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Abstract

This paper presents several models of the demand for quality-
differentiated goods in which the consumer decides which brand of
product to select as well as how many units to buy. The models
cover a variety of preference structures and can readily be esti-
mated using standard techniques for switching regressions,

From the fitted demand equations, one can calculate monetary
measures of the welfare effects of changes in the price, guality,
or variety of the brands. The models are then applied to data on
households' demands for recreation sites in the Boston arez, and
the values of the sites are calculated.
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ECONOMETRIC MODELS OF THE DEMAND FOR
QUALITY-DIFFERENTIATED GOODS

1. Introduction

Recently there has been an explosion of interest in the study of markets
with differentiated products. Some developments in this literature are sur-
veyed in the symposia edited by Gould et al. {1980) and Phlips and Thisse
(1982). For the most part, these theoretical studies have focused on a com-
parative static analysis based on the first-order conditions for equilibrium
under various market structures. The empirical application of such models,
however, has lagged behind due, in part, to the difficulty of specifying para-
metric wtility and production functions which are both realistic in their
degree of detail and sufficiently tractable to permit the derivation of closed-
form expressions for the demand and supply equations. The present paper may
be of some assistance in this regard since it provides some parametric utility
models for a consumer's choice among differentiated products which cover a
variety of preference structures and yield tractable estimating equations. It
is somewhat less ambitious than many of the theoretical treatments since it
concentrates exclusively on the demand side of markets for differentiated
products, taking their supply as given., The perspective is thus similar to
that adopted by Novsbek and Sonnenschein (1979), although the demand models
developed here differ somewhat in their structure from the theoretical models
of Novshek and Sonnenschein. However, unlike some of the general equilibriﬁm
treatments such as Mussa and Rosen (1978}, Gabszewicz and Thisse {1980}, and
Shaked and Sutton {1982), the utility mwodels presented bere do not impose the
assumption that the consumer buys only one unit of the differentiated
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Thus, in these models a consumer has to decide how many units to buy as
well as which brand of product to select. Both decisions--the discrete
{guality) choice and the continuous {gquantity) cholce--are determined sigpul-
taneously as the solution to a single utility maximization problem. 'The
resulting demand equations can be cast in the form of a switching regiression
model, and the statistical techniques developed by Heckman {1979} and Lee and
Trost (1978) can be employed to estimate them. Moreover, because the. discrete
and continuous choices both flow from the same underlying utility fumction,
there are additional restrictions on the coefficients and disturbance. terms
appearing in the discrete and continuous equations of the switching regression
model which can be exploited in the estimation process.

Since the fitted demand equations provide information about the uinderlying
utility function, they permit one not only to predict the consumer's response
to exogenous changes in the price, quality, or variety of the brands available
to him but, also, to compute monetary measures of the effect of these. changes
on his welfare. These calculations, which are illustrated below, Tepresent an
extension of the welfare-analytic methodology initiated by Small and Rosen
{1981) to the case of mixed discrete/continucus choices.

The paper is organized as follows. In section 2, I present the wtility
models, derive their discrete and continuous choice equations, and show how
they can be estimated. In section 3, as an illustration, these models are
applied to data on household recreation behavior in the Bostop area. The
choice among different recreation sites with exogenously given guality
characteristics is here taken as an example of consumer choice among dif-
ferentiated products. [n section 4, I describe the procedure for computing

the welfare measures for changes in the set of prices and qualities gvajilable
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tc the consumer and apply it to the fitted revrowy - omodels to
derive estimates of the value of each site {i.¢.. t < .nrplus lost
if the site were sbut down). In the concluding secc ™ . . ‘cate some

directions for further research.
Z. Model specification and estimation

2.1, General Structure
The theoretical set-up is as follows. There are N different brands of
commodity; the consumption of the jth brand is denoted by Xj' The brands
may differ with respect to their prices and quality characteristics, which the
consumer takes as exogenous. The prices are denoted by p = (pl, . e ey pN),
I assume that there are K different dimensions of quality. Let b =
(bl, C e ey bN} and bj = (bjl’ o e ey ij), where bjk is the amount of the kth
quality characteristic associated with a unit of consumption of brand j. The
consumer's utility depends on his consumption of the various brands, their
quality characteristics, and his consumption of other, nonbranded goods repre-
sented by the composite commodity z, which I take as the numeraire. The
consumer's preferences may also be influenced by his own observable charac-
teristics (age, education, etc.), but 1 will ignore these variables for now,
In addition, 1 assume that, although the consumer's utility function is
deterministic for him, it contains some components which are unobservable to
the econometric investigator and are treated by the iovestigator as random
variables. These random elements could be uncobservable characteristics of the
consumer and/or attributes of the brands. They will be denoted by the vec-

tor €, and the vtility function will be written compactly as ul(x, b, z; €).
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Different types of discrete/continuous choice model can be generated, depend-
ing on how one specifies the interaction of € with the other arguments of

the utility function. Here I assume that € = (El’ e 0 oay EN) and

u(x, b, z; €) = ulx, wliblg el)g < e ey wN{bN; eN), z)}. The function wj

may be interpreted as an index of the quality of the jth brand; my assumption
is that it is bere, in the consumer's overall perception of each brand‘s
quality, that the random component is located.

The consumer chooses {x, z) so as to maximize u(x, ¥, z) subject to the
budget constraint ij xj + z =y and the nonnegativity conditions 33 >0,
3J=1, .. ., Nand z > 0. Moreover, I assume that this decision leads to a
corner solution in which z and only one of the xj‘s is positive. This is
because the consumer considers the different brands as substitutes for one
another and prefers to consume only one of them at a time. Thus, his decision
simultaneously involves a discrete and a continuous choice: the discrete
choice is which brand to select (which one of the xj's is nonzero), and the
continuous choice is how much of it to buy (the magnitude of the nonzero xj}.
If the consumer has this preference, his indifference curves for all pairs of
x.'s must be linear or concave. A general family of utility functions with

J
this property is

ulx, ¥, z) = vlixy, yj x5, z). (2.1)

Some specific examples of (2.1) are presented below,

Before describing these utility wmodels in more detail, it is useful to
sumiarize the general procedure by which the discrete and continuvous demand
functions are derived from them. Suppose, for the moment, that the con-

sumer has chosen the jth brand, Conditional on this choice, his utility is
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‘Ej =u(0, ..., 0, X35 0, « v s 0y %y« o 4y Wy, z). Observe that the

family of utility models (2.1) has the property that

X, =0+ =—=0 i=1, . . ., N, (2.2)

i.e., a brand's quality does not matter to the consumer unless that brand is
actually consumed. Therefore, his utility conditional on selecting the jth
s Uiy 2)3 I refer to this as the conditional

377
direct utility function. In order to decide how much of the brand to buy, the

brand can be written as S} = G}(x

consumer maximizes Gﬁ subject to the conditional budget constraint,

pj xj + z = y. Assuming that 55 is strictly quasiconcave in xj and z, and xj

is essentlal with respect to E} (i.e., none of the indifference curves intersect
the z-axis), this leads to an ipterior solution with E} > 0. The resulting

conditional ordimary demand functions will be denoted ES(pj, ¢j’ y) and

J

UJIXJ(sz ‘PJ: y): ‘%’J) z(p:]! !b.}’ y)}'

All of the foregeing 1s conditional on the consumer's selecting brand j.

.g(pj, V., ¥J), and the conditional indirect utility function is Gﬁ(pj, *3’ y) =

The discrete choice of which brand to select can be represented by a set of
binary valued indices, 51, e ey 6N’ where Gj = 1 if xj > 0 and ﬁj = § if
x, = 0. The consumer selects the brand which gives the highest utility;

3
that is,

VLA VLps, vo, ¥) 2 Vilp, vy, ), all i
é'ip,w,yl‘ﬂ} R PR
J L0 otherwise.

(2.3}

Now consider the original, unconditional problem of maximizing uix, ¢, z)

subject to ij xj + z = y. The unconditional ordinary demand functions
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associated with this problem will be denoted by xj(p, Y, ¥)y, j=1, . . ., N
and z(p, b, y). The resulting unconditional indirect utility function is
vip, ¢, yJ = ulx{p, ¥, v}, v, 2(p, ¥, y)]l. These are related to the corres-

ponding conditional functions by
X5(p, ¥, ¥) = 85(p, ¥, ¥) x4(py, ¥y ) (2.4}

v(p, ¥, ¥) = max [F(py, ¥ps ¥)s - - o Tylpg Y V1. (2.5)

For the consumer, the quantities Xj’ E; Vj’ 53, xj, z, and v are known
numbers but, because his preferences are incompletely observed, they are ran-
dom variables from the point of view of the econometric investigator. For
example, the discrete choice indices are Bernoulli random variables with a

mean, g{éj} = “j’ given by

= Pr{"\?j(pj, Vs y) 2 vilp;s ¥, ¥), all i}, (2.6)

This probability can be evaluated by manipulating the joint density of the sj's,
fley, - ooy EN}, Define the sets Aj = {el?s(pj, ¢j, y) 3_§;(pi, b ¥)s

all i+, 3=1, . . ., N. From fE one can construct fe the conditional

JeeA
3 Y

marginal density of ej given that e e Aj’ i.e., given that brand j is selected.

Then, the probability density of'ij, ijiaéAj(X) - Pr{xj = xlg ¢ Aj}’ can be

derived from Ee feen by an appropriate change of variables, Finally, the
i k|

it

N}
probability density of X3, £ {x])

Pr{x‘j = x}, takes the form
i

.
1 I (2.7)

] fx.iaeA.(x) x > 0
I J

fx.(X) .
}

1t

I
!
i

e
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Accordingly, suprose these ore observations cn a sample of T consumers,
each of whon selects one brand of the commodity. Let the subscript t denote
the individual consumer, let j® be the index of the brand which he selects,
and let xz be the particular quantity which he is observed to consume.

From {2.7), the likelihood functicn for the sample is

T
*®
L= {ﬁ.. t X, )} 2.8
t=1 L J*t xj”*‘tlEEAj*t ( t)] ( )
in principle, the unknown parameters of the model can be estimated by full
information maximum likelihood. As an alternative, one can employ the two-
stage estimation procedure suggested by Heckman (1979) and Lee and Trost

(1978). Before discussing this, I will describe the specific utility models

to which it is applied.

2.2, The Blackburn model

The first model was originally developed by Blackburn (1970} for the

analysis of aggregate travel demand. The utility function is3

ulx, v, z) = zxj(l + 40 ¢ - 4n Xxj) + hz + ij X5 8>0, h>0 (2.9)

(b e) = o, + L b, +e., 3=1, . . ., N (2.10)
‘?3( it &5 j " Yk ik 3* J > s
where & is a constant or, more generally, a function of observable charac-
teristics of the individual consumer. Furthermore, the random terms €j

are i.i.d. accoraing to the extreme value {EV) distribution with scale para-

meter p > U, Thus, their joint c.d.f. is



Fstel, N EN} = g0 ‘ {2.11)

The maximization of (2.9) subject to the budgev . "¢ . .ir2 " 7¢lv leads to a
corner solution ip which, except on a set of meueile “oie, ¢nn ene brand is
selected.

Suppose that the comsumer selects brand j; 013 -snditioncl direct utility
is G}(xjy ¥y z) = xjti + 40 6 - xj) + hz + by X5 vhich is strictly quasi-
concave 1in Xj and z. Maximization of ES yields the conditional demand and in-

direct utility functions

M otE .

S ip. . = ge J J (2.12)
xJ(p3, 1413, y) e
_ Ajésj
Ap. ., = h L13
vJ(pj, IJJJ y) y + be (2.13)
where

Ao, + 5y, b - hp..
3% T Ay Py

It follows from (2.13} that the single brand selected by the consumer is that

for which Aj * Ej = wj - hpj is highest, Thus, the discrete choice proba-

bilities {2.6) take the form

nj = Pr{kj + Ej z-ki * g, all i}. (2.14)

With the EV distribution (Z.11}, one obtains

o ~. b.. - hp.
exp{aj + Ivy ik pJ}

Z explo; + Zy, b,y - hp.)

L=

J

{2.15}




where
.
G, = 3
J i
— Ty
Yk*—ﬁm
and
_ b
h = e

This 1s similar to the standard multinominal logit formula [see McFadden

(1974)] except that the latter usually sets the scale parameter p equal to

unity. Indeed, this normalization would be unavoidable if one were estimating

purely discrete choices. It can bg avoided here because I am also estimating
A ‘

the continuous choices, which serve to identify u.

Given the structure of the discrete choice probabilities (2.14), Aj =

{sis} + Aj‘g €, *+ Ay, all i} and the conditional marginal density fejiaeﬁj has
the form
£ () =1 e +a, -2 t4 A - Ay)
E-'EEA. J € J s J N
J J
where Fg 1s the derivative of F_ with respect to its jth argument. With
the EV distribution (2.11) one obtains
I “t/u (o -t/)
fs‘iezﬁ.(t} == ﬁj e expiwﬁj e J (2.16}
3 3
where
-a./u K i./u _
E.ze 7 - L el = ﬁ.i.
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This may be recognized as the density of a univariate EV r.v. with scale para-
meter p and location parameter (p &n Bj)u Its mean and moment-generating

function are
é{sjie € Aj} = plan Bj + 0.57722) {2.17)

te . ¢
e Jice Aj} = 3? M1 - ut). (2.18)

The conditional density fx ’eeA s derived from fe by a change of
] k|

3164
variable based on {2.12), is

- - A /u _ A./u
. 1 gl/u x Hrl/u e exp t—BI/u X 1y Ze ). (2.19)

‘ J‘EGA}(M -

The conditional mean quality of brand j demanded can be obtained by integrat-

ing (2.19} or, more simply, from (2.12) and (2.18)

#

A £.
E{xjta € Aj} e I E{e Jie ¢ Aj}

(2.20)

i

A/t
G(Ze J M1~y

Note that this conditional mean exists only if p < 1. For estimation purposes,
it is more convenient to work with the mean of the conditional distribution of

in X}’ which is, from (2.17),

i

Bibkn xjig ¢ %j} in & + kj + E{ajia ¢ Aj}
(2.21}

IR0 7
m\ze ;o 0.57722 .

= i g+ pc 4
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The estimation of this demand model on the basis of (2.15) and (2.
(2.21) is discussed in section 2.4, Before proceeding, however, two poin..
about the model should be mentioned. First, I have implicitly assumed that
the conditional utility maximization yields an interior solution for Ky In
fact, it can be shown that, for the utility model (2.9), Xj is essential with
respect to'G} so that this assumption is justified. However, it is not trus
that z is essential with respect to 55~~it can be seen from (2.12) that there
is a nonzero probability of obtaining z < 0, which is economically meaning-
less,s In the empirical application below, this probability turns out to be
negligibly small so that it can reasonably be ignored. Second, tne demand
function (2.12) implies a zero income elasticity of demand for all the brands,
which may be unduly restrictive. This restriction is removed in the next
group of models, which offer considerable flexibility in modeling the shape of

the Engel curves for the branded goods.

2.3. Perfect subsiitute models
Consider the following utility function in which the different brands are

perfect substitutes
ulx, ¥, z) = v*(2Yj xj, z) | (2.22)

where u* is a conventional bivariate wtility function. Clearly, the maximiza
tion of {Z.22) subject to a budget constraint leads to a corner solution in
which only one brand is selected. Given that the consumer has chosen brand j,

his conditional direct utility isﬂgj(x,, $j$ z) = u*(@i x., z}. Regard

J 3
uk{«, ) as a function of two arguments, say, wy and T If u* is strictly quasi-

concave in Wy and Wips then u} is strictly guasiconcave in xj and z.
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Similarly, if w; and wy; are essential with respect to u*, then xj and z are
essential with respect to'ﬁj, Let w;(pz, y)} and W;I(pi, y) be the ordinary
demand functions arising when u*{wls wli) is maximized subject to the budget
constraint p; wy + wir =¥, and let vi(p;, y) u*{wi(pl, v}, W;I(pl, vl

be the corresponding indirect utility function. It can be shown that the con-
ditional ordinary demand functions and indirect utility function associated

with'aj have the Eorm6

= ol (B
xj(pj, Cj’ vyl ¢3 wy (}3, %) {2.23a)
7.0 ) I 2.23b)
ZJ‘ p3$ mjr Y - WII sz y { o Ll
Filpas Vo y) = vh [ D,y (2.23¢)
J J’ 33’ ‘pjﬁ -

Since v* is decreasing in its first argument, it follows from (2.23¢) that the
single brand selected by the consumer is that for which pjimj is lowest,

Instead of (2.10) it is convenient here to adopt the following specifica-

tion for the wj’s.

¢(bji ej) = exp(aj + Iy, bjk + ej) (2.24)

where, as before, the ej’s have the EV distribution (2.11). Applying (2.6},

the discrete choice probabilities may be written

my=Pr{in $j - Ln pj > &n ¢j + &n pj, all i},



“13-

which has the same general form as (2.14) but with Aj now defined as Aj =
Gy ¥ 2y bjk - &n Pj- With the EV distribution, these probabilities are
given by

- = 1
exp(éj v Iy, bjk T ﬁﬁ p;)

_ - - 1
L exp G * Eyk bik —§~‘£n pg)

T, o= (2.25)

J

where, as before,

.
G, = —d
J 7 u
and
U %
Yy = 7

This is similar to corresponding formula for the Blackburn model (2.15) except
for the appearance of the term (1/pJifn Pj in place of.gpj. Because of this
difference, the scale parameter of the EVD, u, can be identified directly from
the discrete choices.

To obtain the continuous choice probabilities, one must specify a para-
metric bivariate utility model. Here I consider three models which lead to
reasonably tractable formulas for the continuous choice probabilities. Ex-

pressed in dual form, the utility models are

* 6 1 11

Vip, Y) = ooy bty L 8> 0, néd (2.26a)
MY‘}‘},’

> . 8 I-p & 7 27,

vip, ¥l = 5y b - 6 >0 (2.27a)

v*(plg vy = {iny - & 4ip pl}pgﬁ 6 <8 < 1. (2.28a)
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In each case, b is a constant or, more generally, a function of the charac-
teristics of the individual consumer. The ordinary demand functions associated

with these utility models are

* = pn P LN (2.26b)
HI(PI, }’) = epl Y

® PR R 13 (2.27b)
&
& . & -8y
wi(py, ¥) b By (4n y - 6 an p;). (2.28b)

Thus, the utility model (2.26) leads to a constant income elasticity of de-
mand, n, while the utility model (2.27) leads to an income elasticity of

demand, ny, which varies with the consumer's income. I will refer to these

as the LOG-LOG and SEMI-LOG models, respectively. In both models a necessary
and sufficient condition for Wy to be an essential good is that p < 1; how

ever, wi; is not essential. The utility model (2.28) is a bivariate version of
a special case of Muellbauer's (1976) PIGLOG model; given that & < 1, both goods
are essential. It should be noted that none of these indirect utility func-
tions is quasiconvex over the entire price-income space. Therefore, one must
check for quasiconvexity at the sample data points,

To show how these conventional bivariate utility functions can be combined
with the random utility modei (2.22), I will focus on the LOG-LOG model (2.26);
the analysis of the other models proceeds in a similar manner. From {2.23a)
the conditional ordinary demand functions associated with the random utility
model, which consists of (2.22), (2.24)}, and the direct utility function dual

to (2.26), ar87
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N
Y ;) nool
b(@j Y \113

ﬁpgp y}Pi w§_1.

[

xj(pj, Yy y)

f

Substituting {2.24) and simplifying yields

-1 (p-1Jr, (a~1)€j

X.(p., V. = 6p. J
x3€p3 vy y) Py v e e

{2.29)

Using (2.29) to make a change of variable in (2.19) from Ej to Xj’ one obtains
the conditional density8

£ X z(ﬁ__ 1/u(p-1) y/ule-1) - [up-1)+11/u(p-1) ze;\i/“

N . .
xyleehy Pj

(2.30)

* exp [-(%“)Uﬁ(p“l) yVule-1) (-1/ulp-1) Xeki/u} Cuip - 11074
b

For the purpose of estimating the model, it is convenient to work with the mean
of the conditional distribution of Rn{pj xj) which is, from (2.29) and

(2.17),

i

fme+piny+{p-17A.

- . .
3‘*({3 I)E{EJE(‘ AJ}

El{L . X} A
{&n Py Xjle ¢ J}

(z2.31)

h /1
gn 6+ niny s (p - 1) {% in <;e 1 t>+-@,5?7zz %}w

Tc save space, the formulas corresponding to (2.30) and (2.31) for the other

it

two utility models are presented in the Appendix.
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Z.4. FEstimgiion

The demand models presented above can all be estimated in a similar manner,
In each case, given observations on a sample of consumers, the likelihood func-

tion of the sample can be cast in the form of (2.8), where ﬂj*t is given by

(2.15) or (2.25), and £
Xj*tieeﬁj*t

(x:) is given by (2.19), (2.30), or the formulas
in the Appendix. As noted above, the unknowns in the model could be estimated
by full information maximum likelihood. It is simpler, however, to employ a
two-stage estimation procedure along the lines originally suggested by Heckman
(1979) and Lee and Trost {1978} for the switching regression model with normal
errors. I will describe this estimation procedure in the context of the
Blackburn model; the details vary slightly for the other demand models.

The first step is maximum likelihood estimation of the logit model for the
discrete choice probabilities alone (2.15). This yields estimates of a,
¥, and h which are consistent but not efficient since they ignore the infor-
mation contained in the data on continuous choices. With these estimates
one can form consistent estimates of (Ri/u)t. The next step is a regression
analysis of the data on the continuous choices. By virtue of (2.21) one can
set up the following regression model for these data.

(A 7u)

kn xz = &N et + u{;n e ! ty 0.5772%} + v t=1, .. ., T {2.32)

t

where the vt’s are i.i.d as BV (y, -0.57722u). Hence, E{vt} = (0 and var{vt} =
nzpzfﬁ, The estimated values of (Aifu}t are used to form the regressor vari-
able in braces in {2.32}, and the equation is fitted by least squares--by OLS

or nonlinear least sguares depending on the form of in Qt‘ Since this is a
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regression with nonnormal but homoscedastic and finite-variance disturbances,

the resulting estimates of p and the coefficients in fn 6_ are consistent.g

t
At this point, therefore, one has consistent estimates of all the unknowns
in the model, The final step is to use these as initial estimates for the
maximization of the likelihood function (2.8). Since they are consistent, a
single Newton-Raphson iteration will provide estimates with the same asymp-
totic distribution as the global MLE. Thus, these two-step maximum likelihood
{2SML) estimates are consistent and asymptotically normal and efficient, and
their covariance matrix is consistently estimated by the information matrix.
The computations can be further simplified by following the suggestion of
Berndt et al. (1974} and substituting the covariance matrix of the gradient of
the log-likelihood function for the information matrix when performing the
Newton-Raphson iteration and computing the covariance matrix of the parameter

estimates.lo This procedure is employed in the empirical application de-

scribed in the next section,

5. An application to recreation demand

3.1. The data

In this section, the demand models developed in the preceding section are
applied to some data op households® visitation of water-based recreation sites
in the Boston area. The data come from two surveys, both conducted in 1974
and described in more detail in Binkley and Hanemann {1978): a survey in
their homes of a stratified random sample of bousebolds in the Boston SMSA to
ascertain which sites they had visited during the summer of 1974 for swimming

and beach recreation and the freguency of their visits; and a survey of the
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major recreation sites in the Boston area to inventory their facilities and
sample their water quality. From this sample, 83 households who each visited
only one site during the summer of 1574 form the basis for the application of
the discrete/continuous demand models. My maintained hypothesis is that these
households freely chose to visit only one site because of their particular
recreation preferences. Between them, they visited some 20 different sites
which cover all the main sites in the area. Each household is conceived of as
selecting one of these 20 sites and choosing to make some number of visits to
the site over the summer; in the sample, the number of visits by a household
ranged from 1 to 100, with a median of about 5.

For the site characteristics, I employ five variables. Two are measures
of water quality, chemical oxygen demand (COD) and total phosphorus content
(PHOS), both measured as mg/l. Nonwater aspects of site quality are captured
by a dummy variable, NUISANCE. Higher values of these three variables signify
poorer site quality. The fourth variable, SITE TYPE, a dumsy variable for
freshwater (= 1) as opposed to ocean sites {= 0), is included because there
may be distinct preferences for the two types of site. The fifth variable,
MINORITY ATT, is intended to allow for racial segmentation in the selection of
recreation sites which is a significant phenomenon in the Boston area. This
is a dummy variable which takes the value 1 if the household is from a
minority group and the site i1s one of those identified as being especially ac-
cessible to minorities and 0 otherwise. These five variables constitute
the b,

1k
studies, the price variable, pj, is taken to be the travel cost defined as

's in {2.10) and (2.24). Following the custom in recreation demand

the estimated road distance from the household's home to the vecreation site

multiplied by an estimated travel cost of 7 cents per mile {in 1974 prices).
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Finally, in formulating the model 1 adopt an entirely ''generic' specification
Gf site demand by setting G =Gy F oL Oy ; 0 in {2.10) and (2.24).

The observable household characteristics which enter into the term & in
{2.9) and (2.26) through (2.28) are an index of highest household education,
EDUC; the number of persons aged 18 and older in the household, ADULTS; and
the number of persons under 18 in the household, CHILDREN, 1In addition, there
is a dummy variable, SWIMPOOL, which takes the value 1 if the household has
access to a private swimming pool and 0 otherwise. The specific formula for
g is

8

epuc 1

6 =6 .-explelz SWIMPOOL + 813 ADULTS + 914 CHILDREN] (3.1)

10

where 910 is a positive constant. Finally, y is annual bousehold incouwe

in 1974 dollars.

3.2.  Results

The four demand models described above were estimated by the metbod de-
scribed in section 2.4. The results are presented in tables 1 and 2. In the
first stage, 2 logit model of the discrete choice was estimated using (2.15)
for the Blackburn model and (Z2.25) for the other models. In the case of the
Blackburn model, this yielded estimates of ;&, AN ;S and h. The next step
was the estimation of the regression model (2.32) by OLS. This provided
consistent estimates of u and 611, . e e 814, which gre shown in the first
column of table 1, as well as of in %16‘ The implied estimates of bigs Yi =
§; * u oand b= hos u, which are alsc consistent, are shown in the table, These
estimates were used as the starting values for a Newton-Raphson iteration of
the normal eguations for the log-likelihood function. The resulting 29V es-

timates are shown in the first column of table 2.
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TABLE }

CONSISTENT TWO~-STAGE ESTIMATES OF DEMAND MODELS

COEFFICIENT/ DEMAND MODEL

VARIAELE BLACKBURN LOG~LOG SEML-LGG pIGLOGD
Y, cop ~0.0164 -.016}
Y, PHOS ~9.4114 ~5.7673
Y, WUTSANCE “0.2978 ~0.363
Y, SITE TYPE ~1.1965 ~1.2883
Y, MINORITY ATT 0.8773 0.3618

h 0.7675 ®/A

u 0.5607 0.465

o N/A 0.0941 0.1139 N/A

n w/a -0.1252  2.9%10°°  .e.61 107"

80 1.4024 1.5959 -6.5335 ©0.0012
8,, EDLC 0.7804 0.7038 0.6421 0.3812
8,, SWIMPOOL ~0.7303 -0.8131 ~0.8478 ~G.1518
8,5 ADULTS 6.4185 0.4733 0.4623 0.1327
81& CHILDRER 8.6526 -0, 0114 ~3.0105 0.0291
fn L° ~199.68 ~167.86
g2 4 0.263 0.356 0.354 0.268
eThe sample is 83 households. The estimates ?f A Yﬁ and W are

the same for the LOGC-LOG, SEMI-LOG, and PICLOG demand models.
binaame measured in thousands of dellars.

“Yalue of log-iikelihood functicn for discrete cholce equation.

ﬁRZ for least squares regression of continuous cholces: note that

different models have different dependent variables.
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TaBLE 2

28ML ESTIMATES OF DEMARD MoppLs 2

DEMAND MODEL

COEFFICIENT
BLACKSURN LOG-L0G SEMI-L0G
Y, -0, 0202 ~0.0177 ~0.0166
£3.74) {6.18) {6.07)
Y, -%.4137 -5,2811 ~9.2118
(3.89) (4.89) ¢5.11)
Y3 -0.3855 -0,3297 -0.313
{1.77) (2.33) (2.32)
Y, ~1.4106 -~1,2593 ~1.0%67
{(4.39) {7.58) (7.85)
Y5 0.8314 0.3348 0.3316
(4.70) (2.50) . {2.36)
h 0.8303% N/A N/a
(&8.7%)
B 0.600¢ 0.4938 0.4702
(22.01) (35.26) (38.57)
o n/a 0.101 G.1156
€54.00) (55.26%
n N/A -0.1175 4.22%10°°
{9.53) (3.28)
80 1.5165 1.5149 0.581
(2.89) (7.44) {8.70)
LI 0.3265 0.661} 0.6167
{3.03) €20.48) (17.82)
6.5 ~0.8512 ~03, 905 -0.8772
{5.56) (25.08) (22.44)
313 0.4418 0.472 0.4601
(14.83) {41.73) €45.71)
824 0.06945 -G.0157 -p.5108
{3.51) {1.89) {1.37}
fn L ~505,15 ~§51.46 ~1,077.73

Bihe sewple ig 83 households. The srtarting values of
the coeffliclents for the Newssn-Raphson iteratrion are
those glven in Table I. The numbers in brackets are

the abaplute valueg of the asymprocic t-statistics.
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In the case of the other demand models, the logit model of the discrete
choices yielded estimates of'¥l, c s ?S and (1/4) from which estimates of
u and Yis + + -3 Yg WETE obtained; these are shown in the upper portion of
the third column of table 1. Next, the continuous choices were estimated us-
ing (2.31) for the LOG-LOG model, (A.2) for the SEMI-LOG model, and (A.9) for
the PIGLOG model. The first two of these regressions were estimated by OLS
and the last by nonlinear least squares. The resulting coefficient estimates
are shown in the lower portion of table 1. These were then employed as the
starting values in a Newton-Raphson iteration, The resulting ZSML estimates
for the LOG-LOG and SEMI-LOG models are shown in table 2Z; because of numerical
difficulties, the 2S8ML estimates could not be obtained for the PIGLOG model.l1

It should be noted that the coefficient estimates for the LOG-LOG, SEMI-
LOG, and PIGLOG models all satisfy the conditions required for X3 to be an
essential good: the estimates of p in the LOG-LOG and SEMI-LOG models are
each less than unity, and the implied estimates of & in the PIGLOG model
satis{y 0 < & < 1 for every household. Moreover, the coefficient estimates
ensure that each of these three indirect utility functions is quasiconvex at
the sample valves of the variables.lz

In order to get a feel for the implications of these coefficient estimates
and their differences across the various demand models, it is useful to focus

on the implied own price and income elasticities of demand. Using (2.7}, I

will define the own price elasticity as

aEix . aE{x. teeh } 47 .
T;,—l‘?ff{"}_ g St R -1 2
pifbe ) b= il gte e Al gt e gy T gl B2

J J 3
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The first term on the right-hand side of (3.2) is the price elasticity of de-
mand given that brand j has been selected, while the second term is the price
elasticity of the selection probability. I will refer to these as the con-
tinuous and discrete choice elasticities, respectively. The specific formulas
for these elasticities corresponding to the various demand models are pre-
sented in table 3. The income elasticity of demand is defined similarly ex-

cept that, from (2.15) and (2.25)}, Bﬁj/ay = 0, Thus,

}

aE{x. | .
j {x} eeAj}

a8y

yE{x.}‘l 8 Ex

. 3.3
3 5y (3.3)

-1
= yEix.1 .
y{xjeeA}}

The specific formulas for the income elasticity are shown in the last column
of table 3. Point estimates of these elasticities were calculated for each
household in the sample, using the coefficient estimates of table Z for the
Blackburn, LOG-LOG and SEMI-LOG models and the coefficient estimates of

table 1 for the PIGLOG model. The averages of these point estimates are shown
in table 3.

The estimates of the own price elasticity for the different demand models
are of a similar order of magnitude; the overall price elasticity ranges from
-1.321 to -2.56. The estimates of the income elasticity display more varia-
tion which is not surprising because the underlying utility models involve
very different Engel curves. As noted in section 2, the Blackburn model im-
plies a zero income elasticity while the LOG-LOG model implies a constant in-
come elasticity here estimated as -0.113. The other two models imply income
elasticities which vary with the consumer’'s income or the budget share of the
branded good. The mean-point estimate of the income elasticity is 0,054 for

the SEMI-LOG model and -0.441 for the PIGLOG model.



OWN PRICE AND INCOME ELASTICITIES OF DEMAND FOR RECREATION SITESH

TASLE 3

PRICE ELASTICITY

MODEL INCOME ELASTICITY
DISCRETE CRHOICE CONTINGOUS CHOICE TOTAL
Blackburn -7 :—}(1 -7, ~1.245 AN -0.076 ~1.321 H/A 0
x,;n:;*z.oc «—fj(l -my) ~1,481 SRR 0,758 -2.239 n ~0.113
SEMI-10G " -1.532 " -0.753 -2.284 - -0.054
PICLOG " -1.5%7 ~f} +6mrj E'(lee: « Aj}“‘i} -1.003 ~2.56 149 E{wjh: € Aj}"i ~0. 641

a
Averages

of point eatimates

over a1l households.

-5T~
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4. Welfare evaluvations

Recall from (2.5) that u = v(p, ¥, y) is the utility attained by the indi-
vidual consumer when confronted with the choice set defined by (p, b, y}. This
is a known number for the consumer, but for the econometric investigator it is
a random variable with a known probability distribution. In these circum-
stances it might be natural for the investigator to focus on the mean of this
distribution, E{v} = V(p, b, y), in evaluating the consequences of a change in
the choice set. Suppose that the available prices and qualities change from
(pu, bu} to (pl, bl), By amalogy with the Hicksian compensating variation of
conventional utility theory, one could measure the effect of this change on the

consumer's welfare by the quantity CV defined by

v(pl, bl, y - av) = v(p0, b0, y). (4.1)

CV is the amount of money that one would have to give the consumer after the
change in order to render bim as well off as he was before it where, because
his preferences are partially unobservable, the welfare comparison is based on
the investigator's expectation of his utility. An equivalent variation meas-
ure can be defined similarly.

In order to obtain V(+) it is convenient to first derive an expression
for E{vjle € Aj} and then calculate F{v} = I Rj E{vj!e € Aj}. For the

Blackburn model, for example, using (2.13) and (2.18) one obtains

R~/%)u

E{iv} = hy + 3(}:9 ' M1 - ), (4.2)

while for the LOG-LOG model (2.26) using (2.23¢) and {Z.18) one cbtains

}\/H Li{ﬁ”l}
Eivi = ww%m“-ylmn + 6 (iie ! ) i1 - ule - 131, {(4.3)
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Given the change in (p, b}, AJ, defined by (2.14), changes from A? to
1
A-. Let
3 e
A?/u
Qp = Ze (4.4)
and
Ai/u
Q) = Ie . (4.5)

For the Blackburn model substitution of (4.2) into (4.1) yields

CV =

b 2 A

or(1 - w) 1Q§ - Qpl- (4.6)

For the LOG-LOG model substitution of {4.3) into {4.1) yields

1
1-n

gnly - QV) = an(y!™™ 4 4) 4.7

where

a= 28 er(l - ue - 1)) {QE(D"I) - gyler)

This equation could be solved for CV by numerical techmiques. Alternatively,

one can write {4.7) as

_ ooy L (_m; )__
xn(; §f) il Loy + 4 &ny

and then employ the approximation in{l + x} = x to obtain

OV =y iny - T_¥“§ Qn{ylmn + g). {4.8]
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The formulas for miv} and CV for the other two demand wmodels, derived in a
similar manner, are presented in the Appendix.

. A related application of this welfare metheodology is to analyze the ef-
fects of a change in the variety of brands available, Suppose that, in éne
case, there are N brands available with prices p0 and gualities bg and, in
another case, there are M (different) brands available with prices p1 and
qualities bl. Assuming the "'generic'" specification of the wj's in which
@y = 0 all j, the effect of this change in variety on the consumer's wel-
fare can be measured by the quantity CV given by the formulas (4.6) or (4.8)

where QO and Ql are defined by

N A Mo A/
Q{j = & e' and Ql = L e re,

=1 i=1

Another application arises when one wishes to measure the value of the

existence of a brand, i.e., the welfare loss sustained by the consumer if that
brand were unavailable. With conventional, continvous demand models, this is
approximated by the Marshallian triangle under the ordinary demand curve., The
idea behind this calculation is that, if the brand were to become unavailable,
this would be equivalent to its price rising from the current level to a level
at which the demand for it fell to zero. In the present context with
discrete/continuous choices, the relevant increase would be to a price of
infinity since, from {2Z.15) and (2.25), this is required in order to drive the
consumer's probability of selecting the brand to zero. Accoerdingly, suppose
that one wishes to obtain the value of the jth brard. The CV measure is given
by the formulas (4.6) or {4.8) where QQ is defined as in (4.4) while QI is

given by



Q= 2z e (4.9)

ALl
since, when pj = =, e J =0,

As an illustration, I have applied this technique for measuring the value
of the existence of a brand to the Boston area recreation sites, using the
four demand models estimated in the preceding section. In the case of the
Blackburn, LOG-LOG, and SEMI-LOG demand models, these values were calculated
using the coefficient estimates in table 2 and the formulas (4.6), (4.8), and
(A.5). In the case of the PIGLOG model, the values were calculated using the
coefficient estimates in table 1 and the formula {A.13), together with the
approximation ¥{1 - un} = ¥(1) = -.57722. Since p and © are, in general,
different for each household in the sample, I considered an average household
and calculated the value of each of the 20 sites taken separately. To save
space, only the estimates for the median site are presented in table 4.13
These estimates are in 1974 prices and represent the median value of a site to
an average household over the summer recreation season; in effect, they are
annual values. It will be seen that the estimates vary across the different

demand models, ranging from 7.3 cents per household with the SEMI-LOG model to

20,8 cents per household with Blackburn model.

5. Conclusions

In this paper I have presented several models of the demand for quality-
differentiated goods which cover a variety of preference structures and yet
are fairly simple to estimate. 1Ip these models consumers make a double

choice--a discrete choice of which brand to select and a continuous choice
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TABLE 4

ESTIMATES OF THE MEDIAN VALUE OF A RECREATION SITE
IN THE BOSTON AREA

DEMAND MEDIAN VALUE
MODEL OF A SITE
cents
Blackburn 20.8
LOG-LOG 7.4
SEMI-LOG 7.3

PIGLOG 10.0
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of how much of that brand to buy. Both choices flow from the same underlying
utility maximization problem, and this provides restrictions on the coef-
ficients and disturbance terms of the discrete and continuous choice eguations
which are incorporated intc the estimation procedure. I have also shown how
information from the fitted demand equations can be ewployed to construct
monetary measures of the welfare effects of changes in the prices, gqualities,
or variety of the brands available to the consumer.

There are several directions for further research. In terms of the theo-
retical framework, one could develop alternative demand models by introducing
the random element into the utility function in a different manner from that
adopted here--in effect, telling a different economic story about the origin
of the disturbance terms. One could also make a different assumption about
their probability distribution. For example, the normal distribution could be
employed in place of the EV distribution, yielding probit rather than logit
models for the discrete chcices.l4 A more substantial extension would be to
endogenize the supply side, combining the demand models presented here with a
discrete/continuous model of producer supply, in which firms decide which
brands to manufacture and either how much to supply or what price to set.

Such a development would generalize Bresnahan's (1981) model of markets for
differentiated goods. Among the econometric issues, perhaps the most pressing
is the problem of model discrimination. The various demand models presented
here are not nested within one another.- As the empirical application to
recreation site choices shows, they can lead to quite different estimates of
demand elasticities and welfare measures for changes in prices or qualities.
It would be useful, therefore, to bave some formal statistical criterion for

discriminating among them. As an informal test, one can compare the values of
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the likelihood function, as suggested by Sargan (1964}, If this is applied to
the three demand models in table 2, the Blackburnp model is ranked best and the
SEMI-LOG model worst, However, it certainly would be desirable to extend

Pesaran and Deaton's (1978) procedure for testing nonnested, nonlinear regres-

sion models to switching regressions of the type considered here.
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Appendix

Here I record the formulas corresponding to (2.19), (2.21), (4.2), and
(4.4) for the SEMI-LOG and PIGLOG demand models. For the SEMI-LOG model,

(2.27), one obtains

£ (0 = (6 VM0 D) /oD - uCo- o1 /uGo-1) g N/
3154 )
(A1)

A/
texp[(o/p /MO (D) /o) N eute - 1072

A /u
E{sn pjxjig € Aj} = 4n 6 +ny+ (p- 1)[;; En(ﬂe ! ) + 0,57722 ;l (A.2)

The Slutsky matrix is negative semidefinite if npjxj < p. Given that

p <1 xj 1s essential, while

x/
Priz > 0} = 1 - exp[—ygl/u(pql) e/ ulp-1) g1/ulp-1) Ze ! u} . (A.3)

The formula for the expected unconditional indirect utility is

-Ty A /iulpe-1)
Bfv} = - £ +(Q ? 1) [Ee ! ] Ity - wlp - 1)]. (A.4)

T

Substitution into (4.1) yields a direct solution for CV

CV = = 4n{l + 7 a) {A.5)
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where

b= D00 rln - uGe - QD) L gple )y

For the PIGLOG demand model, (2.28), the conditional ordinary demand func-

tions are

- Pyw,  nyy. nyey . )
X poy Vo ¥) = |—d 4 duny - cd (anp. - a0 g ¢t
3] J pj pj pj J J ]
(A.6)
) A1) AT 1) 4 N Y ) A OV b “
Pj + pj ny pj n p3 + pj (aj + Eyk ik + EJ)“

For this demand model, it is more convenient to work with the budget share,

Wy = pjxj/y. In terms of this variable, (A.6) becomes

w. = 8 + in vy + nBa. Ge .. A7
J " yra AJ v EJ ( )

Making a change of variable in (2.16) from ¢4 to wj, one obtains

x./u A/

¢ 1/6u (6-wl/nou ;"1 exp‘;ylleu LO-wi/mu o i ] Couin)™Y. (A.8)

W. t‘aeA.(w) =Y
J J
The conditional mean of w3 is

f x/u
E{wjfe e Aj} =niny+ 6+ eni?‘%n se ! + 0.57722 s . (A.9)
. J

The Slutsky matrix is negative semidefinite if wi + nwj - wj -n 8 <

given that € < g < 1, beth xj and z are essential,
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From (2.23c) and (2.28a), the conditional indirect utility function is

it

Vj(p'js Y.y y)

I3 -G 4np. + 6 4ny.) piyt
; (¢n y np;t o in w}) P V;

by

NAa; NE; NA - ne.
(iny+8)\j)e Je I+ e Jeje J,

. nA ne;
EGA§+9€ B’E{je J

A . &
E{vjla € Aj} = (iny + ekj) e E% J

H

Its mean is

€ ¢ A} (A.10)

The first conditional mean on the right-hand side of (A.10} is given by

{2.18); the second can be evaluated as follows

ne -
Bl ]

ne .
= [ J
€ ¢ A._.} i €5 € fsleGAj (ej)dsj

K]

[ b - -
= | g€ _d ¢ e/u exp{-B.e €/u)dﬁ (A.11)
e " P j

= uﬁgn {1 - un){an B W1~ )]

vhere ¥(-) is Euler's psi-function. Substituting (2.18) and (A.11) into

(A.10) yields

f PVITR Rl [ Aifﬁ1
{vi = lie : _! (1 - un) {&:n y + 6p in lle o= el - un)i. {A.12)

iy
R

L

Applying (4.1}, one finds that CV satisfies

41

wnly - OV) = (Qy/Q)"" {an y + 6y fa Qg - 6n ¥(1 - wn)} - B &0 Qp + 6w W1 - un)

e
et
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As with the LOG-LOG model, the solution for CV can be obtained numerically, or

it can be approximated by

CVeyiny-vya. {4.13)
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Footnotes

1Bresnahan (1981) provides an empirical model of the supply and demand

for differentiated prbducts in the U. 5. automobile market, but be imposes
this restriction on consumer demandas.

%A fuller account of the general structure of discrete/continuous demand
models is presented in Hanemann (1982).

SBlackburn never explicitly presents this formula for the utility func-
tion, but it is implicit in bhis apalysis.

480me normalization is still required in order to estimate {2.15) since
it is invariant to multiplication of both the numerator and the denominator by
ep, for an arbitrary constant p. An appropriate normalization would be

to set o, = 0 for one index 1.

A fu
SThe c.d.f. corresponding to (2.19) is F (x) = expl-8V/H x1/H 5o 1y
Xleehy T A
= F = . u
Thus, Pr{z > Olc e Aj} = rlee . Aﬁ(y/pjj = expl (Gpjfy) Te 1,
and Pr{z > 0} = IPr{z > Qie ¢ Aj}ﬁj»

%see, for example, Muellbauer (1975).

7The quasiconvexity of the indirect utility function or, equivalently, the
negative semidefiniteness of the Slutsky matrix is satisfied if npj Qs < py.
In the empirical application below, this is tested by comparing the estimate of
py with the estimate of npy E{x.le € Ak

J

8 hi/u
From (2.30), Pr{z > 0} = 1 - expl-y

{n-1)}/ulp-1) el/uipﬂl) e I

gﬁowever, the usual formula for the covariance matrix of these coeffi-

cient estimates is incorrect |see Heckman {1879)}.

13?0{ details, see Lee and Trost {1978, pp. 368-6Y).
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Hyten one fits the PIGLOG regression model (A.9) to data where the ac -

tual budget shares are very small {the median budget share in the sample i ¢
0.14 percent), one obtains very small values for the estimates of n and

©. This can be seen from the estimates of n and © in table 1. How-

10
ever, the likelihood function for the PIGLOG model, (A.8), involves the terms

yl/@u and el/nu

, and these terms explode when n and 8 are small in
absolute value.

lzlt was also noted above that the Rlackburn, LOG-LOG, and SEMI-LOG
models do pot preclude the possibility that z < 0. However, when one uses
the coefficients in table 2 to calculate Pr{z > 0} for each model, as
indicate in footnotes 5 and 8 and (A.3), this probability exceeds 0.999% for
every household in the sample.
ISDetailed results are available on request.

14The formulation of such normal models is discussed in Hanemann {1982}.
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Appendix: Data
The recreation sites and their lotations are:

Lynn Beach (Lynn)}, Nahant Beach (Nahant), Revere Beach (Revere),
Constitution Beach/Orient Heights (Boston), Castle Island (Boston),
City Point (Boston)}, L&M Street Beaches {Boston), Carson Beach
(Boston}, Malibu Beach/Savin Hill (Boston), Tenean Beach (Boston),
Wollaston Beach (Quincy), Mantucket Beach (Hull), Wingaersheek Beach
(Gloucester), Crane's Island {Ipswich), Plum Island (Newberry),
Duxbury Beach {Duxbury), White Horse Beach (Plymouth), Wright's Pond

{Medford), Walden Pond (Concord), and Cochituate State Park (Natick).

The last three are freshwater beaches: the others are all saltwater ocean

beaches.

The variables are:

Dependent
variable: x.,. = the number of visits for swimming and beach

1t
recreation activities to site 1 by any members
of household it during the period from Memorial
Day to Labor Day, 1974, 1 =1, . . ., 20,

t=1, ... 83



Household
characteristics: EDUCt =

SWIMPDOLt =

CHILDRENt =

ABULTSt =

Ye T

Site
characteristics: COoD. =

P%ﬁiﬂ

SITE TYPEi =

NUISANCBi =

MINORITY ATrit =

Pi¢

-41-

highest level of educational attainment in
houvsehold t (1 = elementary/juniqr high; 2 =
some high school; 3 = completed high school;

4

some college including junior college;

5

vocational/technical school; 6 = completed
college; 7 = postgraduate)

1 if household t had access to a private swim-
ming pool during Summer, 1974, 0 otherwise
number of persons under 18 in household t
number of persons aged 18 and older in house-
hold t

total annual income after taxes of household t

(%)

chemical oxygen demand of water at site i
(mng/%)

total phosphorus content of water at

site i (mg/%)

1 if freshwater site, 0 if saltwater site
1 if site has heavily urban and/or noisy
setting, 0 otherwise.

1 if household t is from a minority group
and site t is identified as having a
special attractiveness to minorities, 0
otherwise.

cost ($) of traveling by automobile from

home of household ¢ to site i,





