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System Optimum Diversion of
Congested Freeway Tra±c

Jorge A. Laval and Juan Carlos Mu~noz1

Department of Civil and Environmental Engineering
Transportation Group

University of California, Berkeley

Abstract

We study the system optimum dynamic tra±c assignment (SO-
DTA) in a network consisting of a freeway and neighboring city streets.
There is only one bottleneck in the freeway and every destination is
somewhere downstream of the bottleneck. Vehicles can be diverted
through o®-ramps leading to alternative local street routes. We formu-
late the problem and determine a graphical solution procedure based
on Newell's cumulative plots, which yields the optimal diverted °ow
over time. On-ramps can be conveniently incorporated in this proce-
dure yielding SO metering rates. The following variants are consid-
ered: capacitated and uncapacitated o®-ramps, and deterministic and
stochastic demand.

1 Introduction

Quite often vehicles are entrapped in queues caused by a freeway bottleneck
despite the possibility of bypassing the bottleneck through local streets. Al-
though this alternative may not be convenient for the users as individuals,

1Instructor on leave at the Ponti¯cia Universidad Catlica de Chile, Ph.D. student at
U.C. Berkeley
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it might be bene¯cial for the system as a whole and therefore is worthy of
study.
In this paper we study the system optimum (SO) °ow pattern over a

freeway section with a single bottleneck and several o®-ramps and on-ramps
upstream (see Fig. 1). We consider the many-to-one case where trips origi-
nate on any on-ramp and are headed to a common destination downstream
of the bottleneck. However, vehicles can also reach their destination by tak-
ing any of the o®-ramps and bypassing the bottleneck via local streets (but
not getting back to the freeway upstream of the bottleneck). O®-ramps have
a ¯xed capacity and we assume that the diverted vehicles encounter freely-
°owing conditions on local streets. Although we also assumed that queues
don't occupy space (point queues without spillovers) we identi¯ed solutions
where the limitations of this assumption were minimized.
Our goal is to determine which vehicles should stay on the freeway and

which ones should take each of the upstream o®-ramps and on-ramps so that
the total time spent in the system is minimized. Initially, we assume that
every demand curve is known, but later we explore the case where future
demand is uncertain.
We show that for this type of network the SO-DTA can be identi¯ed

by using a very simple graphical method based on cumulative vehicle count
curves, which yields the optimal °ows in each path over time. We utilize
the optimality conditions from Ziliaskopoulos (2000), i.e. at every instant in
time, the route with the least marginal cost should be used. The optimality
condition is easy to implement since it uniquely determines the beginning
and the end of the diverting period for each ramp.
Al-Deek (1993) explored the user optimum (UO) solution over a similar

network but focused on incident situations. In that work, it was argued that
a SO solution would divert too much tra±c to city streets. Thus, a UO
solution is more suitable. Our results show that one optimal SO solution
(and the most appealing one) consists of diverting the tra±c that the city
streets can handle, i.e. no queues on the o®-ramps.
In Newell (1980) one can ¯nd an elegant analysis for the case of a free-

way in an idealized rectangular grid network. He identi¯es the geographical
location surrounding the freeway that should use the freeway under UO and
SO static equilibrium.
Ziliaskopoulos (2000) presented the SO-DTA formulation for a single des-

tination network as a linear program that encapsulates the cell transmission
model (Daganzo, 1994). He found the necessary and su±cient optimality con-
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ditions for this problem. Compared to the methods presented in this paper,
Ziliaskopoulos' approach can handle more complicated networks. However,
the number of variables involved in the model is proportional to the prod-
uct of the number of cells in the network, the number of time steps and the
number of origins. For moderate size problems involving a few miles and an
acceptable time step (say, two seconds) the problem would become unman-
ageable for a regular personal computer. Additionally, his model assumes
that the position of vehicles can be controlled at all times (holding), which
makes the solution hard to implement. The method proposed in this paper
allows us to solve our problem with pencil and paper and its complexity is
independent of its time and space dimensions.
This paper is organized as follows: section 2 introduces the problem and

provides some insights of its solution. Section 3 illustrates our approach with
the simplest case we can think. In section 4 the problem is formalized using
mathematical programming. This general problem is then solved in sections
5 and 6. In all the cases the arrival process is known a priori, except for
section 7 where a stochastic arrival process is considered. In section 8 the
results are discussed, analyzing practical implementations, and suggesting
future developments.

∆∆ −∆ ∆ −∆

δ −δδ −δ δ

δ
−δ

Figure 1: The Network. Times correspond to extra free °ow trip times.
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2 Problem de¯nition

The network consists of I on-ramps (origins), R o®-ramps and a single des-
tination at the end of the freeway, see Fig. 1. The beginning and end of the
freeway are denoted on-ramp I+1 and o®-ramp 0, respectively. O®-ramp 1 is
the closest to and R the furthest from the destination. Analogously, on-ramp
1 is the closest to and I the furthest from the destination. A bottleneck of
capacity ¹0 is located immediately upstream from o®-ramp 0. However, ve-
hicles can bypass this bottleneck by taking any of the o®-ramps to reach their
¯nal destination by driving along local streets. We assume that once a vehicle
has exited the freeway it does not get back on. The capacity of o®-ramp r is
¹r and is dictated by its discharge capacity to the city streets. On-ramp's ca-
pacity is assumed unlimited (or never reached). The freeway free-°ow travel
time between on-ramp I + 1 and on-ramp i is called fi, and the travel time
between on-ramp I+1 and the freeway's bottleneck is called tf . The trip time
from this bottleneck to the destination is assumed ¯xed and constant for all
travelers. Since we assume no congestion in the city streets, if a vehicle takes
o®-ramp r, it faces a ¯xed extra trip time of ¢Tr; ¢Tr ¸ ¢Tr¡1;¢T0 = 0.
Notice that this extra trip time is independent of the trip's origin. Similarly,
a vehicle wishing to enter at on-ramp i that is diverted to local streets faces
a ¯xed extra trip time of ±Ti; ±Ti · ±Ti+1; i 2 [1; I].
Initially, it is assumed that the (vehicle's) arrival curve at each on-ramp

is known, although we will attempt to solve the stochastic case later in this
paper. The goal is to determine the time dependant paths vehicles should
follow so that the total time spent in the system is minimized. That is,
at every on-ramp which vehicles should enter the freeway, and which ones
should use the local streets; at every o®-ramp which of the on-coming vehicles
should be diverted.

2.1 Necessary optimality conditions

Later in the paper we formulate this problem using mathematical program-
ming and provide the structure of an optimal solution and an algorithm to
identify this solution. First, we state one necessary condition that all system
optimum solutions must satisfy:
Condition: According with Ziliaskopoulos (2000), in SO-DTA drivers

faced with a route choice must always choose the one with lower marginal
cost. The marginal cost on a given route corresponds to the extra delay
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caused to all upcoming vehicles when an additional vehicle uses the route
(externality) plus the vehicle's trip time. Thus, marginal costs are a function
of future route °ows.
There are only two types of choices: i) enter an on-ramp or stay on local

streets, and ii) take an o®-ramp or stay in the freeway. Therefore, we must
check for the condition at only the I +R+ 1 decision points in the network.
Corollary 1: A vehicle should never be diverted to an o®-ramp if any of

the o®-ramps downstream are not at capacity and could serve those vehicles.
This should be obvious since if the vehicle stays on the freeway the extra
trip time along local streets is saved and no other vehicle is impacted by this
decision.
Corollary 2: For a single peak period, according to corollary 1, o®-ramps

should be activated in ascending order and deactivated in descending order.

2.2 Marginal cost analysis

Marginal cost analysis can be a powerful tool to identify system optimum
conditions. The marginal cost of a route is the extra total cost if an addi-
tional driver is added to that route while °ows on all other routes are known
and remain unchanged. Thus, marginal costs are a characteristic of future
network assignments and change with time. For each origin we de¯ne its
system marginal cost as the minimum marginal cost of all routes emanating
from this origin.
Let's now compare the marginal costs for the following two routes: exiting

at o®-ramp 1 (and never enter the freeway again), and staying on the freeway
until the destination is reached. Fig. 2 shows the marginal cost versus time
for the two alternatives and the system in three di®erent scenarios. Fig. 2(a)
shows the case where no vehicles are diverted to the o®-ramp, thus the sys-
tem and freeway marginal costs coincide. In this ¯gure, t0 and T0 denote,
respectively, the times when the ¯rst and last vehicle experiencing a queue
in the freeway enter the system. Thus, the freeway queue will last for T0¡ t0
units of time 2. The marginal cost of the local streets route is constant and
equal to the trip time through the route (because we assume no congestion
there). In the freeway route, the marginal cost is lower for vehicles not in-
volved in the queue (before t0 and after T0) and therefore the o®-ramp should

2Notice that t0 and T0 will depend on how downstream o®-ramps and on-ramps are
used. However, the results derived here will be of value for later analysis
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not be used during those periods. However, between t0 and T0 vehicles su®er
a delay and cause an externality to other vehicles. Therefore the marginal
cost on that period is higher.

-1

∆

-1 -1

∆∆

∆

Figure 2: Marginal costs of two routes: taking o®-ramp 1, and staying in
the freeway. (a) No vehicle takes the o®-ramp. (b) Optimal solution when
o®-ramp 1's capacity is reached. (c) Optimal solution when o®-ramp 1's
capacity is never reached.

If we call ta and tb the moments when a driver enters the system and
passes through the bottleneck respectively, then the delay for the vehicle is
tb¡ta¡tf and the externality is equal to T0¡tb . This is true since all vehicles
to be queued coming behind (¹0(T0¡tb)) would arrive to the destination 1=¹0
units of time earlier had our vehicle taken o®-ramp r. The marginal cost is
equal to T0¡ ta since it is the sum of the cost experienced by the driver and
the externality. Thus, the marginal cost decreases with time at a slope of
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¡1 and presents a discontinuity at t0. We have also highlighted the three
components of the marginal cost: free-°ow trip times, delay and externality.
Notice that the average cost is the sum of the ¯rst two components. The
externality decreases in time, is maximum at t0 and zero at T0.
In the case of Fig. 2(a) our solution would be improved if vehicles where

to be diverted after t0 (since the marginal cost through the freeway is higher
than through the streets at that time). If vehicles are diverted and the
capacity of the o®-ramp is reached (let say at t1), the marginal cost of the
o®-ramp route would then take a similar shape than the freeway route's
marginal cost (but presenting the discontinuity at t1 and then dropping at
rate ¡1 until the uncongested marginal cost is reached again, let's say at
T1). In the optimal solution both marginal costs should be equal once both
routes have reached capacity (between t1 and T1)

3. Fig. 2(b) depicts this
solution. This ¯gure shows that T0 ¡ T1 = ¢T1) indicating and optimal
o®-ramp management policy. This suggests that the last vehicle to exit the
o®-ramp and the last vehicle to be trapped in the freeway queue will reach
the destination simultaneously.
This argument helps to understand the structure of our solution. In

the above example we examined the local optimality conditions relating two
paths. However this approach turns quite complicated when many paths are
involved. In what follows we will develop a graphic approach that will allow
us to identify all optimal solutions in just one graph. The above analysis will
be used as a complement and a reinforcement. In the next section we will
illustrate this graphical approach with the simplest problem we can think of.

3 Uncongested O®-ramps, no on-ramps

In this section we examine the case when upstream o®-ramps never get con-
gested (¹r = 1; r ¸ 1). Notice that due to corollary 1, in this uncongested
case only o®-ramp 1 carries °ow in the SO solution; therefore we only need
to consider R = 1. For now, we will not consider on-ramps in the freeway,
i.e. I=0.
Let's de¯ne the following counting processes:

A(t) = cumulative number of vehicles that have entered the system by time
t

3This indicates that there may be multiple optimal assignments during this period since
both routes have identical marginal costs
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ar(t) = cumulative number of vehicles that have entered the system by time
t and will take o®-ramp r, r 2 [0; 1]
dr(t) = cumulative number of vehicles that have reached the destination
through o®-ramp r by time t, r 2 [0; 1].

Here and elsewhere in the paper, cumulative curves are started after the
passage of a common reference vehicle.

3.1 Single-peak demand

Consider the case of Fig. 3(a) where we have a single peak demand curve
A(t). More general arrival patterns will be considered at the end of the
section. Let's call t0 the ¯rst time when the slope of A(t) exceeds ¹0. Also,
let N be the total number of drivers diverted through o®-ramp 1 during the
whole period of analysis.
The optimal solution can be obtained using the following argument. Drivers

should not be diverted to the o®-ramp when the bottleneck is not active.
After the bottleneck becomes active (at t0 + tf ), d0(t) grows linearly at a
rate ¹0. Then, if we assume N as given we can identify T0 as the moment
when the queue clears in the freeway. That is the last moment such that
A(t¡ tf )¡ d0(t) is equal to N . We call d0(T0) = N0. If N is ¯xed then the
total time spent in the o®-ramp route is constant (recall that it has in¯nite
capacity) and therefore we should only minimize the delay on the freeway
(the area between a0(t) and d0(t)). Now d0(t) is already drawn and we know
that a0(t) passes through (t0; A(t0)) and (T0 ¡ tf ; N0). Thus, we draw a0(t)
starting at (T0 ¡ tf ,N0) and proceeding backwards in time with the steepest
possible curve subject to the constraint that the slope of a0(t) can not exceed
that of A(t). It follows that a0(t) = maxfd0(t+ tf ); A(t)¡Ng. We will call
T1 the time at which the last vehicle diverted enters the o®-ramp (i.e. when
d0(t + tf ) = A(t) ¡ N for the ¯rst time). Once a0(t) is identi¯ed, a1(t) can
be drawn as A(t)¡ a0(t) and d1(t) as a1(t¡ tf ¡¢T1). In Fig. 3(a) we show
all these curves and highlight the three components of the marginal cost of
a trip.
Notice how all this procedure simpli¯es if we shift dr(t); r 2 [0; 1] hor-

izontally to the left by their respective free °ow trip times as is shown in
Fig. 3(b). This is equivalent to start all the clocks with the passage of the
reference vehicle or to assume vf = 1. Let's identify the new curves with
capital letters: Ar(t) and Dr(t); r 2 [0; 1]. Now A(t) = A0(t)+A1(t) and the

8



area between A0(t) and D0(t) represents the total delay su®ered by drivers
in the freeway. Analogously we will de¯ne D(t) = D0(t) +D1(t). From now
on we will refer to events as they happen in this shifted diagram (Figs. 3(b)).

µ0
µ0

∆

Figure 3: (a) Optimal solution for the single o®-ramp case using cumulative
plots. (b) Same solution decomposed by route after a time shift for all the
cumulative arrival to destination curves.

To determine the optimal value of N , we note that, in the optimum, a
small perturbation dN induces a variation on the freeway delay of dN(T0¡T1)
(shaded area in Fig. 3) and of ¡dN¢T1 on the o®-ramp delay. For N to be
optimal the sum of both quantities should be zero.
Thus, the optimality condition is simply:

T0 ¡ T1 = ¢T1 (1)

This means that the duration of the queued episode on the freeway must
equal the extra travel time using city streets. This result is equivalent to
the result obtained in the previous section but assuming that the marginal
cost of the o®-ramp route is constant independent on its °ow. The marginal
cost diagram for this case is shown in Fig. 2(c). Therefore the unique SO
solution for uncongested o®-ramps consists in allowing only capacity °ow on
the freeway (diverting everybody else) until T1, then stop diverting. The
freeway queue will vanish ¢T1 units of time later.
Graphically, A0(t) can be determined by shifting the demand curve A(t)

down vertically until the horizontal distance between the intersection points
with D0(t) (distance T0 ¡ T1) equals ¢T1, as shown in Fig. 4.
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Figure 4: Single o®-ramp solution for a single-peak demand case

3.2 Multiple-peaks demand

Single-peak arrival curves are typical of the morning and evening commute.
However, if A(t) has several peaks the system optimal solution can still be
obtained by shifting the arrival curve vertically. However, a third intersec-
tion point might appear before the optimality condition described above is
satis¯ed (see Fig. 5 for an illustration). In this case we would have three
points where the arrival curve, after a shift of Ns, touches D0(t). Let's call
these points ¿1, ¿2 and ¿3 (¿3 ¡ ¿1 > ¢T1 ). In this case identifying the op-
timal solution requires distinguishing four cases. In all of them the optimal
number of vehicles to divert will be at least Ns, thus there will be no queue
in the freeway at ¿2.
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τ τ τ

Figure 5: Case of an arrival curve with multiple peaks

1. ¿2¡ ¿1 < ¢T1 and ¿3¡ ¿2 < ¢T1: Then Ns corresponds to the optimal
number of drivers to divert since further shifting would end in queues
shorter than ¢T1.

2. ¿2 ¡ ¿1 > ¢T1 and ¿3 ¡ ¿2 < ¢T1: For the interval [¿1; ¿2] the solution
is as in the single peak case, i.e. keep shifting down the portion of A(t)
in [¿1; ¿2] until the new intersection points de¯ne a distance of ¢T1 in
time; for the interval [¿2; ¿3] no further shifting is necessary.

3. ¿2 ¡ ¿1 < ¢T1 and ¿3 ¡ ¿2 > ¢T1: analogous to case 2.
4. ¿2 ¡ ¿1 > ¢T1 and ¿3 ¡ ¿2 > ¢T1: Both intervals can be shifted
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further independently until the single-peak SO solution is found for
each interval.

Assuming that o®-ramps have an in¯nite capacity is certainly an unre-
alistic assumption. However, it's solution provides valuable insights for the
more realistic case of ¯nite capacities analyzed later in this paper. Now that
the reader has been familiarized with the problem and our approach, we
will provide a mathematical formulation for the general case. This step will
provide new insights about the optimal solution for our problem.

4 Formulation

In this section we formulate the general problem with I on-ramps and R
capacitated o®-ramps. The nomenclature and formulation will be important
for attempting this general problem later on.

4.1 De¯nitions

Let the following quantities be the cumulative number of vehicles that, by
time t, have:
ai(t) = entered the system through on-ramp i, 8i 2 [0 : : : I]
air(t) = entered the system through on-ramp i that will exit through o®-ramp
r, 8i 2 [0 : : : I]; r 2 [0 : : : R]; ai(t) = PR

r=0 a
i
r(t). If o®-ramp r is upstream

from on-ramp i then air(t) = 0.
dir(t) = reached the destination after entering through on-ramp i and exiting
through o®-ramp r, 8i 2 [0 : : : I]; r 2 [0 : : : R]. If o®-ramp r is upstream from
on-ramp i then dir(t) = 0.
d(t) = reached the destination (d(t) =

PI
i=0

PR
r=0 d

i
r(t)).

We assume that ai(t) are given while all other curves need to be deter-
mined. Notice that the horizontal separation between air(t) and d

i
r(t) re°ects

the travel time (free-°ow plus delay) of a vehicle over the path connecting
on-ramp i and the destination through o®-ramp r. Notice as well that vehi-
cles departing from an on-ramp at the same time might take di®erent paths
and therefore arrive at the destination at di®erent moments.
Although the problem can be formulated using the above notation, its

formulation and its graphical solution are considerably simpler if we shift all
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curves to the left by the freeway free °ow trip time between on-ramp 0 and
the place where each curve is counted (as was done in the previous section).
Thus, we do the following linear transformation:
Ai(t) = ai(t+ fi);8i 2 [0 : : : I]
Air(t) = a

i
r(t+ fi);8i 2 [0 : : : I]; r 2 [0 : : : R]

Di
r(t) = d

i
r(t+ tf +¢Tr); 8i 2 [0 : : : I]; r 2 [0 : : : R]

D(t) =
PI

i=0

PR
r=0D

i
r(t)

In the case of Air(t) and A
i(t) the magnitude of the shift corresponds

to the free °ow travel time between on-ramp 0 and the respective on-ramp
while in the case of Di

r(t), it corresponds to the free °ow travel time between
on-ramp 0 and o®-ramp 0 through ramp r. Notice that now the horizontal
separation between Air(t) and D

i
r(t) corresponds only to the delay of a vehicle

(excludes the free-°ow travel time).
Erera et al (2000) showed that identifying the optimal ramp metering in

a general network was an NP-hard problem because choosing the order in
which vehicles should depart from the on-ramps (depending on the path they
would follow) forced a combinatorial problem. However, since our network
has a single destination, there is no need to break the FIFO rule in the on-
ramps; e.g. all the vehicles are identical for our purposes. Therefore, we can
formulate our problem as a mathematical programming problem:

min
IX
i=0

RX
r=0

Z T

t=0

[Air(t)¡Di
r(t)]dt+

IX
i=0

RX
r=0

Air(T )¢Tr (2a)

subject to

Di
r(t) · Air(t) 8r 2 [0 : : : R];8i 2 [0 : : : I]; 8t 2 [0 : : : T ] (2b)

IX
i=0

_Di
r(t) · ¹r 8r 2 [0 : : : R]; 8t 2 [0 : : : T ] (2c)

RX
r=0

Air(t) = A
i(t) 8i 2 [0 : : : I]; 8t 2 [0 : : : T ] (2d)

_Air(t);
_Di
r(t) ¸ 0 8i 2 [0 : : : I];8r 2 [1 : : : R]; 8t 2 [0 : : : T ] (2e)

The objective function corresponds to the total delay due to congestion
and diversion. Its ¯rst term function corresponds to the extra time spent
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by vehicles because their path is congested. The second term corresponds
to the extra free-°ow time spent by vehicles that are diverted. Constraints
(2b) and (2c) ensure that vehicles are served neither before they arrive nor
faster than the bottlenecks' capacities while constraints (2d) ensures that all
vehicles are served. Finally, the derivative with respect to time (denoted by
a dot in the top) of arrival and departure curves must be non-negative4.
Notice that our problem is linear and therefore simple to solve using

mathematical programming tools after discretizing. However, in this paper
we will derive the optimal solution graphically to obtain insights about its
structure.

5 Capacitated O®-ramps, no On-ramps

In this section we consider the case where o®-ramps have limited capacity to
handle diverted vehicles so that their bottlenecks are located at the end of
each o®-ramp. To this end, let us add the following notation:

Nr = Total number of vehicles diverted through o®-ramp r, r = 0 : : : R
Tr = Time when the last driver diverted to o®-ramp r leaves the o®-ramp,
r = 0 : : : R
tr = The ¯rst time when the slope of A(t) exceeds

Pr
j=0 ¹j, r = 1 : : : R.

Let's consider ¯rst the R = 1 case.

5.1 Single o®-ramp

We will ¯rst derive the optimality conditions for a freeway with only one
o®-ramp upstream from the bottleneck. If we assume that N vehicles are
diverted to o®-ramp 1 during the whole period, then our objective is to
minimize the total o®-ramps delays (the extra trip time along local streets
would be ¯xed), that is, the area between A(t) and D(t). According to
corollary 1 if a queue grows in both o®-ramps the queue in o®-ramp 1 will
vanish before the queue in o®-ramp 0. Thus, in an optimal solution the
system should process vehicles as fast as possible until N vehicles have been
diverted to o®-ramp 1. Then, diversion stops and the bottleneck works at
capacity until the queue vanishes.

4Notice that derivatives are linear functions.
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Figure 6: Optimal solutions for the case with a single capacitated o®-ramp.
(a) The freeway's queue starts as late as possible. (b) No queue grows in the
o®-ramp

The top part of Fig. 6(a) shows the construction of a curveD0(t) satisfying
this condition. The bottom part of the ¯gure shows the construction of the
correspondent arrival and departure curve at the o®-ramp.
The optimality condition for N can be obtained after we perturb it in a

small dN (shifting dN vehicles from the o®-ramp to the freeway at time t¤).
This perturbation induces a variation on the freeway delay of dN(T0 ¡ t¤)
and on o®-ramp 1's delay of dN(T1 ¡ t¤ + ¢T1). In the SO optimum these
marginal delays must be identical, thus a necessary optimality condition for
this case reads simply:

T0 = T1 +¢T1 (3)

This means that the queue in the freeway should clear ¢T1 time units
after it vanishes on the o®-ramp path which is consistent with our analysis
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in previous sections. Note that the solution does not de¯ne how should we
allocate vehicles arriving between t1 and T1. It only requests that during
that period both servers should work at capacity. We might conclude that
the optimal solution is not unique. Indeed, Figs. 6(a) and 6(b) represent two
extreme optimal solutions. In Fig. 6(a), the freeway has been kept as empty
as possible, while in Fig. 6(b) no queues were allowed to grow in the ramp.
Notice that since the problem was shown to be linear, any linear combination
of these two solutions is also optimal.

5.2 Multiple o®-ramps

In the case of several upstream o®-ramps, the optimum value of N must
be such that a small perturbation dN will produce a delay variation on the
freeway equal to the sum of the induced delays on each ramp plus their
additional free °ow delay, regardless of what proportion of dN is assigned to
each ramp. Let's assume that a vehicle is shifted from the freeway to the
o®-ramps at time t¤. If we consider the case of Fig. 7 where R = 2 and we
let ®(t); t ¸ t¤ be the proportion of dN assigned to ramp 1 at instant t, we
have that:

dN(T0 ¡ t¤) =
Z T1

t¤
®(t)dNdt+ dN®(T1)¢T1 +

+

Z T2

t¤
(1¡ ®(t))dNdt+ dN(1¡ ®(T2))¢T2

(4)

where t¤ is the ¯rst moment when a queue grows in the freeway. According
with corollary 1, T2 · T1, thus ®(T2) = ®(t)8t 2 [T2; T1]. Then,

T0 ¡ t¤ = T2 ¡ t¤ +
Z T1

T2

®(t)dt+ ®(T1)¢T1 + (1¡ ®(T1))¢T2 (5)

T0 = T2 + ®(T1)(T1 ¡ T2 +¢T1 ¡¢T2) + ¢T2 (6)

Notice that for the special case where T2 < t¤ < T1 we get equation 3.
Thus:
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Figure 7: General solution with two upstream o®-ramps

T1 ¡ T2 +¢T1 ¡¢T2 = ®(T1)(T1 ¡ T2 +¢T1 ¡¢T2) (7)

and our additional optimality condition is T1 = T2 +¢T2 ¡¢T1. There-
fore, the optimality conditions are independent of the partition ®(t).
Now we can generalize the optimality conditions for this problem as:

1. If a ramp will be used then it starts being used as soon as it is needed
and is used at capacity during its diversion period. Therefore, ifAr(T ) ¸
0, then:
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(a) _Ar(t) = _Dr(t) = _A(t)¡Pr¡1
j=0 ¹j, 8t 2 [tr¡1; tr], 8r.

(b) _Dr(t) = ¹r, 8t 2 [tr; Tr], 8r.
2. All the demand must be served:

PR
r=0Ar(t) = A(t), 8t

3. Arrival curves are nondecreasing functions:

4. _Ar(t) ¸ 0, 8t, 8r
5. After the queue on o®-ramp r is cleared, no on-coming vehicle will take
it: _Ar(t) = _Dr(t) = 0, 8t > Tr, 8r

6. The queue in ramp r ends ¢Tr¡¢Tr¡1 time units earlier than in r¡1:
Tr = Tr¡1 ¡ (¢Tr ¡¢Tr¡1), 8r

Graphically, the solution is quite intuitive. Let's assume that we know N
(and therefore T0). It follows that D(t) goes through the point (T0; A(T0))
allowing us to draw D(t) backward in time. If o®-ramp 1 is used, then the
slope of D(t) is ¹0 in the interval [T0 ¡¢T1; T0]. If o®-ramp 2 is used, then
the slope of D(t) is ¹0 + ¹1 in the interval [T0 ¡¢T2; T0 ¡¢T1] and so on.
Therefore, D(t) will be piece-wise linear with at most p pieces. Fig. 8(b)
provides an illustration of the shape of D(t). Each piece i of this curve can
be described as a straight segment:

Di(t) = ai + bi(t¡ ¿i) 8t 2 [¡1; ¿1] if i = 1
8t 2 [¿i¡1; ¿i] if i > 1

where:

¿i = ¢Tp ¡¢Tp¡i

bi =

p¡iX
j=0

¹j

ai =
iX

k=1

(¿k ¡ ¿k¡1) (

= ai¡1 + (¿i ¡ ¿i¡1)bi (

(
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Figure 8: General problem with many o®-ramps, no on-ramps (a) Initial step
to identify an optimal solution (b) Optimal solution

with the border conditions ¿0 = 0; a0 = 0.
Then the game is to de¯ne a very late T0 and build D(t) from there5. A

good choice of T0 is the time when the queue would clear without diversion.
Fig. 8(a) shows a good example of an initial T0. Then we should reduce T0
and move D(t) along A(t) until D(t) ¯rst touches A(t). Let's call this time
t = ¿ .
Notice that we may get two types of intersection points ¿ : a) either a

corner of D(t) such that the slope of A(t) at t = ¿ is in between the slope of

5Build D(t) from there means drawing the following function: D(t+¢Tp¡T0)+A(T0)¡
D(¢Tp)
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D(t) immediately before and immediately after t = ¿ , that is:

_D(¿+) · _A(¿) · _D(¿¡)

or b) a point ¿ = ti where the slope of D(t) and A(t) coincide. The optimal
solution for Fig. 8(a) is shown in Fig. 8(b).
Note that with this procedure Tr and Nr;8r 2 [1 : : : R] are uniquely

identi¯ed for any optimal solution. However, as was illustrated for R = 1,
there are multiple solutions of Ar(t) 8r that yield the same optimal total cost.
Therefore, it is not important which driver goes to which ramp, given that
the number of diverted drivers for each ramp is ¯xed and that the optimality
conditions speci¯ed earlier in this section are satis¯ed. This gives a lot of
°exibility as to where to send the diverted tra±c, which is extremely useful
when we have ¯nite storage space.

6 O®-ramps and On-ramps

In this section we will explain how to incorporate on-ramps with their own
cumulative demand curves in this analysis. In this case the operator can not
only divert vehicles through o®-ramps but restrict the entrance to on-ramps
to certain vehicles diverting them through local streets.

6.1 No On-ramps

The simplest case we can envision is when I = 0; R = 0. Then, in the SO
solution vehicles would be diverted to prevent a queue in the freeway lasting
longer than ±T1. As soon as the queue in the freeway will last shorter than
±T1, diversion should be stopped. Therefore, this problem is equivalent to
the single uncongested o®-ramp case seen in section 3.1.

6.2 Single On-ramp

If I = 1; R = 0 then we can solve the problem using the tools developed
in the previous section after we apply two simple modeling tricks. First we
assume that all vehicles arriving at on-ramp 1 arrive to on-ramp 2 instead
but f1 units of time earlier. Next we model on-ramp 1 as an o®-ramp with
a capacity equal to the (time dependent) on-ramp's demand rate. Then
every vehicle taking the o®-ramp represents a vehicle that never took the
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on-ramp in the original problem. Analogously, vehicles not taking the o®-
ramp represents vehicles entering the freeway through the on-ramp. Now
the problem has shifted from I = 1; R = 0 to a I = 0; R = 1 with a time
dependent capacity o®-ramp, ¹1(t) given by the on-ramp's demand rate.
The procedure to solve this problem is identical to the constant capacity

case solved in 5.1. The procedure to determine D0(t) and the sensitivity
analysis to deduce (3) are still valid. However, the ramp will now start work-
ing at capacity from t1 which now corresponds to the earliest time satisfying
_A(t1) = ¹0 + ¹1(t1). Note that now D(t) and D1(t) are no longer linear
during the period [t1; T1].

6.3 Multiple On-ramps

The case I = I 0; R = 0 can be solved as a straightforward extension of the
previous case considering the optimal procedure for the I = 0; R = I 0 case.
As before, all on-ramps are modeled as o®-ramps using the arrival rates as
capacities while their arrival curves are shifted to on-ramp I + 1 by their
respective free-°ow time. Now, the procedure outlined at the end of section
5.2 can be applied to this problem where D(t) would still have pieces but no
longer linear. As before, if we count the pieces starting from the later one,
piece i would be ±Ti ¡ ±Ti¡1 units of time long (±T0 = 0), but now its slope
would be ¹0 +

Pi¡1
j=1

_Aj(t). Notice that each time D(t) is shifted to the left
the rates ¹i(t) change, thus D(t) must be recomputed accordingly. See Fig.
9 as an illustration of an optimal solution.

6.4 Multiple On-ramps, multiple o®-ramps

In the previous case, we model on-ramps as o®-ramps. Now we just add
more o®-ramps to that model. Therefore, the slope of the pieces of D(t) will
be the sum of some o®-ramps capacities and some on-ramps arrival rates.
Notice that since we activate ¯rst the closest o®-ramp (or on-ramp) from
the bottleneck to then sequentially move to those upstream, the solution
obtained will still be feasible since vehicles arriving to an on-ramp will never
be exited through an o®-ramp upstream.
If the capacity of on-ramps is likely to be reached then the problem could

be handled approximately by solving a SO-DTA for the system de¯ned by
the on-ramp and its city street alternative only, as in section 5.1. In this way
the delays on the on-ramps are taken into account. The resulting optimal
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Figure 9: Solution for a general problem with many o®-ramps and on-ramps

cumulative departure curve from the on-ramp becomes its demand curve for
the purpose of the above analysis.
In the following section we extend these results to a more realistic sit-

uation, i.e., when A(t) is a random process. We will see that among the
multiple optimal solutions of the deterministic case, we would rather use one
particular solution over the others.

7 Uncertain Demand

The solutions presented so far may not be easy to implement in real situations
where the arrival curves are not deterministic but random processes. We
will ¯rst examine the single capacitated o®-ramp case (no on-ramps). The
extension to multiple o®-ramps and on-ramps will be straightforward and
outlined towards the end of this section.
When the arrival of vehicles is unknown the game of the operator is to

guess when is the best moment to start and end diverting vehicles through
each o®-ramp. In this single o®-ramp case the operator needs to determine
when to start and end using the o®-ramp (t0 and T1, respectively, see Fig. 6).
The o®-ramp should only be used if the freeway queue is expected to

last longer than ¢T1 units of time. In this case vehicles should start being
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Figure 10: Global depiction of a solution with one upstream o®-ramp

diverted as soon as the arrival rate exceeds ¹0 (avoiding the queue in the
freeway), that is t0. Identifying the moment when the last vehicle diverted
should leave the o®-ramp (T1 in this case) is less straightforward.
Let's assume that we have already a queue of length q0 in the freeway

and the o®-ramp is working at capacity but no queue has grown on it (see
Fig. 10). We want to decide if we should stop diverting now or later. To
take this decision we will assume that the future arrival process responds
to some distribution of arrival curves Z and we will call one realization of
that distribution A³ . Fig. 11 represents the case when vehicles will arrive
according with A³ and we decide to stop diverting at t = 0. Notice that in
this case the queue will vanish at t = T³ (before at t = ¢T1), therefore we
should have stopped diverting vehicles earlier.
If we stop diverting vehicles through the o®-ramp " times units later then

the future cost would be equal to the area (O; qo; e; c) which is the total
time in queue, plus the area (O; h; b; a): the future extra cost of sending ¹1"
vehicles through the o®-ramp. This cost can also be expressed as the area
(O; qo; f) + (a; b; g; f)¡ (O; h; c) + (e; f; g). Note that the last two quantities
are of order "2 and therefore neglectable. Since T³ is the time when the queue
vanishes given the realization A³(t), we can say that the total cost is:
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C("; ³) ¼
Z T³

0

[A³(t)¡ ¹t] dt+ [¢T1 ¡ T³ ]¹1" (13)

and clearly:

@C("; ³)

@"
= (¢T1 ¡ T³)¹1 (14)

Note that this corresponds to the shaded area in Fig. 11. Its expected
value along all curves A³ in Z is:

E³

·
@C("; ³)

@"

¸
= (¢T1 ¡ E³ [T³ ])¹1 (15)
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By setting (15) equal to zero we see that, as expected, the optimal
stopping time is such that the expected queue clearance time equals the
extra free-°ow travel time by the city streets, i.e.:

E³ [T³ ] = ¢T1 (16)

If we assume that the queue is governed by a Brownian motion with
negative drift ¸¡¹ we would ¯nd that we should stop sending people by the
o®-ramp when the queue is:

qo = ¢T1(¹¡ ¸) (17)

Note that (17) does not depend on the index of dispersion of the process.
To be more general, we can consider the rate of the arrival process, ¤, as
a random variable with mean ¸ and variance ¾2. Then the queue behaves
as a conditional Brownian motion process because conditional on ¤ = ¸ the
queue becomes a Brownian motion with negative drift ¸ ¡ ¹. In this case
(15) becomes:

E³;¤

·
@C("; ³;¤)

@"

¸
= (¢T1 ¡ E³;¤ [T³;¤])¹1

with

E³;¤ [T³;¤] = E¤ [E³ [T³;¤j¤]]
= E¤

·
qo

¹¡ ¤
¸

(18)

To compute (18) we can expand the term in brackets (call it T (¤)) in a
power series around ¤ = ¸. Thus

T (¤) = T (¸) + (¤¡ ¸)T 0(¸) + 1
2
(¤¡ ¸)2T 00(¸) + ¢ ¢ ¢ (19)

where + ¢ ¢ ¢ represents higher order terms that may be neglected. Therefore:
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E¤

·
qo

¹¡ ¤
¸
= E¤

·
T (¸) + (¤¡ ¸)T 0(¸) + 1

2
(¤¡ ¸)2T 00(¸) + ¢ ¢ ¢

¸
= T (¸) +

1

2
¾2T 00(¸) + ¢ ¢ ¢

=
qo

¹¡ ¸ + ¾
2 qo
(¹¡ ¸)3 + ¢ ¢ ¢

=
qo

¹¡ ¸
·
1 + (

¾

¹¡ ¸)
2

¸
+ ¢ ¢ ¢ (20)

so that our optimality condition to determine when to stop diverting, (16),
becomes:

qo =
¢T1(¹¡ ¸)
1 + ( ¾

¹¡¸)
2

(21)

which is smaller than the Brownian motion with deterministic drift found in
(17).
Thus far in this section we have assumed that no queues develop at the

o®-ramp, i.e. at the time we stop diverting, the last diverted driver is being
served by the o®-ramp. Fortunately, in previous sections we observed that
one optimal solution satis¯ed this condition. This is why at this point we can
say that we prefer solutions with as little queue on the o®-ramps as possible.
This, of course, will be limited by the storage space of the freeway in order
to avoid spillovers.
It is easy now to extrapolate this in the case of several (R) o®-ramps:

once we have our R o®-ramps operating at capacity we stop diverting drivers
to the one most upstream (the Rth) when a condition analogous to (21) is
satis¯ed. If we let Mi =

Pi
k=1 ¹k be the total o®-ramp capacity when i

o®-ramps are operating, the analogous of (21) reads:

qio =
¢Ti(Mi¡1 ¡ ¸)
1 + ( ¾

Mi¡1¡¸)
2

(22)

Then we proceed sequentially until the ¯rst o®-ramp is no longer needed.
Note that at each stage we should have di®erent (and hopefully better) esti-
mates for the ¯rst two moments of the slope of A(t).
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8 Discussion

We have been able to identify the SO-DTA for a simple but commonly arising
network. Our approach seems to be more appealing for the evening commute
problem or an incidents management policy since we have assumed that
drivers can not change their departure time according with the travel time
they expect.
Although our assumption of no congestion on local streets is not very

realistic our results should be helpful for practitioners. We have stated the
periods in which vehicles should be forced to divert at each upstream o®-
ramp and in which on-ramp metering rates should be activated. If vehicles
face congestion in the city streets, then the diverting period for an on-ramp
should start at the time suggested in this paper but end earlier. Then, since
¢T 's would be larger, we expect that fewer ramps should be used.
When there is congestion on city streets the problem is more complicated

since then i) external users are a®ected by diverting vehicles, and ii) travel
times on o®-ramp routes would be a®ected by °ows on other o®-ramps. If
i) is not relevant then an iterative approach between an assignment model
in the local streets and the methodology proposed in this paper could be
explored.
Our model also assumes no °ows attracted by destinations close to the

o®-ramps (local °ow). However, we can incorporate these local °ows as
long as they come from non-metered on-ramps and there is no queue in the
exit o®-ramps (otherwise we would need to distinguish vehicles according
to destination in on-ramps and o®-ramps, respectively). Fortunately, the
solution with no queue in the o®-ramps takes care of the second condition. If
in addition the ¯rst condition is valid, the capacity of each o®-ramp should
be reduced by the (time-dependant) local °ow.
Implementing the suggested policies may be a great challenge. Clearly,

SO solutions are not obtained spontaneously since they are not user opti-
mum. Diverted vehicles are individually better o® staying in the freeway
and the simplest way to implementing these solutions seems to be enforce-
ment. Unfortunately, SO tolls are hard to implement mainly because of the
discontinuous in the marginal cost on freeway routes in every ti. Addition-
ally, in alternative rationing systems based on license plates our approach
would not work since at the on-ramps we would need to distinguish a subset
of drivers from the rest and as is shown in Erera et al (2000) the problem
turns to be NP-hard.
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Also, our results suggest that during the peak period the best thing to do
is to shut on-ramps close to the bottleneck. We understand that the author-
ities would not be willing to such a drastic policy. In this case, the lowest
acceptable ramp metering rate should be in place. Then in our problem we
should subtract this maximum metering rate from the previous capacity of
the o®-ramp (previously on-ramp).
We have developed a general formulation for many on-ramps and o®-

ramps. However, since often the capacity upstream of the bottleneck is not
dramatically greater than the capacity of the bottleneck, we shouldn't expect
to use many o®-ramps except in incident situations.
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