / 3$ and $-1 / 3$, hence $n=2$) below 4 GeV, and with the addition of charaed yuark production (charie 2/3. increasing is to $31 / 3$; above that energy. The discovary of the jsi farticles at 3.095 ceva,

1J. i. Siegrist (ciresis) shic-225, 1979.
2.-5. Ausustifa et al., Piojs. kev. Lett. 33:1406, 1974 J. J. aubert et al.. Phys. Rev. Lett. 33:1404. 1974.
$3.585 \mathrm{Gev}^{3}$, and $3.77 \mathrm{GeV}^{4}$ and of charnted heson production above 4 Gev 5 has given strony suport to the presence of tha charmed quark in this picture.
1.1 DISCUVEITY OF JETS IN $e^{+} e^{-}$ANNIAILATIUW

The mechanisin by which yuarks turn into hadrons is not well understood, but the suggestion ${ }^{6}$ that the hadrons migint cluster about the quark direction, resulting in two oppositely-directed "jets" of particles in $e^{+} e^{-}$ anninilation, was investigated by Gail Hanson using mark 1 jata taken at center-ofmass eneryies jetween 3 anc $7 . \mathcal{B}^{3}$ Gev ${ }^{7}$. Evidence for jets was seen at center-of-mass energies anove 5 GeV .
dhe clusteriny ady be expressed as a limitation of momentum transverse to the quark direction, sinilar to the

3G. S. Abrans et al., Phys. Rev. Lett. 33:1453, 1474.
4_{1}. Kapicijs et al., Phys. Rev. Lett. 39:52G and 974, 1977.
5G. Goldhaber. F. pierre, et al., Phys. Rev. Lett. 37:255, 1976.

ÓS. D. D.ell, D. J. Levy, and r. in. Yan, Phys. kev. 137:2159, 1969, and Phys. Kev. il:1617, 1970. N. Cabiabo, G. Parisi, and m. Testa, Lett. Nuovo Cinento 4:35. 1970.
J. D. bjorisen and S. J. bradsky, Phys. Rev. Dl:14ló, 1970. K. P. Feynnan, Photon-iadron Interactions, (i. A. Benjamin, Inc., 1972), p. Ī̄6.
7G. tanson et. al., Phys. Rev. Lett. 35:1609, 1975.
limitation of monentu: transverse to the dean direction that is cheracteristic of hadron interactions. ive inight expect the average transvarse momentun in $e^{+} e^{-}$aminisilation to be similar to the . 3 to . $4 \mathrm{GeV} / \mathrm{C}$ average transverse momentum seen in hadron interactions. In $e^{+} e^{-}$anniailation, the average hadron momentum increases from. . 77 to . $\overline{6}$ g GeV/c as the total center-of-mass energy goes from 3 to 7.4 Gev. 3 fhus tiese eneryies are not sufficiently airg for the clustering to de owvious in a visual insuection of events; our jet stulies must rely on stutistical analyses.

One would like to plot the hadron monenta transverse to the yuark direction. However it is inyossible to know the Guark direction for any given event since hadrons, not yuarrs, are detected; but if this picture were correct one would expect that the quark axis would be close to an axis which in sone way minimizes the transverse momenta of the hadrons or maxinizes the longitudinal momenta.

The particular approach used was sumgested in a footnote to a japer by bjorken and brodsky ${ }^{9}$ and is described in detail in chapter 3 of tins thesis. me shericity axis is defined to minimize the sum of the squares of tine transverse momenta. Of course, suca an axis exists Eor any event. figure 1 illustraces this for a monte Carlo model wisich has

OJ.L. Sie:jrist (thesis) SLAC-225, 1979. ${ }^{9}$ J.D.Bjorken and S.J. orodsky, Plays. Rev. Ll: 1416, 1970.

```
a multiplicity distribution chosen to fit our data above 7
Ucv but with the particle momenta distrisuted according to
Lorentz-invariant plaase space, hence not jet-like.
Gransverse momenta relative to an arbitrary axis and to the
simericity axis are plotted. For events of infinite
multi\mulicity these distributions would be tine same, but for
our averace detected multiplicity of 4 the sphericity axis
yives substantially lower transverse momenta. However the
transverse inonenta relative to the sphericity axis for the
data are considerably lower than for this phase siJace model,
which means there aust be a real effect limiting the
transverse momenta.
```

'he e[fect is shown better in terms of the sphecicity wilicil is defined as the ninimum of the sum of the squares of tine transverse inomenta, normalized to a maximum possiole value of lo:

The spinericity distributions for several center-of-mass eneryies are shown in Figure 2 and contrasted to the以edictions of the phase space model.

Fijure 1: Observed pt ${ }^{2}$ Distribution.
a) Pt^{2} relative to an arditrary axis for all detected tracks of the jhase space tionte Carlo.
b) $P t^{2}$ relative to tine observed sphericity axis for all detected tracks of tine pinase siace ionte Carlo.
c) $P t^{2}$ relative to the observed sphericity axis for the data.

OBSERVED SPHERICITY DISTRIBUTIONS
HADRON EVENTS, 23 PRONGS

- Data
-.- Monte Carlo, Phose Spoce
- Monte Carlo, Limited

Tronsverse Momentum

Figure 2: Observed Sphericity Distributions for data (points), jet model (solid curves) and phase space model (dasined curves) for center-of-mass eneryies (a) 3.0 GeV, (D)
6.2 GeV. (c) 7.4 GeV.

The data also disayree with the phate isuace model predictions Eor the distridution in scaled monentun $X=$ P/Prax for $x>.4$ as shown in figure 3 . To show that the disabreenent in spirericity is not due only to this excess of high monentun particles, the sphericity distrioution is shown in figure 4 separately for events in which there is no detected track of $\mathrm{x}>0.4$.

rigure 3: Observed x Distribution at 7.4 GeV center-of-mass enerjy for data (points). jet model (sclid curve) and mast space model (dashed curve).

Figure 4: Observed Sphericity Distributions at 7.4 GeV center-of-mass eneryy for data (points), jet model (solid curve) and phase space model (dashed curve): (a) for events containing no detected track of $X>0.4$, (0) for events with
a detected track of $X>0.4$.

```
1.2 'IHE JET MOLLE
```

A very sinfle jet nodel was constructed to incorporate the limited transverse momentum. the rogram Genis ${ }^{10}$ was used to yenerate transverse momenta with a $\exp \left(-i \mathrm{Pt}^{2}\right)$ Jistribution ana lonyitudinal monenta according to Lorentz invariant fhase space. All particles were assumed to be pions. The total multiplicity was chosen with a poisson distribution. The average total multiplicity, the average fraction of fions that were neutral, and the transverse momentun parameter b were adjusted to fit the data. Initial state radiation was included as described in Appendix A. The resulting ayreement with the data is excellent as shown in Figures 2 and 3 . In the contrasting "phase space model", all three components of momenta were chosen according to Lorentz invariant frase space using the progran GOGEN. ${ }^{1 l}$

```
1.3 ANGULAR DIS'LRIBUTION OF NETS AXIS
```

The quarks and hence the jet axis siould have the same $1+\cos ^{2} \theta$ distribution as the muons in $e^{+} e^{-} \longrightarrow \mu^{+} \mu^{-}$, where θ is the iolar anyle with respect to the e^{+}bean direction. witnin the limited θ acceptance of the mark l detector, this

[^0]anyular distribution is very hard to deternine. However it turns out that for some center-of-mass eneryies the electrons and positrons stored in SPEAR becone polarized along the direction of the magnetic field of the bending inagnets of SPEAR. In this case the anyular distribution is
$$
\frac{d \sigma}{d \Omega} \sim 1+\alpha \cos ^{2} \theta+\alpha p^{2} \sin ^{2} \theta \cos 2 \phi
$$
where p is tue adanitude of the polarization and D is the azimutnal angle about the bean axis measured fron the flane of the storage ring. The polarization has a tine dependence
$$
P(t)=P_{0}(1-\exp (-t / \tau))
$$

The $\cos 2 \emptyset$ angular dependence was observed ${ }^{12}$ in the e e e^{-} $\rightarrow \mu^{\top} \mu^{-}$reaction witn $p_{0}^{2}=.76+/-.05$ and τ approximateiy 10 minutes at 7.4 GeV , indicating the existence of bean polarization at this eneryy. The cos21 deqendence was also observed ${ }^{3}$ for the jet axis: Figure 5 shows the Φ distribution of the jet axis at an eneryy where polarization does not occur and at 7.4 Gev where it does. 'Ihe data with polarization are consistent with the prediction for the distribution of the detected jet axis for $\alpha=1.0$ and the time-averaged value of $p^{2}=0.47$ as determined fron $e^{+} e^{-} \rightarrow$

12J.G. Learned et. al., Phys. Kev. Lett. 35:1688, 1975.
13G. Hanson et. al., Phys. Rev. Lett., 35:1609. 1975. G. Hanson et. al., SLAC-PUB-1814, 1976. Also in Tutzing Conf. 1976:313 (QCi) 161:C49:1976) and Tbilisi ConE. 1976: Bl (QCi 161: 1451:1976:V.2).
firfi daca taken sinultaneously \quad Phe best fit yives $\alpha=0.97$ $+/-$ J.l4. This angular distriosution is also evident in the \therefore inh momentua tracksi4. riigure 6 shows the value of the inclusive \propto as as Eunction of the scaled momentum X compared to tine predictions of the simule jet model.
1.4 DETAILED JET PRUPERTIES

The existence of jets in $e^{\dagger} e^{-}$anninilation was established by the work we have sumarized in this chapter. That work used only final state charged particles, without any farticle identification. In this thesis, we extend the investijation of jets to include sone of the heavy particles. We measure the total production of $\mathrm{K}_{\mathrm{s}} \mathrm{O}_{\mathrm{s}}$ and $\rho^{\mathrm{O}_{\mathrm{s}}}$, as well as their monentua distributions parallel ard perpendicular to the jet axis. In addition, we repeat the earlier measurenents of cinaryed particle momenta, using monte Carlo models which include heavy particle production to check for systematic errors.

Our data sample contains approximately 40,000 hadronic events taken with the sLAC-LBL maynetic detector (mark l) at tae electron-positron storaye ring Speair. 'fnese data wert taken with vean energies ranying between 3.5 GeV and the maximun jossible at SpErk, 3.9 Gibv. The averaye total
lír.i. Scawitters et. al.. Phys. Kev. Lett. 35:1320, 1975.
center-of-mass energy for these data is 7.3 GeV . The Mark 1 detector has been replaced by the mark If, which has better momentun resolution and somewhat larger solid angle. In addition, the mark II has reasonable photon detection Capa!ilities, which were almost entirely lacking with the mark 1. However, high statistics and niyh eneryy are important in the study of jets. The discovery of charined particles lead the Mark II collaboration to take most of their data at lower eneryies, leaving the mark 1 data superior for jet studies in the SPEAR energy range.

Figure 5: $\$$ for jet axes with $|\cos \theta|<0.6$ for center-of-mass enerjies (a) 6.2 GeV and (土) 7.4 GeV .

figure 6: Observed inclusive α vs. X for particles with $|\cos \theta|<0.6$ in hadronic events at 7.4 GeV center-of-mass eneryy. The prediction of the jet model Monte Carlo simulation for a jet axis angular distribution with $\alpha=0.97+/-0.14$ is represented by tire shaded uand.

Chapter II

DETEC'IOK

Abstract

The data discussed in this thesis were taken with the Sptink magnetic detector (posthmously renamed the mark l) in 1975 and 1976. The detector had a . 4 resla solenoidal magnetic field provided by 1.7 m radius coil with its axis of the beati line. Inside the magnet were proportional chambers and spark chambers which provided charyed particle tracking over 73 of 4π sr. Scintillation counters just inside the magnet coil were used for time-of-flight measurenents. A layer of lead-scintillator-sandwich shower counters outside the nagnet coil were used to distinguish minimun-ionizing particles from particies wich produce electronagnetic. showers. Scintillation counters around the bean pipe ("pipe counters") were used in the trigger. In addition there were spark chambers outside tine magnet return yoke and additional shialding to separate muons from hadrons, but they were not used in this thesis. Figures 7 and 8 show the size and placement of the various pieces of the mark 1. Table 1 lists the thickness of the various jarts.

The standard coordinate system was right-handed with the z axis parallel to the bean and the y axis vertical,

Figure 7: Mark 1 Detector

XBL807-3494

Fiyure 3 : Mark 1 Detector
Ore-yuarter view of mark 1 detector showiny radii and active lengths of measuriny devices. The upper dotted line indicates the solid anyle for lasid (linited by the lenyth of the time-of-fligint counters). fhe lower dotted line indicates the solid anyle for charyed isarticle detection (limited by the lengen of the third spark chan!eer module).

TABLE 1
MARK I DETECTOR COMPONENTS
(all dimensions in cm)

Item	Average Radius	Fraction of 4π Acceptance	Length (2)	Thickness	Fraction of Radiation Length	Fraction of Absorption Length
Beampipe	8.0	-	-	0.0273	0.016	0.002
Pipe Counters	12.0	0.83	90	1.37	0.033	0.020
MWPCI	17.3	0.82	-25	1.98	0.0066	-
MWPC2	22.4	0.88	± 41	1.98	0.0066	-
WSCl	66	0.86	± 110	3.8	0.0017	0.001
WSC2	91	0.77	± 110	3.8	0.0017	0.001
WSC3	112	0.73	± 120	3.8	0.0017	0.001
WSC4	135	0.71	± 134	3.8	0.0017	0.001
TOF Counters	152.4	0.65	± 130	2.5	0.060	0.037
Coil	166.4	0.74	± 182.9	11.0	1.0	0.24
Shower Counters	178.4	0.66	± 155	13.0	5.79	0.22
Flux Return	211	-	± 183	20.0	11.4	1.17
Muon WSC	219	0.73	± 234	5.7	0.22	0.07

purallel to the magnetic field of the bending magnets of Si-s.as. The origin was at the center of the detector which was also the noninal intersection point of the e^{+}and e^{-} neanis. The anyle θ was neasured fron the $+z$ axis; $₫$ was medsured in the $x y$ plane fron the $+x$ axis.

Each of the four spark chamber modules had two spark gajs, one witn the wires strung at +/- 2 degrees to the bean, the otner with wires at +/- 4 feyrees. Since signals were read out on all four "ભlanes" of wires, this gave two space points per module. The efficiency measured on-line was at least 90% per plane. Ihe wire s_{p} pacing was 1 m, giving effective spacings in z of 29 mand 14 man.

The two proportional chambers were installed as close as possible to the bean pife to improve the vertex reconstruction. All the wires ran parallel to the bean and only anode readọut was used so there was no z information. There were 512 wires per chamber, yiving wire spacinys of 2.1 mat at radius of 0.17 m and 2.8 min at 0.22 . The efficiency measured on-line was at least yot per chanber.
more detailed descriptions can be found in the several theses on the Mark 1 which have preceded this one ${ }^{15}$.

[^1]
2.1 TRIGGE:

The hardware trigger required combinations of signals in the various scintillation counters. A signal in the pipe counter was required to reduce cosmic ray background. In addition two charyed tracks were required to produce siznals in the tine-of-flight counters and the shower counters. the use of the shower counters in the trigger was necessary to reduce backgrounds from non-annitilation events which were found to produce mainly low energy particles. Some of these could reach the time-of-flight counters, but most of them stopped in the 11 cin thick aluminum maynet coil before reaching the siower counters. To ensure that the shower counter signals were due to charyed tracks, a shower counter signal was used only if one of the four nearby time-of-flight counters also fired; this combination was called a "TASi".

The TASH efficiency as a function of monenturn is shown in figure 9. This efficiency was ineasured from the data using events with three or more tracks. At high momenturn the efficiency levels off to a value sonewhat less than 1.0 because of counter inefficiency, due mostly to the cracks between the 24 shower counter modules. At low monenturi it fails to reach its expected value of 0.0 because a low momentum track and a photon hitting the sane counter could tojether make a TASH.

Fiyure 9: TASA efficiency as a function of momentum for charged particles with $|\cos \theta|<0.65$ in tultithadron events. 'ine arrow indicates the accidental rate.

Unfortunately this reyuirenent of 2 'isAsHes also elininated some anninilation events. monte Carlo studie!s indicated that 65% of all nadironic events would thave 3 or more charyed tracks in the 73: solis angle of the detector with at least 150 meV/c monentun transverse to the bean, and that 88% of these events would trigger.
2.2 TKACKING

The track-finding prograin required a track to have a siynal on at least three of the four planes of three of the four spark chamber modales. Using the efficiency per plane of gof this requirement gives an efficiency per track of 98.5\%. To reach the third spark chamber module a track needed a minimun of $67 \mathrm{HeV} / \mathrm{c}$ momentum transverse to the beall. Since hand-scanning of events showed that some fake tracks were found with high curvature and that the sqark chambers were less reliable for tracks far from nornal incidence, a higher cut of $150 \mathrm{MeV} / \mathrm{c}$ was aade. iracks which did not pass within 60 cm in 2 and 15 cm in $x y$ projection of the origin were discarded. The momentum resolution was approximately $\sigma / p=2 \% \mathrm{p}$.

2.3 EVENT SELECTIUN

Only events with three or nore detected tracks passing tine above cuts were used. To ensure a valid trigger, at

Figure 10: Vertex Position
(a) Radial distribution of event verticies.
(b) z distribution of event verticies for events with vertex radius < 4 cm.
2.4 MONTE CARLO DETECTOK SIMULATIUN
'ine mark l analysis of jets must depend on charyed particles only, and about 25 g of then are lost throuyh the encis of the detector. Lhis limitation has substantial effects on the analysis, which are described in detail in Chapter 3. In order to compare the data to a particular model it is necessary to have a fonte Carlo progran to simulate the detector. The program used was howl, a multi-purpose program suitable for any detector using a solenoidal maynetic fiteld and cylindrical geonetry. It propargated each particle from its point of origin through tne detector until it eithar passed outside or decayed. Along the way it paused at each specified layer of detector to do whatever was suitable. At the average radius of tine Dean pia and tae pipe counters multijle scattering and energy loss were applied to charged tracks and photons could convert into $e^{+} e^{-}$pairs. At each of the proportional chambers and suark chamber modules a "measurea" point was yenerated usiny the aporopriate measurenent error. At the radius of the time-oE-Elight counters, "signals" in the phototupes at each end of the appropriate counter were yene:ated. These signals included the propayation tine alony the counter and a Gaussian time error for each tube. At the shover counter radius the rash efficiency of figure 9 was used to decide whether to record a rashl for the track. The measured points for each track were then fit to a circle
in the $x y$ plane and a straight line in z vs $x y$ arclength to Eind a neasured monentun and distance of closest approach to the ori:gin. for tracks that hit a the-of-fligint counter, a measured time-oi-flight was calculated using the phototuipe signals. Thus tie confusion caused when more than one track hits the same counter was autonatically included. The events were then subjected to the same cuts as the data, as given above.

Chapter III

DE'MRMINAXIUN OE JET AXIS

By "jet axis" we hean the direction of the yuark before it frayments. Unfortunately we cannot detect the quark uirectly. \quad iowever, we expect the hadrons to cone out with small transverse monenta relative to the quark direction, so we can nope to aproximate the yuark direction by finding the axis which miniaizes the hadron transverse monenta or sonte function thereof. In this chafter we investigate various techmiyues of aujroximatinj the jet axis, and the errors iavolved at our averaye total center-of-hiass energy of 7.3 Gev.
3.1 SPUERICIT:

The practice of finding the axis which ainiaizes the suar of the squares of the transverse momenta comes from a sujgestion by bjorken and Brodsky ${ }^{\text {bu }}$. It is particularly convenient because the solution can be found by dialgonalizing a 3×3 matrix, a prucess which is woth fast and reliable. One constructs a momentum araloude of the nonent-of-inertia tensor

10́j. D. Bjorken and s. J. srojsky, Pnys. Rev. Dl:1416. 1970.

$$
\Gamma=\underset{a b}{\operatorname{sum}} \underset{i=1}{n} a b
$$

where a and b refer to the 3 consonents of nonentum and the sun is over all particles. The tensor is diagonalized yivinig the eigenvalues

$$
T_{k k}=\operatorname{sum}_{i=1}^{n}{ }^{2}{ }_{k} .
$$

if33 is conventionally chosen to be the laryest of the three, and we can show that the corresponding eigenvector is the $j \in t$ axis. Working in the coordinate systen which diayonalizes T and expressiny tie longitudinal monentum Pl alony some arbitrary axis $N=(N 1, N 2, N 3)$, we have

$$
\begin{aligned}
& 3 \\
& p l=\operatorname{sun} Y N \\
& a=1 \quad a \quad a \\
& 233 \\
& \text { Pl = suin sum PNPN } \\
& a=1 \quad b=1 \quad a \quad a \quad b \quad b
\end{aligned}
$$

We have ordered the eigenvalues so that T33> 'T22 > Tll, so to maximize the sum of pl^{2}, we maxinize the coefficiant of T33, wisich gives $N 1=N 2=0$. The axis found by this technique is called the sphericity axis, and a measure of "jetiness", sphericity, is defined froin the eigenvalues

$$
s=\frac{3}{2} \frac{\mathrm{Tll}+\mathrm{T} 22}{\mathrm{~T} 11+\mathrm{T} 22+\Gamma 33}=\frac{3 \operatorname{sun} \mathrm{Pt}^{2}}{2 \operatorname{sun} \mathrm{p}^{2}}
$$

where it is the monentum transverse to the shericity axise

3.2 'inkust Aivi Sphtiocirai

Some other techniques have been suggested which are meant to $\dot{\text { ue less sensitive to the details of quark fragmentation }}$ by virtue of being linear rather than quacratic in monentun. Une is to find the axis \vec{N} which maximizes the directed monentun $d: l$

$$
d(\vec{N})=\operatorname{sua} \vec{P} * \vec{N} \quad \theta(\overrightarrow{\mathrm{P}} * \vec{N})
$$

where the sua runs over all particles and θ is the unit step Eunction $(\theta(x>0)=1, \theta(x<0)=0)$. Again we can avoid an analytical maximization procedure. we find tise vector sum of momenta for each of the possible combinations of particles. phe longest of these is in just the direction to maximize sum $\overrightarrow{\mathrm{P}} * \overrightarrow{i v}$. Since adding in any of the otler particles would decrease its lenyth, it must be that each of them has $\theta(\overrightarrow{\mathbb{N}} * \overrightarrow{\mathrm{P}})=0$ and is therefore properly eliminated Erom the sum, and N is the vector that maximizes the directed monentum. 'his axis has becone known as the thrust axis, and the quantity thrust

$$
T=2 \max d(\vec{N}) / \text { sunil }|\vec{p}|
$$

is a neasure of the "jetiness" of an event.

17 first suggested by s. Brandt et. al., Phys. Lett. $12: 57$, 1964.

Revived by L. Fahri, Phys. Rev. Lett. 39:1537, 1977. The name thrust comes from De Rujula et. al., Nucl. Phys. 5138:337, 1973.

Another suggestion has been to find the spherocity axis by ainimizing the spherocity S^{\prime} which is proportional to $\frac{\text { sum }|P t|}{\text { sum }|P|}$

This technique finds the "wrony" axis in certain intuitively oivious cases ${ }^{18}$ and has therefore Eallen into disfavor. For example, consider two particles of eyual momentum with an opening angle of 2 J degrees. The thrust and sphericity axes both lie equidistant between the two particles. The spherocity has two equal minima, giving axes parallel to each of the two particles.

3.3 ANALYSIS OF GPHEKICITY AXIS ERROR

we want to know how well these techniyues reproduce the true jet axis. For this we use the
limited-transverse-momentum phase space model which generates particles according to phase space multiplied by a natrix element $|M|^{2}=\exp \left(-\operatorname{sun} \mathrm{Pt} 2 / \mathrm{H}^{2}\right)$ which linits the momentum transverse to a yiven axis. This axis is then the true jet axis, corresponding to the direction of a quark which framents with this matrix element. Since the model linits pt rather than ainiaizing it, the axis found by any of the above techniques will be somewhat different from the true axis, even if all particles are detected.

18s. Brandt and H. D. Dahmen, 2. fur Phys. Cl:61, 1979.
for stucying the jet axis error, we fot as a Eunction of θ tia fraction of events that have tineir true jet axes witain angle \forall of their sharicity axes. The solic line in rifure ll shows this distribution for the linites-transuersemonentun all-pion monte Carlo. here all tat particles that cone trom the primary vertex were used in determining tae spiaericity axis. Unly events that have no initial state radiation were used. These are the conaitions we will nenceforth refer to as the "pure monte carlo". since there are no decays or missing particles, the error is entirely due to the kineatics and represents a lower limit Lo the error we can exiect fron the data if the whole kinematic rujion of the model is accepted. (There are some selection criteria that will achieve a smaller jet axis error at the price of biasing the sabule of events -- for exanrie the requireneat of a nifa mornentum particle Uiscussed later..)

The dashed line in ${ }^{\prime \prime}$ e ll shows the jet axis error plot for the sane nodel but with only detected particles used to determine the jet axis. In this case all detected events are included, regardless of initial state radiation. This is referred to as the "detected Monte Carlo". Here the jet axis error is much laryer, as we exiect since we detect charyed pacticies over only 73 of of the solid angle and neutrals not at all, so that a substantial fraction of the eneryy is lost.

Fi.jure ll: Sritericity ixis tror.
Fraction of events that nave their true jat axis within angle of tacir sumericity asis.
3.3.1 visiole Energy Cut

Figure 12 is a plot of the data for the ratio of visible eneryy (calculated assuming pion masses) to the nominal center-of-mass eneryy. The average is 43%.
.ve would expect that events with most of the eneryy detected would have a saaller jet axis error than those where nost of it is lost. Figure 13 is a plot of the average jet axis error as a Eunction of the visible energy fraction. If we look only at events where at least half of the eneryy is detected (32% of all detected events), the jet axis error is comparable to that of the pure monte carlo. The distribution is shown in rigure ll.

To see what biases are introduced by this cut we plot in fizure 14 various averages taken over all the primary vertex particles as a function of the visible enersy Eraction. The events with iligh visible energy have larger momenta and lower aultiplicity and sphericity, wille the transverse monenta remain unchanged. As we raise the cut on visidle eneryy, the error on the jet axis decreases, but the biases resulting Eron the cut increase. we have decided that requiring at least half of tae eneryy be detected is a reasonable conjromise. The Honte Carlo is used to co' t for the resulting bias.

Figure 12: Visible Energy / total energy for data, assuaing all trasks are pions.

XBL807-3491
rigure 13: dverage Spaericity Axis Ercor vs. visijle eneryy fraction.

Figure 14: Average Lvent Properties vs. visible eneryy fraction.
a) averaye produced $X \mid 1$. b) root-mean-syuare value of produced $P t$.
c) averaye produced sphericity. d) average produced multiplicity.

3.3.2 ini.jn monentun Track Cut

due jet axis error is also sualler in events that have a ai.j." monentun trach. Lia líjure 15 we snow the averaye angle以etween the true jet axis anci the detected sphericity axis us a function of the largest $x \mid$ in the event. meijuiring a : i.jn momentun farticle would obviously bias the monentun aistrinution, but this effect should ue nininal Eor artulications winere we can look only at trachis in the opivosite jet from the "triyyer" particle. ro see if this is Lifue in our model, we look ajain at wronuced brimary uérticlus, this tine consiuering each nale oL tne event separately. 'he sejaration is made accordiny to the produced jet axis. In liyuie 16 we siom the averaye x al am tae root-nean-suuare $u t$ of prisary vertex particies as a Eunction of the higiest prouluced $x \|$ in tie ouposite jet. 'ille averdye all is Eairly stronyly afluctoci Dy the requirenent oE a níjn aonentun track in tio orposite jet, vut the transverse momentun in quite constant. Hivelve wercent of tine detecter jets nave a track oi $X|\mid>.5$ oposite then. 'fle jet axis error distrisution with this reyuirenent is even better than Eor the vure monte carlo, as shown in ticjure 11.
ine inave investiyated the jet axis errors using thrust instead of spinericity. Since the results werequite sinilar, witn tne averaye error sligntly laryer, we use only

Figure 15: Average Jet Axis Error vs. Laryest X_{n} in opposite
jet.

Figure lū: Average Event Properties for $X_{\|}$Cut a) averaye produced X_{11}. i) root-mean-syuare value of produced pt.
sphericity in the following chapters. The effects of the jet axis errors on the monentum distributions we measure will se shown in the next chapter.

Chapter IV

Charged particle distkiburions

The priatary y \bar{y} pair produced in $e^{+} e^{-}$annibilation Eragment into the hadrons we can observe. Inis fragmentation process cannt be understood with current theoretical ideas. nowever we can observe the results oi tatat process in the distributions of hadron monenta parallel and perpendicular to the quark direction. The variables to be neasured nere are the scaled momentum parallel to the jet axis:

where \vec{N} is a unit vector along the jet axis, and the square of the nonentum transverse to the jet axis:

$$
P t^{2}=(\overrightarrow{\mathrm{P}} \times \overrightarrow{\mathrm{N}})^{2}
$$

Ithe uncorrected distributions in $X\|\|$ and pt are shown in rigure 17 for the afrroximacely 45,000 events which passed our cuts (described in Chapter 2). These events were taken vetween 7.0 and 7.8 Gev total center-of-mass eneryy.

Figure 17: Raw Distributions in X_{11} and pt^{2}
p) Detected ircicks per $.05 \mathrm{X}_{11}$ for data (points) and fonte Carlo prediction for contribution froin tau events (histogran). The data are plotted separately for cnarge* $\cos \theta<0$ and >0 to show the contribution at high x_{11} from multi-prong, Bhabha eyents.
b) Detected tracks per . O5 Pt^{2} (in Gev${ }^{2}$) for data (foints) and τ innte Carlo (inisccoram).

4.1 METHOD OF EFEICIGNCY CALCULATIONS

IHe aonte Carlo was used to calculate corrections for tise mark 1 detection inefficiency, for the effects of initial state radiation, and for the error in deterinining the jet axis.

Liach Monte Carlo event was passed through a simulation of tne detector as described in Chapter 2 to obtain neasured monenta. Tine Monte Carlo events were subjected to the same event selection criteria as were the data. The sphericity axis was found in the sane way as for the data.

The details of the Monte Carlo simulation of initial state radiation are given in Apjendix A. Events were generated with the correct center-of-mass eneryy distribution and given the corresponding Lorentz boost. It is conventional to display a given distribution as it would have been if there had been no radiation. Unfortunately it is not possible to eliminate the radiative events from the data since we measured neither the total hadronic energy nor the μ esence of a brensstrahlung photon which in yeneral traveled down the bean pipe. Instead we calculated the efficiency by comparing the Monte Carlo detected events to those Monte Carlo events which were produced with no radiation. Thus the radiation was in effect divided out.

The error in the jet axis was dealt with sinilarly: the momenta in detected events were relative to the measured jet axis; the monenta in produced events ivere relative to the produced jet axis.

Several models were used to choose the hadrons for tine fonte Carlo. The efficiency was calculated for each one separately to check for nodel dependence in the result. ine models are described briefly tere. Greater detail is yiven in Appendices \dot{B} and C.

The simplest model was the all-ijion
limited-Eransverse-monentum model. All particles were chosen to be pions. The rultiplicity was chosen accordiny to a Poisson distrioution with the average (10.5) adjusted to reproduce the average nomentum per particle observed in the data. The fraction of the pions that were chosen to be neutral (.5) was adjusted to reproduce the average observed charged muitiplicity. Monenta were generated with the progran GENIUS ${ }^{19}$ according to Lorentz invariant phase siace multiplied by a matrix element which limited momentum transverse to the jet axis:

$$
|M|^{2}=e^{-\operatorname{sua}\left(P t^{2} / R^{2}\right)}
$$

19the SLAC version of the jrogram descrided in D. C. Carey and D. Drijard, J. Comi. Plys. 28:327, 1973. The preyrata is from a tape yiven to $\dot{\text { ioger }}$ Chaffee by D. Carey and slightly modified by toger and myself.

```
duc parametur s was adjuste: to reproduce tase observec
average transverse momentum (is=0.5j).
```


Fur tat addronic events the initial y \bar{y} jair were chosen to
we $u, i, s, o r c i n$ ratios of the squares of their charjes.
wac: was Eraymented accordiny to the reymadi-rield
frescriftion. lhe two jets were joined and the momentá
dujusted to achieve eneryy and monentun conservation. Tile
Eraction of stranye quarks in the sea and the
vector/pseudo-scalar ratio Eor the inaurons were adjusted to
a.gree with the measured is and ρ^{0} fractions. The averaye
transverse monentum of the sea yuarks was adjusted so that
the hadrons in the Monte Carlo reproduced tne averdye hadron
transverse nonentum ouserved in the data. The remaining
farditeters of the model were left as suecified by tine
authors. Pareicles decayed accordina to the standard valucs
ot their lifetimes and branching ratios.

A model internediate between these two was the udsc liaited-tramsverse-monentum model. jhe multitilicity and monenta were chosen as in the all-pion limited-transverse-momentum model. fne jarticular hadrons were chosen to be pions, rhos, kaons, charmed iarticles, etc. as in the feyman-rield nodel.

20A. Seiven, Hhys. Lett. 63L:157, 1977.
A. Seiden, T.L. Shalk, and J.f. Martin, [hys. iev. D 18:3990. 1973.
K. D. Field and K. P. Feyman, vucl. Phys. o136:1, 1973.

Careful consideration must be given to the yuestion of winch particles should be included in the list of produced farticles which were used in the eficiency calculations. This chapter is concerned with the measurement of charjed particle momenta, but which charyed particles? It would de unrealistic to pretend to be measuring charmed particle monenta when we observe only the decay products. A D^{+}that decayed to $k^{* 0} \rho^{U}$ is represented in the produced list by the resultiny $K^{-} \pi^{+} \pi^{+} \pi$: On the other hand we must de careful to avoid double counting. If the K^{-}decayed the resulting muon would not also be included in the produced list, although it night be included in the detected list. In the case of a photon that converted in the beam pipe to an $e^{+} e^{-}$pair, the e^{+}and e^{-}would not be included in the produced list. In sumary, "charged farticles" was interpreted to mean charged pions and kaons and prompt leptons.

The Honte Carlo was also used to yenerate $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$ events ${ }^{21}$. The resultin; detected momentum distributions, norinalized to the satae luminosity as the data, were subtracted from the raw data. This magnitude of this subtraction is illustrated in Figure 17.
21.he τ decay modes were: $23.0 \% \mathrm{p} \nu, 22.64$ continuman, 16.4% evv, $16.0 \% \mu \nu \nu, 10.48 \pi \nu, 9.3 \%$ Alv, $1.5 \% \kappa^{*} \nu$, and $0.3 \% \mathrm{~K}$,
be present our monentum spectra norinalized to the numiner of hadronic events. Thus the efficiency is the ratio of the track detection probaijility to the event detection srowability, and can we yreater than one. The final formula for a corrected monentun distribution is

```
    Ci
where C}=\mathrm{ corrected --- -- in bin i
        i Nev dx
    em
    d = # of detected tracks in bin i (data)
        i
    t = # of derected trachs in bin i (M.C.)
    D = # of detected events (data)
    T = # of detected events ( M.C.)
    b
    o = | of detected tracks in bin i (hadronic M.C.)
    p = # of produced }\mp@subsup{\pi}{}{\pm},\mp@subsup{i}{}{\pm}\mathrm{ , and prompt e et and }\mp@subsup{\mu}{}{\pm
    i in bin i in events with no initial state
        radiation (hodronic M.C.)
    O = * of detected events (hadronic M.C.)
    P = " of produced events witn no initial state
        radiation (hadronic M.C.)
```


4.2 MONFNTS PAHALLELL 'IO 'I'HE' JETT AKIS

jespite cuts designed to eliminate nulti-prong bhablad events, some still remain in the data. fluese events are mostly forward scattering, so that the e^{+}weie mostly in the $+z$ hemisphere and the e^{-}in the $-z$ hemisphere. Ine contanination is obvious in rigure $17 a$ where the raw $\times \|$ distrijution is plotted separately for yositive and neyative values of charye* $\cos \theta$.
rlie data, subject to the requirement that charge* $\cos \theta<0$ (and multiplied by 2) and with the tau contribution renoved, are shown in figure lu for three different conditions: (a) all tracks, (b) tracks in events where at least half of the nominal center-oE-mass eneryy has been detected in charyed tracks (assuming pion masses), and (c) tracks for which the opرosite jet contains a track of $X\|\| .5$. Tile later two requirenents reduce the error in the jet axis, and thus in XII, as denonstrated in Fiyure 19 winere we plot for detected Monte Carlo tracks the scaled nomentum parallel to the detected sphericity axis vs. the scaled momentum rarallel to the true jet axis. since the produced distribution used in calculating the efficiency is the same in all threc cases, the bias by the opposite jet and visiole eneryy cuts wiil we corrected for if the monte Carlo is in sufficiently yood agreement with the data. Superimposed on the data in riyure 13 are tine results of tine Eeyman-tifeld monte Carlo,

Tau Subtracted, Uncorrected $X_{\|}$

Figure 13: Uncorrected, Tau Subtracted X_{11} for data and reyman-tiseld monte Carlo.

Figure 19: Error in $X_{11} d u e$ to error in jet axis for (a) all events, (b) events in which at least half of the energy is detected, and (c) for tracks opposite a track of $X_{\| l}>.5$.
normalized to the same number of tracks. The all-pion aind udisc limited-transversemomentum models gave similar results.

The efficiencies as a function of $X \| l$ are shown in figure 20 for the three cases. we have calculated the efficiencies separately for the all-pion model and the leyman-tield model. 'he disagreement between the two models was somewhat laryer than the statistical error except at the highest moneatum. we averaged the efficiencies from the two nodels and assigned errors which cover the range of disayreenent.

Ithe corrected distribution are shown in Figure 21. The results obtained using all events and using events with at least half of the eneryy detected are in good agreement, but diefer Erou those obtained using tracks opposite a high momentum particle. Since the data and the monte Carlo a.jreed better for the other two cases than for tine requirement of a nigh monentum particle, we use only the results from all events and those with at least half of the ener.jy detected in our final distribution. The results from those two methods were averaged and assigned errors which cover the slight disajreearnt between then. The values are given in rable 2.

The charyed particles we have measured here come from many sources: various heavy particle decays as well as the prinary vertex. ive would like to separate out those coininy

TABLE 2
$x_{1 /}$

$x \mid 1$	1/Nev dn/ikll
. $00-.05$	39. ± 4.
. 05 - . 10	24. ± 4.
. $10-.15$	15. ± 2.
. $15-.20$	9.5 ± 1.5
. $20-.25$	6.7 ± 1.1
. $25-.30$	4.8 ± 0.7
. $30-.35$	3.4 ± 0.4
. $35-.40$	2.5 ± 0.3
. $40-.45$	1.8 ± 0.2
. $45-.50$	1.39 ± 0.15
. $50-.55$	1.07 ± 0.07
. $55-.60$	0.66 ± 0.08
. $60-.65$	0.53 ± 0.06
.65-. 70	0.35 ± 0.04
. $70-.75$	0.28 ± 0.05
. $75-.30$	0.24 ± 0.04
. $80-.85$	0.16 ± 0.04
. $85-.90$	0.13 ± 0.03
.90-. 95	0.10 ± 0.04
.95-1.0	0.13 ± 0.11

dn / dxll per event for all cnaryed particles
from the primary vertex, as it is those which reflect directly the yuark fragnentation process, and to which discussions of scaling etc. apply. To do so would require subtracting charyed particles from all other sources. In subsequent chapters we investigate K^{0} and ρ^{0} production. However there are many other possible sources which we are unable to measure. In particular, we know that charmed particle decays must contribute a substantial fraction of the charyed particles we observe. we show the effect of charmed particles by plotting in figure 22 the charyed

Figure 20: efficiency for $\ddot{\chi}_{\mathrm{ll}}$

Figure 21: Corrected X_{1} Distribution for final-state charged particles.
particle monentum distripution separately for events in which the primary yuarks are charm and in which they are uid, Jown, or itrange. The two distriuutions are quite different, a difference we expect to be energy-dependent. This illustrates the i:portance of including heavy particle decays when testing a nouel of quark fragnentation. Ine effect of decays is shown ayain in tigure 23 , where we compare the $X \mid l$ distribution of all primary particles to that of the final state charyed hadrons.

Produced $X_{| |}$Distributions

Figure $\because 2: \quad X_{\|} \div n$ Feyman-Field Model for final-state charyed particles.

Fijure 23: $X_{\|}$of Prinary idadrons conpared to $X_{\|}$of final state iadrons in Feyman-Field model.

4.3 MOMENTA TRANSVERSL TO THE JETG ANIS

The raw distributions in ft^{2} measured relative to the sphericity axis are shown in rigure 17 b for the data and the tau Monte Carlo. In kigure 24 we show the tau-suntracted data for the three cases: all events, events in wica di least inalf of the eneryy was detected, and tracks opiosite a track of $x \mid l>.5$. Superilaposed on the data are the detected distrioutions from the feynamotield monte Carlo. In fijure 25 we compare the data to three different monte Carlo models: the Feyman-Field model, the all-pion model with matrix element $\mid m^{2}=e x i\left(-p t^{2} / .55^{2}\right)$, and the all-pion model with batrix element $|m|^{2}=\exp (-\mathrm{Pt} / .3)$. None of the three models gives really good ayreement. The $\mathrm{P}^{2} / .55^{2}$ model fits the low momentum reyion but falls below the data at high momentum. Ihe other two models fit the digh monentum region but are above the data near $\mathrm{pt}^{2}=.5 \mathrm{Ge} \mathrm{V}^{2}$.

The efficiency was calculated separately for the three nodels and the three data selection cases and the results compared. The efficiencies from the reyman-rield model ate shown in figure 25. The three cases ayreed well for the same model, but there was significant model dependence. The error bars in the final distribution, which is shown in Figure 27 and listed in Table 3 , cover the variations seen. Since the errors are dominated by the model dependence, no inproveinent in precision can be made by combininy bins. One

rigure 24: rau subtracted, uncorrected $p t^{2}$

Figure 25: Comparison of Data and rionte Carlo. me monte Carlo and the data have the same number of events. Thus the statistical errors, onitted on the graph for the sake of clarity, can be deterained from tine auabers themselves.

Figure 2G: EEticiency for pt ${ }^{2}$ oistained usiny feyman-Field nodel.

Figure 27: Corrected pt ${ }^{2}$ Distribution for final-state charyed jarticles.
shonild also note that the track-ay-track error on Pt^{2} is Vury larje, as shown in figure 23 , so that any shall-scide :itructure in the true distribution would not be visible in t:as corrected distrisution.
'T'AbLE: 3

$$
P t^{2}
$$

$P t^{2}\left(\mathrm{Sev} \mathrm{v}^{2}\right)$	1/ivev dn/dpt ${ }^{2}$
. $00-.05$	41. ± 7.
. $05-.10$	21.6 ± 1.6
. $10-.15$	11.0 ± 0.6
. 1 \% - . 20	9.4 ± 0.6
. $20-.25$	6.6 ± 0.4
. $25-.30$	4.8 ± 0.4
. $30-.35$	3.5 ± 0.4
. $35-.40$	2.8 ± 0.4
. $40-.45$	2.2 ± 0.2
. $45-.50$	1.6 ± 0.2
. $50-.55$	1.3 ± 0.2
. 55 - . 60	1.2 ± 0.2
. $60-.65$	0.90 ± 0.08
. $65-.70$	0.74 ± 0.10
. $70-.75$	0.64 ± 0.14
. $75-.30$	0.56 ± 0.14
. $80-.85$	0.44 ± 0.06
. $85-.90$	0.42 ± 0.18
. $90-.95$	0.26 ± 0.06
.95-1.0	0.28 ± 0.08
1.0-1.1	0.20 ± 0.08
1.1-1.2	0.16 ± 0.00
1.2-1.3	0.14 ± 0.06
1.3-1.5	0.08 ± 0.02

dn / dpt ${ }^{2}$ per event for all charged particles

In Figure 29 we sinow the charyed farticle pt^{2} distributions from the keyman-rielu model for charmed and
non-ciarned events separately. In this version 22 of the model, charmed particles always contain a primary yuark. Since the primary quarks dy definition have no transverse momentum, charmed particles are produced with lower averaye transverse monentum than most other primary vertex particles. However this difference is not visible in the cnaryed particle transverse momenta, which are nearly the same in charmed and non-charmed events. In ifigure 30 we conpare the pt^{2} distribution for prinary hadrons and for Einal state charyed hadrons in the Feynaan-Field model.

In this chapter we have measured the monentum jarallel and perpendicular to the jet axis for final-state charyed particles. In suisequent chapters we will compare the charged particle distributions to those for K_{S} and $\rho^{\mathrm{O}_{\mathrm{s}}}$, wuich are two of the possible surces for the charyed particles we have observed here.

22 The original proposal by Feyman and Field was to give tine primary yuarks some transverse homentum. Then all primary hadrons would have the sane P t distribution. However, since the direction of the priaary quarks is by definition the true jet axis, our primary yuarks always have 0 . Pt.

Fig. 28: Error in Γt^{2} duc to crror in jet axis for (a) all events, (b) events in which at least half of the energy is detected, and (c) for tracks opposite a track of $x_{\|}>.5$.

Figure 29: Pt^{2} in Feyman-rield model for final-state charyed particles.
Pt^{2} in Feynman-Field Model

i ijure $30: \mathrm{Pt}^{2}$ of Primary hadrons compared to final state cturyed particles in Feyman-Field model.

Chapter V
KO PMODUCTION

The production of strange particles compared to that of non-strange particles gives us our only indication of the behavior of strange quarks compared to that of u_{p} and down quarks. Since the QED coupling ,f quarks to photons is proportional to the square of tie quark charye, we expect Lhe primary quark pair in e+e- anmhilation to be up, down, stranye and charined in the ratio $4: 1: 1=4$, so that only lo: of hadronic events start out with strange quarks. The 40% of events that start wi h charmed yuarks will give strange particles in the charmed-particle decays, for a total of 50% of hadronic events with two strange quarks. Additional strange yuark: may cone from the sea. A common exisectation ${ }^{23}$ is that u, d, s and c yuarks are pulled from the sea in the ratio 2:2:1:0. At an average maltiplicity of ll hadrons per event, this would give an averaye of approximately 5 straage particles per event. If no strange yuarks were pulled fron the sea there would be on averaye one strange particle per event. These expectations are subject to an error comparaule to the discrepancy between
$3_{\text {for }}$ examile vield and feyman, Nucl. Pays. bl36:1, 1973.
the expected and measured values of the total crosis section: $k=2.0$ vs. 2.0 below charm threstnold and $k=3.33 \mathrm{vs} .4 .3$ at 7.3 GeV .

Mhe cross section Eor inclusive kaon production has been measured by the Markl, Lead Glass wall, DAsp, and pluTu collavorations. 24 mese measurements in the Eorm of $\mathrm{ii}_{\mathrm{K}^{U}}=\frac{\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{K}^{0} \mathrm{x}\right)}{\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}\right)} \quad$ or $\underset{\mathrm{K}^{ \pm}}{ }=\frac{\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \longrightarrow \mathrm{K}^{ \pm} x\right)}{\sigma\left(\mathrm{e}^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right.}$ are presented in Figure 31 as a function of the total center Ot mass eneryy. The region from 3.9 th 5.0 Gev, where the total cross section is rapidly varying, fats been omitted for clarity. All yrouts have correcied for their detection efficiency. All but the pluto collaboration have corrected for the undetectable part of the monentum sfectrum. The PLU'íu sollavoration estimated this loss to be loq; their results have been increased by that anount before beiny included in Figure 31 . Only K_{s} can we detected; the totai K^{0} production is calculated with the assumption that an equal number of K_{s} and K_{L} are produced. within the measurement errors, charged and neutral kaons are produced equally. In Figure 32 the charyed and neutral data are convined to y ive the average number of kaons per event.

[^2]

Figure 3l: $R(K)$ vs. center-of-mass eneryy (neutral and charyed kaons separately).

Figure 32: Average number of kaons jer ever. s. total center-of-mass eneryy (neutral and charyed kaons summed).
The dotted lines indicated the expected level of stranye farticle production fron the? primary s and c yuarks alone.
 stranye so that file averaye numiver of kaons per event would De $1 / 3$ if no strange yuarks were pulled fron tio sea. áre sart: 1 data joint near 3.6 Gev incluaes the rejion ot the 3.77 resonance. The other yrouqs' points are taken at 3.6 Ge falthough they are plotted here slightiy to eitiler side so they can be seen) and ate therefore conjletely below charm tinrestiold; the average measured value is $0.50+/-$ 0.06. The imark II collaboration has measured 25 the averdue number of landas (includinis anti-landas) to we $0.027+/-$ 0.004 at 3.6 Gev. lhe haons and latadas together yive 0.53 +/-0.06 strancje particles per event, which is above tae 0.33 expected from the primary fuarks alone, althouyin the significance is yuestionable dut to the disayreement between experiments. At 5 GeV the average measured kaon multiplicity is $1.16+/-0.06$ and the averaye lamda multiplicity is $0.044+/-0.00 \%$ This sura is also somewnat higher than the 1.0 expected fron the primary quarks alone.

It is interesting to estimate the relative provaioility of pulling a strange quark pair from the sea, although the result is subject to larye errors due to the discrepancy in R and the uncertainty in the average hadron multiflicity. If all particles were pions, the total multiplicity would have to be ajproximately twice the charyed multiplicity to

25G. S. Auraus et. al., Phys. Rev. Lett. 44:10, 1980.
account for tine unobserved eneryy. ${ }^{26}$ If resonance production were large, the number of hadrons at the primary vertex might be substantially less. In Table 4 the results are Jiven for the extreme assumptions: 1) total multiplicity is twice the charyed multiplicity, 2) total multiplicity is equal to the charyed aultiplicity.

TABLE 4
Estimate of Strange Sea Quark Fraction

Ecm (GeV)	3.6	5.0	7.3
$N=2 \mathrm{NCh}$	$.013+/-.004$	$.011+/-.003$	$.005+/-.003$
$\mathrm{~N}=\mathrm{NCh}$	$.030+/-.009$	$.026+/-.008$	$.011+/-.006$

Errors quoted are statistical only. These results are strongly dependent on the assumption that 40% of primary quarks are charin and lo\% are strange.

In Figure 33 we show the number of K^{O} per event in the Feyman-Field model at 7.3 GeV as a function of the strange yuark fraction in the sea. The model for D decay that we use in the Feynman-Field inodel produces slightly more neutral than charged kaons so that we get slightly more than $0.5 k^{0}$ per event with no strange quarks in the sea. The
dest agreenent with the data is obtained with no sea quarks in this model. The average multiplicity at the primary vertex is 5.3 in this model, so that 20% strange sea component gives only $1.2 \mathrm{~K}^{\mathrm{O}}$ s per event. This is a factor of two larger than the measured value of $0.53+/-0.03$.

Despite the uncertainties involved, it is clear that the strange sea component is only a few percent, both above and below charin threshold.

rigure 33: K^{0} production in Feynnan-Field model. Ine average number of $\mathrm{K}_{\mathrm{s}} \mathrm{j}$ jer event in tise reymuan-rielu model at 7.3 GeV vs. the fraction of sea quarks that are stranye. Ihe meazured value of $0.53+/-0.03 \mathrm{i}$ i indicated.
5.1 K SELECTION

Simply makin'j all $\pi^{+\quad} \pi^{-}$mass combinations qave a clear K^{0} signal over a large background (Fig. 34). This background was considerably reduced by taking advantage of the finite K^{0} lifetime. A $200 \mathrm{meV} / \mathrm{C}^{\mathrm{O}}$ travels an average of 1 cm before decaying and a $3 \mathrm{GeV} / \mathrm{C} \mathrm{K}^{\mathrm{O}}$ travels an average of 16 ca; Doth are large compared to our vertex reconstruction resolution of a few nillimeters.

All pairs of oppositely charyed tracks were examined. The tracks were projected onto the $x y$ plane and the two points of intersection of their two circles were found. If the tracks didn't intersect in $x y$ projection the pair was discarded as a K^{O} candidate. Since the increased resolution contributed by the proportional chambers was essential to the x^{0} analysis, any intersection lying outside the first proportional chander was discarded. Only . 1% of the pairs had two intersections remaining; for those cases the one at the smaller distance fron the bean was used.

The individual track monenta at the K^{0} vertex were calculated. If the K^{0} vertex was inside the beam pipe, corrections were made for the expected eneryy loss in the pipe. The k^{0} momentum vector and mass and the position vector of the K^{O} vertex relative to the bean were calculated.

Uncut $\pi^{+} \pi^{-}$Mass Spectrum

Figure 34: Uncut $\pi^{+} \pi^{-}$mass Distrijution
 and side-bands of . 44-. 46 ard . 54-. 56 mev were used for the oackyround suivtraction.

A K^{U} candiuate was kept only if the distance in $x y$ projection of tiae \mathfrak{x}^{O} vertex fron the bean was yreater taan I cin and also greater than 3 standard deviations from O.O. Tne standaru deviation was calculated Eron the openiny anyle δ between the two tracks and the position error per track or 1 min:

$$
\sigma=1 \mathrm{~mm} /(\operatorname{suct}(2) * \sin (\delta))
$$

Itıis radius cut removed 67% of the backuround and 31% of tane signal.

Ilme position and momentum vectors were reyuired to be parallel to within 90 deyrees. This cut alone removed 50% of the backyround and 3% of the signal. A tighter cut on the anyle would yive a sonewhat lower but less Elat backyround. The angle and radius cuts together removed 03% of tine backyround and 348 of the signal. The data with botis of these cuts are shown in Figure 35. After c’.l the cuts, $2197 \mathrm{~K}_{\mathrm{S}}$ are left in the peak.

The cuts used above are illustrated in pigure 36 by plot:ing the cut quantity separately for the backyround-subtracted k^{0} and for the backyround region. rhe radial and z position of the primary vertex for events containing K° s are shown in figure 37 to demonstrate that

Figure 35: $\pi^{+} \pi^{-}$Mass vistribution with Final Cuts
the ${ }^{\text {U }}$ decay products (whicu were included in the friadry vertex fit) did not pull the primary vertex outside our cuts of 4 cill and 10 cha respectively.

Luents with their primary vertex within lo chin z inom the bean crossing point were used as signal. Those between 20 and 30 cm away were subtracted as backyround.

viyure 36: Plots of cut quantities for vackyrouidsuitracted k and for side-vands:
a) radial distance cf decay vertex from bean.
b) anyle jetween position ard monentun vector.

Fiyure 37: Primary yertex position for events containia; a X^{O} and Eur all events:
a) radial distance of primary vertex fron bean.
b) 2 position of irimary vertea.
5.2 KU MOENTUM DISTKIGUTIONS
fhe monentua paraldel and perpendicuiar to the jet axis Waj calculated Eor eacin $\pi{ }^{+\pi} \pi^{\prime}$ pair. Backjround-jurtracted Aistributions of K° monenta were made by plotting $\mathrm{XI} \|$ and $p t^{2}$ with anfilitude +1 for each pair with mass in the siytial reyion (.43-. 52 GeV) and with anilitude -1 for eacin coninination in the side-bands (.44-.46 and .54-.56 Gev).

Two models for K^{0} production were used to calculate the K^{0} detection efficiency. The first was the Feyman-Field nodel, in which the stranye sea quark fraction was set to 2% in approximate agreement mith the data. fhe second was a modified version of the all-pion linited-transverse-monentuin Hhase space model in which eacn event contained one K^{0}. Lvents were generated with each model and subjected to the same \mathbb{N}^{U} selection criteria as the data. The efficiency incluqed the nffects of initial state radiation and tae error in the jet axis, as described in detail in the previous chapter. The two models ayreed ivithin the statistical errors for the efficiency as a function of x\|. Thu was disagreenent as lacye as 20% in sone regions of pt^{2}; the error bars were increased accordinyly. The rerults fron tine two models were averaged and are shown in ligure 33.

The corrected K^{U} distributions in xll and Pt^{2} are compared to those for all charged particlas in ivigure 3φ. (The charyed particle distrinutions were divided by lo for
convenience in comparison.) Above $\mathrm{X} \|=.15$ and $p t^{2}=.2 \operatorname{Gev}^{2}$ the K^{O} and charged particle distributions have roughly the same slope. The entire $k^{0} \mathrm{pt}^{2}$ distribution is well fit by the forin

$$
d n / d p t^{2}=A \exp \left(-B P t^{2}\right)
$$

with $B=4.6+/-0.2$. This is in good agreement with the $B=4.3+/-0.5$ found in $e^{-} p$ scattering. 27 such agreement is surprising, since the $e^{-} p$ data is below charm threshold, while most of our $\mathrm{K}^{\mathrm{O}} \mathrm{S}$ come fron charmed particle decays. The K^{0} distributions are in good agreement with the Feyman-Field model, as shown in Figure 40. However, one should note that since most of the K_{S} come from D decay, this is as much a test of the D decay model as of the Feynman-Field model.

In Figure 41 we compare the momentum distributions in the Feyman-Field model of $\mathrm{K}^{\mathrm{O}_{S}}$ in events in which the primary quarks are (a) $\dot{4}$ of $d,(b)$ strange, and (c) charin.

27I. Cohen et. al., Phys. Rev. Lett. 40:1614, 1973.

K^{0} Efficiency vs. Pt^{2}

Figure 33: K^{0} efficiency as a function of $X \mid l$ and pt^{2}.

rigure 39: K^{0} monentum vistrisutions corrected for detection efficiency, initial state radiation, and jet axis errors.

figure $40: K^{0}$ momentun Distributions for data (points) and Feyman-rield model (histo.jram).

Figure 41: K^{0} Sources.
K^{0} monentum distributions fron events in which the prinary quarks are (a) u or d, (b) $s,(c) c$.

Chapter VI

ρ^{O} PRODUCTION
frnen the available eneryy is larye compared to a fion or a rho mass one night exiect jion and rho production to be approximately eyual. Naive spin statistics suygest that spin 1 araricles would $\dot{\text { a }}$ produced three tiaes as frequently as spin o particles. Measurement of rho production is one step towards any eventual understanding of framnentation of quarks into nadrons. It may also have a significant impact on any study of charge correlations or leading particle effects, which can be created or diluted by resonance decays. Since nigin statistics are reyuired for neasurement of rho production, it will be some tiae before the work presented here can be replaced by results at higher enerdy.
measurements were made of tine average number of $\mathrm{p}^{O_{s}}$ per event and of the ρ^{0} xll and $p t^{2}$ distributions. The ρ^{0} was onserved in its decay to $\pi^{+} \pi^{-}$. All char.jed particles were assuned to be pions and the invariant mass was saleulated Lor all pairs of opposite siyr. The resulting mass distribution is shown in ligure 42a. The mass distribution was also plotted separately for 10 vins in $X \mid l$ of the di-pion systen fron 0.0 to 1.0 and 10 bins in pt ${ }^{2}$ Eron 0.0 to l.u Gev ${ }^{2}$. Then adjacent bins in which the signal was weak
were conbined to allow a statistically sionificant result. The mass distributions for the final choice of bins are shown in figure 420-1.

Figure 42: $M\left(\pi^{+} \pi \overline{)}\right.$ for various mass bins. The histoyrams are the data. The curves are the results of fitting the data to a polynomial backyfound + Gaussian K^{0} peak + Breit-ivigner ρ peak (he thod 3).

Figure 42: M($\pi^{+} \pi$) for various mass bin:. the nistoyrans are the data. The curves are the resulus of fitting the data to a polynonial backyfound + Gaussian k^{0} peak + breit-ivigner ρ° ieak (fiethod 3).

6.1 DACKGNOUND DETERMINATION

The large width of the ρ^{0} and the large backyround under it make the determination of the shape of the background both difficult and important. Several methods were tried and the resulting p^{0} yields compared. The good agreenent petween methods yives confidence in the result.

6.1 .1 methed 1

One would like to neasure the backyround from the data itself. One possibility is the mass distribution of same sign pion pairs. Another is the mass distribution of opposite sign pairs, one of which has been rotated through an arbitrary angle (restricted to be within the solid angle of the detector). The first of these is necessarily biased to:ards high multialicity events by the requirenent of charye conservation; the second lacks the restrictions of momentum conservation. A distribution that avoids these difficulties, but also lacks the connection with reality, is the $\boldsymbol{T}^{+} \boldsymbol{\pi}^{-}$mass distributions obtained from the feyman-ドield monte Carlo. This model includes production of several resonances, some of which ayy produce peaks in tine $\pi^{+} \pi^{-}$mass distribution. For exanple, the $K^{* 0}(890)$ appears as a peak near 670 meV. In order to obtain the background fron this model we have excluded the true ρ^{0} signal from the $\pi^{+} \pi^{-}$ distribution; all other combinations were included.
bach of the three wackyround forms was used in turn and the results were compared. In each case the backyround was normalized to the data in the region .9 to 1.2 GeV and then subtracted from the data. None of the three backyround forms is yood enough to leave behind only a P sinnal; however they do take out most of the background. The sane-sign backyround is compared to the data in figure 43.
mhe subtracted data was then fit with a breit-ivigner pius a first or second deyree folymoial to accomodate the readininy backyround. The Eorif of the breit-migner used was 28

$$
B W=\frac{2}{\pi} \frac{M_{0}^{m} \Gamma}{\left(M^{2}-m_{0}^{2}\right)^{2}+(m \Gamma)^{2}}
$$

with

$$
\Gamma=\Gamma_{0}\left(m_{0} / m\right)\left(k / k_{0}\right)^{3}
$$

where mo is the noninal p wass and Γ_{o} its noninal widtin; k is the nomentua of the pion in the peenter-of-anas when the paas nass miko is that monentun at mass mo.

Tne fit obtained wita the sane-sign pion subtraction is shown in fiyure 44a with a straignt line backyround and in Figure 44b with a yuadratic background. In these fits tife p

$$
\text { 2̊J. D. Jackson, Nuovo Cia. } 34: 1044,1964 .
$$

XBL807-3490

Wigure 43: Same-Si.jn sackjround (histogram) normalized to the $\pi^{+} \pi^{-}$mass distribution (voints) in the region 9 to 1.2 GeV.
mass and width were fixed at tife standard values of 775 and 155 rev respectively. It is clear that the observed p has a lower mean mass. Allowing the mass to vary yives a best fit value of $746+/-5$ fev (Figure $44 c$). Tris discrepancy is present throughout this analysis, although the preferred mass increases somewhat with the monentun of the p. Since the κ^{0} shows no such deviations, the effect cannot be due to a problen with the monentua scale or the energy loss corrections. Further discussion of the mass problem is given in a later section.

Fits weze performed in each of the monentum bins with each of the three backyround forms, with the ρ mass fixed and variable, anc with first and second degree polynomials added to the Breit-wigrier. The results were averased and assigned errors that encompass the variations found from ift to fit.
6.1 .2 method 2

Several previous measurements ${ }^{29}$ have used an exponential backijround wrich also multiplies the breit-iwigner peak. The data above 560 or 600 mev were fit with the form

$$
\exp \left(-3 m-c n^{2}\right) *(A \div D \sin)
$$

29 for example:
Deutscimann et. al., Nucl. Phys. Blo3:426, 1976. Higgins et. al., Phys. Rev. Dl9:65, 1979.

XBL807-3497
Figure 44: fits to P mass with same-sign background. The histoyrans are the M($\pi+\pi$) data with the sane-sign pion pair backiround subtracted. The curves are tue results of the fits as described below:
a) straight line backyround and ρ mass fixed at 776 nev. D) quadratic background and Q hass fixed at 776 mev.
c) yuajratic backgrouna and p nass free.

Where sh is tate oreit-inigner forin dis given above and is, is. and u are irec parameters of the fit. fiais corin deviatus irun the data rapidly below about 600 mev. \because he fit is iaproved if the data is first corrected using the mass-defendent efficiency obtained with tiee all-pion monte Carlo. Therefore this correction was made for each momentum ranye and Eits were perforined between 600 and 1200 mev.
lle multi, ying of the breit-wigner by the bacsyround is intended to approximate the effect of the phase suace Suppression of the production of niyh-mass ps. the veak of tne sreit-inifner is shifted down slightly, wut not enough to ayree with the data using a noninal mass of 776 mev. In tigure 45 Eits are shown with the ρ mass fixed at ?70 mev (a) and allowed to vary (D). l'ne best fit value was 7う3 +/5 meV.
ihe stability of the fits was investigated oy rebeating
 range of tiae fit. Errors were assigned waica covered the range oi variation seen from fit to fit as well as the statistical error.

The efficiency obtained Eron the aıl-pion monte Carlo is not hecessarily a yous reuresentation of the ρ^{0} efiticiency. Therefore we multiply the results obtained in this section by the all-pion efEiciency to yive raw forields whict can be compared to those obtained with tine otiner methocis.

Figure 45: bits to p mass with exponential background. The histograms are the efficiency-corrected data for all pairs. The fits were performed according to method 2. a) ρ mas fixed at 776 mev.
b) p mas free.
3.1.3 inethou 3

It was jecided that a more flexible bachijround siape riacu could curry the $f i t$ below tae K^{0} was needed. The mass ranje fron 34 d to 1200 mev was fit with a fourth order , olynomide oackyround plus a Gaussian K^{0} peak and the sreit-inigner p^{0} peak. The polynomial $\mathrm{COTO} \mathrm{TO} \mathrm{C} 1 \mathrm{r} 1+\mathrm{C} 2 \because 2+\mathrm{C} 3 \mathrm{r} 3+\mathrm{C} 4 \mathrm{r} 4$
was formed fron the first five Chebysine polynonials:
$10=1$
$T 1:=x$
$T 2=-1+2 x^{2}$
$r^{3}=-3 x+4 x^{2}$
$r^{4}=1-8 x^{2}+8 x^{4}$
with x norinalized to range fron 0 . to l. over the inass ranye of the fit. The free parameters of tne fit were the coefficients co tarough C4, the anilitude of the Gausian peak, and the diuplitude and mass of the breit-aijner peak.

Tne stability of the fits was investigated by repeating then witn different starting values and by varying the mass range of the fit. frrors were assigned winch covered the range of variation seen fron fit to fit as well as the statistical error. In sone monentuni bins satisfactory fits were obtained without the fourth order tetr: in those cases that result was included in the averaje and error.
life aporopriateness of the Eourth-order jolymonial mas investigated with monte Carlo data. Good Eits were ootained to the detected mass distribution from the all-pion monle Carlo. When tais distribution was Eit with the polynonial backyround plus a Breit-iviyner, the resultiny " $\rho^{\text {Uu }}$ yields were small and consistent with zero. Mine farameter controlling vector particle production in the feynnan-rield Monte Carlo was adjusted so that the total p^{0} yield ayreed aparoxinately with the \mathcal{P}^{U} yield ojtained from tine data fira a previous iteration of this whole process). The fits performed to the data were repeated on a comparable numper of events from the feyman-Field model. The results of the fits were compared to the true numbers of detected ρ^{O}. The discrepancies found were conparable to the errors we quote Eor the data.
lypical fits are shown for each momentum bin in fi.jure 42.
6.2 KESUULTS

The results obtained with the three nethods above are jratifyingly consistent. Jise $X \|$ and P^{2} distrioutions are shown separately for the three methods in figure 40.

The results of methods 1,2 and 3 were averayed toydiner and assigned errors that cover the full variation of all tiree nethous. The contribution oz tio heavy lepton to the

Pt^{2} of $\rho^{0} \mathrm{~s}$: Methods $1,2 \& 3$

Figure 4́f: Conjarison of methods $1,2 \& 3$
Q^{0} production was estinated usiay the ionte carlo and subtracted. The $\rho^{U_{s}}$ fron the taus come fronits nl decay rode, which has been assumed to be $10 \%+/-5 \%$, with 100 oi the als decayiaig to $\pi \pi$. we have assigned luos errors co the resulting ρ° monentum spectrua. Approxinately 3 of all detected events are tau events. This subtraction is siall comrared to the errors in the fits; we do it exilicitly for tine sake of clarity. The numbers are given in table 5 .

TABLE 5
ρ^{0} production

bin	ρ^{0} yield	tau	efficiancy	po/event	
all	8003 ± 1767	517	$.52 \pm .06$. $39 \pm .09$	
$0 .<\times 1 \mid<.3$	5136 ± 1736	109	$.51 \pm .06$	$.8 \pm .3$	
. $3<\times 11<.4$	1535 ± 471	104	. $50 \pm .07$	$.7 \pm .3$	
. $4<x \mid 1<.5$	301 ± 393	98	$.55 \pm .08$. $4 \pm .2$	
. $5<\times 11<.6$	822 ± 260	81	$.52 \pm .08$	$.38 \pm .13$	
$.6<x \\| 1<.7$	262 ± 215	81	$.57 \pm .10$. $11 \pm .09$	
. $7<x \mid 1<1$.	150 ± 123	44	$.55 \pm .10$	$.02 \pm .02$	
$0 .<\mathrm{Pt}{ }^{2}<.1$	4315 ± 1295	273	$.67 \pm .10$	$1.5 \pm .5$	
. $1<\mathrm{Pt}{ }^{2}<.3$	3093 ± 1019	177	$.49 \pm .06$. $75 \pm .26$	
. $3<\mathrm{Pt}^{2}<.5$	756 ± 228	50	$.36 \pm .05$	$.25 \pm .11$	
. $5<\mathrm{Pt}^{2}<.7$	333 ± 260	14	$.34 \pm .04$	$.12 \pm .09$	
. $7<\mathrm{Pt}^{2}<1$.	306 ± 139	2	$.29 \pm .04$. $06 \pm .10$	

The raw p^{0} yiela, the predicted number of ρ^{0} s Erom tau decays, and the ρ detection efficiency are yiven for all monenta and in bins of longitudinal momenturn (in units of the bean energy) and in bins of transverse monenturn in Gev ${ }^{2}$. The cogrected total p^{0} production and the $d n / d x / l$ and dn/dPt ${ }^{2}$ are normalized to the efficiency-corrected numiver of produced inadronic events (tau events excluded).
'ine ρ^{0} detection efifictency was calculated using two Nitterent production models. The first wás the teyman-riela inudel. Hes second was a modification of tire all-pion model in wich every event had one p^{0}. The results agrees witain tne statistical errors. A lot uncertainty was added to the statistical errors to allow for the difference in triyyer efficiency between these two models and the all-pion model.
dine corrected $X\left|\mid\right.$ and $p t^{2}$ distrioutions are shown in Figure 47. For comparison the fijure includes the same distrioutions for all char.jed farticles multiplied by 0.5 . It is seen that the $A \|$ distributions have approximately the sane siape above $x \|=0$. 3. The $p t^{2}$ distributions are consiatent with having the same slope above $p t^{2}=.1$ Gev ${ }^{2}$. iowever the charyed particle distribution is steeper at low pt ${ }^{2}$, whereas the ρ^{0} distrioution can be tit by a single exıonential:

$$
\mathrm{dn} / \mathrm{dpt} \mathrm{t}^{2}=A E x \mathrm{~B}\left(-B \mathrm{P}^{2}\right)
$$

with $\mathrm{b}=\mathrm{j}+/-1$.

Charyed particles at low momentum can come from p decay, as well as K^{0}. eta, onega, and charmed farticle decays. The multitude of sources means it is not possible to measure the distribution of primary pions. It is aiso not known how many of the ps themselves may have come from higher mass warticles. In the version of the Feyman-tield nodel used here, $\rho^{U_{S}}$ can cone fron the ininary vertex or fron ata'

figure 47: Corrected X_{41} and Pt^{2} of p_{S}.
The points are the corrected data for the number of pos fer event per unit of $x \| l$ or jer Gev of Pt ${ }^{2}$. The histograms are
the corrected $X \| l$ and pt^{2} distrinutions for all charged particles, multiplied by 0.5 . The straight line is tine fit: exp (-5 Pt^{2}).

Uecay, jut nut from cnarned particle decá. an input ratio of l:4 of vector particles to pseudo-scalar particles at the rimary vertex hrouducej aroroximate ajreement with the heasurej total ρ^{J} production. The averaje numuer of $\rho^{O_{s}}$ per event ia the hodel as a function of tine vector particle zraction $V(V=$ vector / vector $+\mu s e u c i o-s c a l a r)$ is shown in lifjure 48 and conpared to the data. In Figure 49 the movel Xl | and pt^{2} distrioutions are compared to the data. Wine pt ${ }^{2}$ distrijutions are in good ayreenent. The xit distribution of the model is approximatejy exponential waile the data has significantly fewer $\rho^{O_{s}}$ at low monentume However the Feyman-Field model is not really desi.jned to operate at these low eneryies. A sliyht change in tie nethod oi terainating each jet can reduce the number oi $\rho^{0} s$ at low monentun to give sumewat better ayremment with the data. line data above $x \mid=.3$ are consistent witin the commonly used equal vector and pieudo-scaiar production. (rhe p^{0} momentum distriputions are not significantly chanyed by the increase in tide vector particle fraction.) Therefore equal vector and rseudo-scalar production is in disagreenent with the data only at low momentum. Without a more sophisticated model to fit the entire monentun spectrun, we cannot say whether 0.2 or 0.5 is preferred for the vector paridcle fraction.

Figure 48: ρ^{0} production in the Feynman-Field Model. Results from the Feyman-Field molel for the number of ρ^{0} 's per event as a function of the vector particle fraction parameter.

Figure 4y: ρ^{0} momenta in Feyman-Field model. The points are the corrected data. The histograns are the results of tae nodel wita tie value . 20 for the vector particle fraction at the primary vertex.

6. 3 COMPARISON MITA PreVIOUS MEASUREMEATS

6.3 .1 mass

The accepted ${ }^{30}$ value of the p^{0} mass is $776+/-3$ mev. fine effect of $\rho-\omega$ interference in the $\pi^{+} \pi^{-}$decay mode is smāll ${ }^{31}$. However several experiments have observed the e^{0} at $a_{\text {piproxinately }} 750 \mathrm{mev} .{ }^{32}$ Jackson ${ }^{33}$ has sugyested that a broad resonance such as the ρ can be expected to appear with difeetent geäk values in difeerent reactions. T. Fields and n. Sinyer discuss ${ }^{34}$ a possible explanation of the low p mass in terins of the limited phase sface available di each step of the chain decay of a heavy fireoall. 'iney suyjest that the effect might be larcer for lower monentumps.

A possible problem with our p Eits is the presence of a $x^{* 0}$ in the $\pi^{+} \pi^{-}$mass distrioution just below the position of

30nneviews of Particle properties", Particle Data Grour' Phys. Lett. 75b:1, 1973.

3iw.w.M. Allison et. al. Pliys. Rev. Lett. 24:610,1970.
P.J. Biyys et. ale, Phys. Kev. Lett. 24:1201,1970.

32 raja et. al. Phys. Rev. Dl6:2733, 1977. (y p at $100 \mathrm{GeV} / \mathrm{c}$) Alorow et. al., Nucl. Phys. Bl5b:39, 1979. (p_{p} at $\sqrt{5}=23.5$ to 63.0 GeV)
Erailova et. al., vucl. Phys. 6l37:29, 1973. ($₹ \overline{\mathrm{j}}$ at 22.4 Gev/c)
Singer et. al.. Phys. Lett. 603:335. 1976. (pp at 205 Cevic)

33J. D. Jackson, Nuovo Cilu. 34: 1644, 1964.
${ }^{34}$ i. Fields and R. Singer, "rass of the ρ^{0} in Niv
Annibilation" in the Proceedinys of the 4 til International Syajosiun on ivucleon-mintinucleon Interactions, Syracuse, 1975. ed. vy T.E.Kaloyeropolous and K.C. wali.
tne ρ. To investirgate this possidility, the data was fe-analyced using the time-of-flight inforination. Eacin charjed particle was assigned a pion weight. If the particie nad no tial-of-flight information, the weiyht was o. Otherwise the difference was calculated between the expected time-of-flignt for a pion of that monentum and the measured value. The weight was

$$
W=\operatorname{exi}(-.5 \Delta T / \sigma),
$$

where σ is the resolution of the time-of-fliyht system, which was 0.4 ns for tinis data. Each combination of oppositely charged tracks was plotted weighted with the product of the two pion weights. All the fits described in section 1 were repeated on the weighted data, and the corresponding efficiencies were calculated. The resulting corrected $X \| l$ and Pt^{2} distrioutions agreed with those oivtained in section 1 within the errors guoted. The jest fit values for the ρ^{0} mass were also in agrecment with those obtained with the unweignted plots. Monte Carlo studies indicate that the time-of-fligint weighting would suiostantially reduce the $k^{* O}$ contanination in the $\pi^{+} \pi^{-}$mass spectrun. Since the weightiny did not affect our results, we conclude that the $\mathrm{i}^{* 0}$ is not a problem.

6.3 .2 Rate

Our average number of $\rho^{O_{s}}$ per event corrasponds to $\left.R\left(\rho^{0}\right)=\sigma\left(e^{+} e^{-} \longrightarrow \rho^{0} x\right) / \sigma^{!} e^{+} e^{-} \longrightarrow \mu^{+} \mu^{-}\right)=1.7+/-0.4$.

The 以LUTO collaboration ${ }^{35}$ reports a value tor k($\rho^{\prime J}$) of evout $1+/-.2$ from 4.1 to 5.0 Gev center-of-aass enerfy. a flot of if(f) vs. center-ofomasis eneryy is shown in figure 50 . (i $\left(f^{\prime}\right)$ is iacreasiny witheneryy. Jsing the mark l resultis ${ }^{3}$ for the total hadronic cruss section and the averdje chár jed multiplicity, we can translate the mark l and plufu results for ir $\left(\rho^{0}\right)$ into the relative nuribers of ρ^{0} and charged particles. jue results are . O6 +/- . Ul at 3.5 Gev, . Gs +/.01 at 5.0 gev, and $.07+/-.02$ at 7.3 Gev; this is consistent with a constant ratio. we can also translate tne PLUTU results into the average number of $p^{U_{S}}$ per event and then compare the fark 1 and peuto results with those Eron inelastic anti-neutrino proton scatterinj. 37 as shown in rijure $5 l$, tise results fron the anti-iteutrino experinent are consistent inith the $e^{+} e^{-}$experinents.
6.3.3 monentun pistributions

A review by kirk et. al. ${ }^{33}$ of non-strange heavy ineson production in nadron collisions (where pt is measured

35 J . bueryer, moriond Conf. v.2:133, 1y73.
 Center-of-mass inergies tetweca 2.0 and 7.3 Gev", SL/aC-225, 1979. (Thesis)
 sov. 1979.

Figure $21: \rho^{0}$ Production vis. ichi.
Averaye number of p^{0} per event vs. Ecm from mark 1.
$k\left(\rho_{0}^{U}\right) / R$ vs. ECin from Pluto.
Averdye number of f^{s} per events vs. A Erom inelastic antineutrino scatteriny.
relutive to tio Dean axis) witn bean monenta renginj lrouáo to 2u5 Gev/c reports liat they can all be fit by the fora $\dot{d u} / d p t^{2}=$ is exi (-b $\left.P t^{2}\right)$
wita $s=3.4+/-.1$ (GeV/c) 2. Cur y2lue of $5+/-1$ yives a stepper slope, but the error is larje.

Uur ${ }^{2} t^{2}$ distribution is compared to tilat from the anti-neatrino exieriment, for whicit the average in was 3.4 Gev, in Figure 52. Here pt is measured relative to tise quark ciirection in both exteriments. 'lne results are rou.jhly consistent.
we know of no other data on x\|l of ρ°. PLu'rionas measured the distribution in $X_{E}=\mathrm{E} /$ thean between 3.6 and 5. U GeV. 'lnis can be transformed into a distridution in $X=$ $p /$ Pama, wisich is apizoximately x\|f for larye womenta. dres anti-neutrino experiment measured the distribution in $Z=t$ $/$ minax, where the eneryies are measured in the lab Erame. Ayain, for larye monenta, this should je apiroximate $x \|$. Mue z distrioution of p^{O} was also measured in inelastic muon-nucleon scatteriny. 39 All of these results are comiared in rigute 53. The agreenent on an absolute scale of such a wide range of experiments is yuite remarkable. Ihis is an indication that the process of quark frammentation is inderendent of the source of the yuark.
${ }^{39}$ C. del Paija et. al., Phys. Rev. Lett. . 40:90, 1974.

Fiyure 52: $P t^{2}$ distrioution of $P^{0}{ }_{s}$ in $e^{\top} e^{-}$anninilation at Ecm=7.3 GeV and in inelastic anti-neutrino scatteriny at <n> $=3.4 \mathrm{GeV}$.

Corrected $X_{\|}$of $\rho^{0} s$

Figure 53: x_{11} Distribution of $\rho^{O_{S}}$ in $e^{t} e^{-}$anniailation at 7.3 GeV from mark 1 ;
x distribution fron 3.6 to 5.0 GeV fron pluro;
Z distributions from anti-neutrino and muon scattering at $\langle w\rangle=3.4 \mathrm{GeV}$.

Chapter VII

conclusion

The data taken with the Mark 1 detector at SPEAin have denonstrated the existence of jets. The angular distripution of these jets, along with the nearly constant value of R above char threshold, provide strong suppart for the existence of the reaction $e^{+} e^{-} \longrightarrow q \bar{q}$ as the underlyiny luechanisa in hadron production in $\mathbb{E}^{-} e^{-}$amninilation. the SPEAR results have been strikingly confirmed in the mucia ni.jher energy data taken recently at PETiAA. In addition to very clear evidence Eor two jet events, the perma data indicate the existence of some three jet events, where the tinird jet is presumably the result of the fragmentation of a high encriy gluon radiated fron one of the yuarks.

The study of the reactions $e^{+} e^{-} \longrightarrow q \bar{q}$ and $e^{+} e^{-} \longrightarrow \bar{y}^{-}{ }^{3}$ has a problem in that we observe not the quaris and yluons themselves, nor even necessarily the hadrons produced directly fron the yuaris and jluons, isut the long-lived decay products of these hadrons. Thus twice removed Eron tile reaction of interest, one is dependent on models of the interveniny processes. We have in the Feyman-Field model a phenomenalogical parameterization of the quark fragnentation process, which predicts momentun distributions as well as
jarticle types. The decay properties of nost particles are well known, but to date the study of chariaed rarticie decays nas concentrated on exclusive decay channels, and we know nothiny, For example, about inclusive ρ^{0} in D meson decay. In $e^{+} e^{-}$anniailation, cinarned particie jecays provide d substantial fraction of the final state particles we ouserve. In particular, it appears that nost of the kaons cone fron chara decay, so that the K° momentun distributions reflect the charmed farticle momenta generated in yuark fragmentation folded with the K^{0} monentum yenerated in charaed particle decays. The resulting distributions from our model ayree well with the data. The ρ^{0} distributions are not in such yood ayreenent, wut, lacking information on tio contribution of charmed particles here, we don't yet n now how tu interpret this disagreement. In addition, the reyman-lield model is intended for nigher eneryies, where particle masses; are not inportant. The relatively small number of P^{S} observed at low monentum may be an effect of the shall phase space available for produciny heavy particies, an effect which is not included in the model.

These difficulties ars unfortunate, but at present undvoidable. fowever, the real point of this thesis is not the model but the data, which is now availaole for comparison to any improved models which may be developed in the future. Although the present thrust of ingh eneryy physics lies in studying the quarks and gluons, work in
which the necessity of looning at hadrons is regarjed ds a nuisance, we hore that sone attention will be turned in the future to an understanding of how quarks turn into inairons, and that this thesis is a step in that direction.

Mrpendix a

KhDIATIVE CORRECTIONE

In e+e- annifilation either of the initial state particles can emit a photon before the annimilation. Then tale ete- anninilate at a reduced center-of-mass eneryy and in a center-of-mass Erane which is no longer at reet in tie laboratory frame of reference. for example, in two jet events, tice two jets are not colinear in the laboratory frane. To include these effects in our Monte Carlo, we nust generate events with the correct photon iistribution. Fortunately the initial state radiation is described 40 by well-uncerstood Quantun Electrodjnanics (XED).
'to third order in α, the total cross section consists of a radiative part that has a final state photon and a non-radiative jart with no final state photon:

$$
\sigma_{t o t}(s)=\sigma_{0}\left(s_{0}\right)+\sigma_{n r}\left(s_{0}\right)
$$

The relevant feynman diagrans are shown in figure 54 . The non-radiative part is outained Eron the second and fourtu order yrahs (g^{2} and y^{4}):

AUBonneau and riartin, Nucl. Rhys. B27:381, 1971.

$$
g_{2}=
$$

Fi.jure 54: Feynaan yraphs for $e^{t} e^{-} \longrightarrow y \bar{y}$

$$
\begin{aligned}
\sigma_{n r}(s)_{0} & =1: y^{2}+1^{2} \\
& =1 y^{2} 1^{2}+2 \text { ne }\left(g^{2} * y 4\right) \\
& =\sigma_{0}(s)+2 \operatorname{se}\left(y^{2} * y^{4}\right)
\end{aligned}
$$

where \mathcal{J}_{c} is the total cross section calculated to second order. ithe radiative part is obtained Erom the thiri order gratas (y3) :

$$
\begin{aligned}
& \sigma_{r}(s)=1 \text { y } 31^{2} \\
& \left.=t \int_{0}^{\dot{L D}} \frac{d Q}{Q}\left(1-\frac{Q}{E \dot{Q}}+\frac{\psi^{2}}{2 E^{2}}\right) \sigma_{0}^{\sigma^{\prime}}\right) \\
& t \quad=\frac{2 \alpha}{\pi}\left(-1+2 \ln \frac{2 \text { Et }}{\text { rie }}\right)
\end{aligned}
$$

s' $^{\prime}$ is the square of the e+a- center-of-nass enerjy after radiation; $E t$ is the noninal bean energy. The integral diveryes at its lower limit. Mis diveryence is cancelled by a diverfence in the $\mathrm{g}^{2} * \mathrm{~g} 4$ terms of the non-radiative part. Since enission of very low eneryy photons is not detectable, we chanye the lower limit of the integral to Qmin=.0l* Lb and transter to the non-radiative cross section that part of the radiative cross section involviny photons of eneryy less tian Quin. Then

$$
\sigma_{n r}\left(s_{0}\right)=\left(1+\delta^{\prime}\right) \sigma_{0}^{\left(s_{0}\right)}
$$

$$
\delta^{\prime}=\frac{2 \alpha}{\pi}\left(\frac{\pi^{2}}{\sigma}-\frac{17}{36}\right)+t\left(\frac{13}{12}+\ln \frac{\text { Uin }}{\operatorname{Eb}}\right)
$$

ne apmroximate the strony forward peakiny of rinc breasstrahlung process by futting the enitted fhotons exactly parallel to the electron and positron alternateiy. rimen $s^{\prime}=s_{0}(1-y / L O)$. Ihe expression Eor the total crosis section at a yiven eneryy involves the cross section at all lower eneryies. However, when the photon carries ofe a suostantial fraction of the energy the larye Lorentz boost sends all the particles down the vean pive so that such events are never detected in an experiment like the mark 1 . In jractice, we need not generate events with s^{\prime} below l Gev ${ }^{2}$. Ihis gives an upuer limit to the photon enersy of Quax $=E \mathrm{E}$ ($1-1 G \mathrm{GV}^{2} / s_{0}$) . Ihis neatly avoids the uncertainties in the cross section at low energies.
for each event we choose a photon eneryy i) by jicking a randon mumber X betwean O and l anà solviny $\mathrm{PQ}(2)=\mathrm{X}^{*} \mathrm{PQ}(\mathrm{Qmax})$

For 0 , where

$$
\begin{aligned}
& \mathrm{PQ}(Q)=\sigma_{O}\left(s_{0}\right)(1+\delta 1) \text { Eor } Q<\text { Qain } \\
& P Q(u)=\sigma_{0}\left(\mathrm{~s}_{0}\right)\left(1+\delta^{\prime}\right)+ \\
& t \int_{Q \operatorname{Qinin}}^{Q} \frac{d Q}{Q}\left(1-\frac{Q}{\operatorname{Li}}+\frac{Q^{2}}{2 \mathrm{EU}^{2}}\right) \sigma_{0}\left(\mathrm{~s}^{\prime}\right)
\end{aligned}
$$

for Linin < $\langle<$ Quad.

Actually, we cannot solve the equation analytically, so we create an ai-dy PQ(I) with $Q / E b=100 . * I U$. Then Eind Ia so that

$$
\begin{aligned}
& P Q(I Q-1)<\dot{n}<P Q(I Q) \text { and interpolate: } \\
& \frac{Q}{E D}=. U 1\left(I Q-1+\frac{P Q-P Q(I Q-1)}{P Q(I Q)-P Q(I Q-1)}\right)
\end{aligned}
$$

This binning would smooth out the fluctuations in R, so instead of usiny the measured cross section in calculating P
(1), we assume a cross section equal to a constant times 1/s. Then when a Q is chosea, it is weighted with k(s')/Raax, i.e. events are kept with provability R(s^{*})/kmax, where limax is the nighest value of R between l Gev ${ }^{2}$ and s_{0}.

To get efficiencies for calculating the total cross section, etc., it is not sufficient to use the ratio of detected events to produced events. Convention has it that we are to determine not σ but σ_{c}, the second order cross section. Our data corresponds to those ionte Carlo events, both with and without radiated photons, which are detected. Since the non-radiative fart of the cross section is $\left(1+S^{\prime}\right) \sigma_{0}$, the efficiency is

$$
\text { eff }=\left(1+\delta^{\prime}\right) \frac{\# \text { of detected events }}{\text { \# of events produced with no radiation }}
$$

'the number oE events proiuced ds a function of s'/io lar $s_{c}=(7.3 \mathrm{GeV})^{2}$ are given in rable úalony witi, tice corresjondiay detection efficiency.

MABLE U
Initial state hadiation.

Distribution in effective center-of-náss enery for a typical monte carlo run of 10000 everits. The efficiency quoted for a yiven ranye of $s^{\prime \prime}$ is tne fraction of events iroduced with that s^{\prime} which jasis the standard analysis cuts deseribed in Cha,ter 2.
an inclusive efficiency is obtained by biming the productd and detected farticles in the apropriate variable. for example, for the \mathbb{K}^{0} momentum spectrum


``` 1:c aiajle of benc in the produced jet dxis when transior..ded tu the lab trane is Motted vs s'/so.
```


BEND IN JET AXIS DUE TO RADIATION

Figure 55: Effect of kadiation on Jet Axis
Detectad events froti a typical ronte carlo run at 7.3 uev. Only events witil initial state radiation are included. tor eaca uwant the 2 producea jet dxes are transforned to the lab frane. The anile of non-colinearity is platted vs si/so.

Appendix a
LImITLD TisansVeirSE mumentum pulel

LIfipt generates events according to phase sjace anultiplied by a matrix elenent that limits monentum transverse to the jet axis. wisen the fatrix element is cinsen to be Gaussian it gives the jet nodel that was used in the discovery of jets at SPLAR.

Luent jeneration starts with a call to Hanlat to select an initial state 4 -vector taning into account the probability of photon eaission fron one of the initial leptons. If the user has asked for tau production by : ettiny mPARAM(5) $=1$, the cross section used in calculatiay the radiation probability is the total hauronic cross section plus the tau cross section. Otherwise it is just the haironic part.

Whe choice between a hadronic event and a tau event is aade according to the ratio of the tau cross section to the total cross section at tnis (radiated) enerijy. If tife decision is made in favor of tie tau, control is passed to subroutine laUPRD to accomplish it. Othervise we proceed.
dine adrons are selected accordiag to one of hat various possijle techuisues (called sumuodels). fue selection ot the sumodel is made ioy tire injut valuc of impomat(2). I usually use sutnolel G but I will oriefly descrine tata all nere Eor completeness.

If $m P A B / A p i(2)=0$ then we yenerate a fixed state witn tac articles jiven by the contents of NCilly (3, 40) in the comon block Cintrue waich aust be set by tar user in sumroucine INIM. The first index is tio charye: $1=-1,2=0,3=+$ l; tine second index is the particle type as described in the common block XimCay.

If mbtainh (2) $=1$, then we generate an all-pion state

If mBRAM(2) $=2$, then we generate an all-fion state poisson in numiner of fi's with average $=$ xpandally. me Ni's are made neutral wita probaidility xpanAm(7).

If imPARAM(2) $=3$, then we generate a jencral state of pions, kaons, nucleons, etas, etc. Mhe total multiflicity is Poisson with averaye $=$ Kparam(1). The selection of particles is done in subroutiae SELECT. Particles are chosen fron amons classes of differing stranyeness and baryon number. The present classes and their weinhts are: pions and etas l-sum of otners kaons

nucleons	XPȦRAが（12）
neutrinos	XEALAPI（14）
$r \mathrm{liO}^{\prime} \mathrm{s}$	XPAİA．ワ（15）
oneya＇s	KPAl\A\％（16）

Purticles are chosent in pairs from the first 3 clasices and sinyly fron the last 3．Due to the effects of the conservation laws，the weights are not exactly eyual to the acinjeved particle Eractions．
aithin each class，particles are chosen accordiny to input random numbers，but the charge of the final state is constrained to l or 0 ．The Einal jarticle is selected to balance charge．

> XPAKA! (7) = fraction of jio's in the fion/eta class
> XPAKAH(10) $=$ Eraction oE eta's in the jion/eta class
> XPaidAiv(3) $=$ fraction of KO's in the kaons class
> xpritan (9) $=$ fraction of $n^{\prime} s$ in the nucleon class
> rho's are chosen $1 / 3$ neutral

IE MPAi\＆Am（2）$=4$ ，then we generate a jeneral state exactly as in subhodel 3．However when an event is discarded because of its phase space weiglat we will return to SELEC＇I to choose a new state．Inis means that the particle fractions chat cone out in the end are influenced Uy their relative phase space weights．

IE MPARAA（2）$=5$ ，start with an all－rho state of poisson multílicity with mean $=$ XPARAN（1）／2．make then charyed or
neutral witin neutral fraction $=$ APAmalin(7). make some of tista into pion pairs, with (Phibari(15) of the finos remainin, ds rhos. in tais way the final state nultijlicity is independent of the rho fraction.

If ifPalimm(2) $=6$, yenerate quarks and wake then into iadrons (taken Erom Feyman-Field model [nucl. Pifs. isl36:1, 19731).

The quark Elavor at the gaman $\rightarrow->$ y quar vertex (IQUAik) is chosen with probability proportional to the yuark charje squared. mbalma(4) is the index of the highest mass yuark to nake here with $1=u, 2=0,3=s, 4=c, 5=5$, and $\sigma=t$.

The adron multiplicity wp is chusen accordiny to a roisson distribution, with the mean (AVMuLT) deterained by XPhafiri(l). AVirULT is corrected for the center-of-inas: ener:y and for the excess aultiplicity from the primary yuark:

$$
\begin{aligned}
& \text { AVMULT }=\text { APARAM (1) + 4.3 * ALOG (SMATS/TECH) } \\
& \text { - 2. * AVMQ(IQUARi). }
\end{aligned}
$$

SuRfs is tine center-of-mass enerijy after radiation and TECiA is the nominal center-of-adss energy. AVmi is zero exceit Eor heavy yuarks. for the charmed yuark it is the average \mathcal{L} decay multiplicity minus 1.

To make the inp hadrons we add inp-1 y-ybar fairs from the sea to the primary 4 ybar. u-ubar and d-jbar fairs are
chosen with equal prodability. Tite provabilities for s-styar and c-cbar pairs are equal to XPARAM(3) and XPAKAi=(4) respectively. starting with the primary quark, we work our way down the quaris ciain making hadrons out of each adjacent y and yoar. dinus charye, strangeness, etc, are automaticully conserved. for neutral combinations su(3) mixing is used to choose between the three possible hadrons. The spin is chosen to be or l with spin l haviny probability XPrinaid(G). To keep the raltiplicity under control, vector particles and etas count as two particles. Ptis means we nust remove a y-ybar pair fron the chain for each such nadiron made, and this is done in such a way as to not disturb the conservation laws. Quark pairs will also de deleted if we run out of energy.

Now we are ready to yenerate the 4 -vectors by calling the GAGL subroutine GENIUS, which is so named because it produces liniteJ-transversemonentun phase space so much more efficiently than anything winch was written previously. (Actually it was yiven that name at SLAC. 'fine authors Caray and Urijard [JCP 28:327, 1978] called it GLivond in the Fermilab progran packarje NVEHTX. It was obtained by Roger Chaffee and installed as part of the SLAC copy of SAGE.) Even so, it is not perfect, so it assigns each event a weigint equal to the correct probability divided by the
actual iرrobajility. ro obtain an unticised sample ut eventis, we deterimine the maxinun vosisible weight and tuen Re心. eveats with proinaility equal to tateir iveignt divivés ay Lis
 of the center-of-masis eneryy, the multimicity, and tise barticle masses. The maximun weiynt is Eound once for eacm multiplicity and event tyue I'YYEV (which is always lexce,t Eor suonodel $6, ~ f o r$ wincil it is IoUnizk) oy generatiny miPhikAm(3) everits in each class. (IF mpakam (3) is less than O all events are kept.) mie maxiilull weijst is corrected Eor eneryy by


```
    * (ALOCju(SQKIS) / ALOClU(TECM) )**(NL-2)
```

fhis Eornula was outained aron the infinite-energy linit ot Lhe lonyitudinal shase space integral yiven in lsyckliay aind Kajantie [Particle Kinenatics, 火.ly2, John wiley \& Sons ita., Loncion, ly73]. lowevar it is only approxiaate at out eneryies. Due to this and the unknown dependence on alasses, we protect ourselves from horrid inefficiencies by resetting the naxinum weiglat after mPAMim(3) unsuccestiful tries to tine dighest in those irmaknm (3). for sebmodel 3 , every tine an quent is discarded we go wack and select new hadrons kecifing the same multiulicity. for all other models we retain tiae same particles until an event is kevt.

```
    LImPl takes dovantaje of the various matrix elements
availuale in genius.
If mprakm(l) = 5 time matrix element squared is
|m|**2 = exa (-NP/(NP-1) suan Pt**2/iN**2),R = xPakAN(5).
If mPrivam(1) = 51 it is
|m|**2 = exp ( - sum |Pt|/k), k= xpAiRAm(5).
If mPruram(l) = 52 it is
|m|**2 = uroduct (m**2 / (in**2 + sum Pt**2) )**R,
R=XPAINAM(5), m= XPANAM(17).
If MPAKMM(1) = . 53 it is
|M|**2 = exj( - suna Pl**2/i{I**2 - sum P2**2/R2**2 ),
    R1 = XPAKAFI(5), R2 = XPARAM(17).
```

 GENIUS uses the \(z\) axis to calculate Pt; i.e. the jet axis
 is along z. iNow we choose a jet axis according to the
 distribution
 d siman - l.+ alpha*cos(theta)**2

where alpla $=$ XpARAM(2) and the bean polarization squared folsy $=$ KPhinam (13), theta is time angle to the Dean, and the bean polarization is along pil $=90$ degrees.

The event is cotated by an arbitrary angle about tae z axis, then rotated to the chosen jet axis, and then boosted to the lad frame.

The parameters for the CInPT model, the usual values used to fit the 7.4 Gev data, and the submodels to whica they apply are sumarized in rable 7.

TAbLE 7
Paraneters for LIoper model

parameter	usual value	submodel	neaniny
anparan (1)	53	all	Eorm of matrix element
MPGANM(2)	3,5	all	suomodel
\because Hrilarl (3)	50	all	number of events to make in Einuiny maximun weight
APiskiml (4)	4	6	aighest mass quark to make at gamma \longrightarrow y ybar vertex. $1=u \quad 2=d \quad 3=s \quad 4=c \quad 5=b \quad G=t$
mpritar (5)	1	all	1 to produce taus. Ofor none.
XPatial ${ }^{\text {a }}$ (${ }^{\text {a }}$	10.5	1-6	averaye multiplicity
XPAKAM (2)	1.0	all	alpha in jet axis distribution
XPAKAm (3)	0.0	6	rrouability of s sbar yuarks in sea
xpakati (4)	0.0	6	probability of c cbar yuarks in sea
xpaisal (5)	. 55	all	a or il pardmeter for inatrix element
XPatinlio	0.1	6	vector warticle traction (rest is pseudo-scalar)
KPARAM (7)	0.5	$\begin{gathered} 344 \\ 1,2,5 \end{gathered}$	pio (thiteta) neutral Eraction
XPRARAM(3)		384	KU / n
		344	$n /(n+a)$
		3\&4	eta / (pi+eta)
天Patmen (11)		344	kaon weijht
XPALSAM (12)		384	nucleon weight
Xidaticil (13)	0.0	all	weat polarization sciuared
xさakAbl (14)		384	neutrino weight
XPABAm (15)		$3 \& 4$	rho weight
XPGRARAM (16)		$3 i 4$	oniega weight
XPALAM (17)	. 55	all	m or $k 2$ parameter for marrix element

$$
\begin{gathered}
\text { spuendix } C \\
\text { EGYMMAN-íLLD mUDEE }
\end{gathered}
$$

Seiden ${ }^{4 l}$ and feynnan and rield 42 have proposed a Menomenaloyical model for the fraymentation of quarsis into nadrons. we have adapted this model for $e^{+} e^{-}$anninilation in a way that conserves charye, stranyenest, and charm, and eneryy and momentua. fine details of the nodel as we nave inulenented it are given here.

Event generation starts with a call to indrat to select an initial state 4 -vector ianin'j into acrount the irobability of pinoton emission from one of the initial leptons. If tine user has asked for tau production by settinj mpanam(5) $=1$, the cross section used in calculatinj the radiation probability is the total hadronic cross section , 1 us the tau cross section. Otherwise it is just tae idduronic part.

We choice between a hadronic event and a tau evont is made according to the ratio of the tau cross section to the
${ }^{41}$ A. Seiden, Enys. Leit. 68b: 157, 1977.
A. Stiden, T.L. Schalk, anc J.f. Martin, phrs. Rev. L 18:3990, 1973.

Lotal cross section at tiais (radiated) eneryy. If the decision is adad in favor of tine tau, control is passed to suiroutine faulad to accomplisia it. Otirerwise we proceed.

Lite quark flavor at fine pioton \longrightarrow y \bar{y} vertex is chosen with probaíility proportional to the quark charye syuared. mpaikhi(4) is tite index of the highest nass quark to make nere with $1=0,2=0,3=5,4=c, 5=5$, and $6=t$. The primary quarks are assuated to be massless with eneryy equal to the bean eneryy.

The prinary y and \bar{y} are separately fraynented into hadrons by subroutine GoJe'r. [lle Eraghentation proceeds by iterating tine process $y \longrightarrow y^{\prime}+$ hadron until the eneryy contained in the hadrons is aproximately equal to the iaitial quark eneryy. dine steps involved in cach iteration are described below and illustrated in tije Elowchart of fiojure 50.

First a new $q \overline{4}$ pair is chosen fron the sea. u anci d quarks are taken with equal arobability, strange quarks witn some smaller probability (F-F use .2), and neavier yuarks never. ${ }^{\text {nine }} \dot{4}$ and \bar{y} are $\mathrm{g}^{\mathrm{i} v e n ~ e y u a l ~ a n d ~ o p p o s i t e ~ t r a n s v e r s e ~}$ monentum witn respect to the primary quark direction. rine transverse momentun is chosen according to the distribution

$$
d n / d P t^{2} \sim e x t\left(-P t^{2} / r^{2}\right)
$$

where r has been adjusted so that the observed transverse monentun distribution agrees with the data (r~. 35 gev).

FLOW CHART OF GOJET

$E P=2 E_{\text {quark }}$
$E L E F T=E$ quark

we mow hare mad

calculate $E T P_{z}$ of hadron from.
$E_{\text {had }+} P_{3 \text { had }}=E P * x$
store hadron
$E P=E P-E_{\text {had }}-P_{2}$ had.
$E L E F T=E L E F T-E_{\text {nad }}$.
If ELEFT < ECUT QUIT

Figure 56: Flow Chart of quark iragatatation suoroutiat (GUJET)
 abibi-jbarr. She badrons are always mesoris in tais mocet
 :-saro-scasar and vector wila sone relative aruvasility for

ime naifun lonjitugind imonentum is iound Eron a arinofjial siflition function $f(x)$. It is assuand tatat late same sulittiay function can be used at eaca step in the iteration. In other wordis, we must we at a hija enouyis enery; so that only relative momeata are iniortanc daid masis efiects can de ijnored. Since enerfy and monentual Cannut woca ine conserved in the decay of a masisless yuarn into a
 can ue conserved. The Eura of the $\mathrm{sim}_{\mathrm{a}}$ littiny tunction

$$
f(x)=1-A+A(N+1)(1-x)^{N}
$$

 Feyman and field use $N=2$, ang $A=.77$ Lu . © 0 . The constant tera is there so tate resultiny inclusive

 vetwen the silitting Eunction and the inclusive distrisution:

$$
x \| f(x \|)=f(x)
$$

 and vir tite \in of tat olu quars:

$$
\sin u=\sin _{1} r\left(n^{2}+p^{2}\right) / \in(\text { old quari) }
$$

 notientun, so the current adadron is discatied and tite
 farticle in the jet.

If we basi no other atans of juturisy lice ituration, ine
 the avercige total eweryy in haurons woulet io larjer tamia tia frimary ıuark eneryy. Po avoiri tais, we stup che jeratiuat
 Wean eneryy. ECuI is cursen to je a reasunable yutias ist the
 rion "ass anj the averaye transverse nass calculateu asiuning a fion masis. The resultis are conaratid in fijure b\%. when the iteration is comileted, wo nave n hisiruns ahd $n+1$ yuarks $i n$ continuous chain wita a known \in, $\overrightarrow{P t}$ ane? :adisi Lor tucia of Llaw.
 inderendently. inen we have timo sefatate jetis, eaca wi ia a left over y or \bar{y}. Me two jets could be joined by lianiay a
(Harged Particle X_{i} in Feynman-Field Model

Figure 57; Feynaman-rield Charyed Particle X_{11} for various inodifications of the nodel (see text).
nadran fron tie left-over y and \bar{y}. However, since eacia of the jets itave already used uip on averdige nearly all of he available energy, we instead split fi tise last hauron of one of the jets and delete the last y pair. doen tife reamiaing, left-over y and $\overline{4}$ are made into a hadron. The joinin; frocess is illustrated in fi.jure 53.

Since the quark chain is now continuous, tine $=0 \ln$ of ras
 etc. Eneryy and monentun are not separately conserved, as snown in Eigure 5y. nowever we can adjust separitely the tivo primary quark ener.jies to achieve exact ener.jy and monentun conservation. The \in For each hadron is then re-scaled to the new yuark eneryy, and the inacion encryy and nomentun calculated Erom \in.

There is a certain anount of arbitrariness in this model in now to end eacn jet and in how to join theas botil affect tife low momentun hadrons directly, but timrouyh the re-scaling they affect the high monentum hujrons as well. I'wo ionte Carlo runs were made at ich $=7.3$ (jeV, one in which a jet was terminated when tie remainiay eneray becane less than one pion mass; in the other the energy cut-uif was set at tice average transverse mass $=\operatorname{surt}\left(\mu^{2}+\left\langle\mu^{2}\right\rangle\right)$ The results are compared in fi,jure 57. since siailar chanyes can be achieved by chanijin; the parameters of tie splittiny function, it is clear that tisese parameters cin

Two independent jets

a) joined by combining left-over quarks

b) joined by discarding a $q \bar{q}$ pair

and then combining

figure 53: the Joining of two Jets.
a) by combining tie two leftover quarks.
b) by discarding a y $\overline{4}$ pair and remaking the last hadron. method (b) is used in our pro.jrda.

Vector Sum of Hadronic Momenta / Ecm

Figure 59: Jotal Eneryy and monentun before Re-scaliny.
a) Total enersy / 2* bibean $^{\text {a }}$
b) lotal momentum / 2*ELean
not be unifuely deteriuined. Another ionte Carlo run was adaje dith the averaje transverse hass for the eneryy cut-ofi anu iv=1, $A=.7 \%$. The results are shown in figure 57. The Feyman-rield model which we conpare to the data in this thesis is actually the suan of these three runs.

[^0]: lUw. Kittel, L. Van hove and w. ivojcik, Conp. phys. Coman. 1:425, 1970. This program has since been replaced with the more efficient GENIUS: D. C. Carey and D. Li ijard, J. Comp. Phys. 28:327, 1973.
 11J. H. Eriedman, J. Comiz. Phys. 7:201, 19\%1.

[^1]: 15lrobert iiollebeek LbL-3974 (1975);
 Joinn 2ipse LBL-4281 (1975);
 J. Scott Whitaker $2 \mathrm{LL}-5513$ (1976);

 Janes wiss Lul-6725 (1977);
 Petros Rapidis SLAC-220 (1979);
 James Sieyrist SLAC-225 (1979)

[^2]: ${ }^{24}$ vera Luti, et. al.. Pinys. Leit. 70s:120.1977. piccolo, Peruzzi, Kapidis et. al., Piys. Lett. 86́s:220, 1479.

 LASP collaboration: brandelik et. al., phys. Lett.
 670:363. 1977.
 Pluro Collavoration: Buraester et. al., Pays. Lett. 670:367, 1977.

