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Weihua Gu *, Yuwei Li, Michael J. Cassidy, Julia B. Griswold 
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Berkeley, CA 94720, United States 

Abstract 

The maximal rates that buses can discharge from bus stops are examined. Models were developed 
to estimate these capacities for curbside stops that are isolated from the effects of traffic signals. 
The estimates account for key features of the stops, including their target service levels assigned 
to them by a transit agency. Among other things, the models predict that adding bus berths to a 
stop can sometimes return disproportionally high gains in capacity. This and other of our findings 
are at odds with information furnished in professional handbooks. 

Keywords: bus stop capacity; bus stop queueing 

1 Introduction 

While serving passengers at a busy stop, buses can interact in ways that limit their discharge 
flows. This can degrade the bus system’s overall service quality (Fernandez and Planzer, 2002; 
Gibson et al., 1989). 

The present paper explores the bus discharge flows that can be achieved at stops where buses 
dwell curbside to load and unload passengers. We will examine stops that are isolated from the 
influences of traffic signals and other bus stops; where sufficient space exists for storing the bus 
queues that can form immediately upstream of the stops; where bus movements in and around the 
stops are not affected by other (e.g. car) traffic; and where bus overtaking maneuvers are 
prohibited, both within any bus queues immediately upstream, and at the stops themselves, should 
multiple berths (i.e. bus loading areas) exist there.1 

The rates that buses can discharge from stops of this kind depend in part on the target service 
level chosen by the transit agency. In this paper, we use a metric of service level called the failure 
rate, , defined as the probability that a bus arriving to a stop is temporarily blocked from 
using it by another bus. Though other service metrics (e.g. average bus wait time) are possible, 

 is the metric featured in professional handbooks (e.g. TRB 2000 and 2003). Intuitively, the 

                                                            
* Corresponding author. Tel.: +1 (510) 931-6646; fax: +1 (510) 643-8919. 
  E-mail address: weihuagu@berkeley.edu. 
1 Cities often enact this prohibition because an overtaking bus can disrupt car traffic in the adjacent lane(s). 

1 
 



bus discharge flow increases as  increases, and is highest when a bus queue is always present 
at the stop’s entrance, i.e. when .2  

In light of this influence, we shall define bus-stop capacity as the maximal rate that buses can 
discharge from a stop for a specified threshold of . This definition is common in the literature 
(see again TRB 2000 and 2003). Our findings, on the other hand, are largely at odds with earlier 
publications, as we shall see. We shall arrive at these findings by developing (and evaluating) 
models that predict bus-stop capacities as functions of not only , but also bus arrival process 
and bus service time distribution. 

A review of earlier work is furnished in the following section. Present findings in regard to stops 
with only one berth are provided in Section 3. Findings on multi-berth stops are in Section 4. 
Practical implications are discussed in Section 5.  

2 Literature Review 

The Highway Capacity Manual (TRB, 2000) reports that the capacity of a single-berth stop is 
inversely proportional to the sum of i) the bus’ average service time; and ii) a second term that 
accounts for both the variation in this service time and the .3 With this latter term, a stop’s 
capacity increases with increasing , but only to a point. Curiously, the formula in the 
Highway Capacity Manual (henceforth HCM) predicts that capacity is maximal when  
reaches 0.5. Intuition, on the other hand, tells us that single-berth capacity is maximal when a bus 
queue always persists upstream; i.e., when  is 1. Of further concern, the current edition of the 
HCM omits any discussion on the influence of the bus arrival process on stop capacity.4  

For a multi-berth stop, the HCM takes capacity to be the product of the single-berth capacity and 
the number of “effective” berths. The HCM furnishes values for this latter term that result in 
steadily diminishing returns to capacity, meaning that each new berth that is added to a stop will 
return less than a proportional increase in the stop’s capacity (see Table 27-12 of the TRB 2000). 
Presumably, this is to account for the disruptive bus interactions that can occur at multi-berth 
stops (see our discussion of the “blocking effect” in Section 4.1). However, the inefficiencies 
brought with each added berth are assumed in the HCM to be independent of all other factors, 
including: , bus arrival process, and service time variation. 

                                                            
2 If buses were controlled so that their arrival headways and service time at a stop were perfectly 
coordinated, the stop could, in theory, always be occupied without queues forming.  The  in this 
idealized (and unrealistic) case would therefore be zero, though the bus discharge flow would be high. 
3 The second term involves both: the one-tail standard normal variate corresponding to ; and the 
coefficient of variation of bus service time (see Equation 27-5 of TRB, 2000). 
4 Although an earlier edition of the HCM includes a multiplicative adjustment factor that reportedly 
accounts for variations in bus arrival headway, the factor seems instead to account for  (see Equation 
12-7 and Table 12-17 of TRB, 1985).  
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Much of the above is at odds with our present findings (see Sections 3 and 4). What thus appear 
to be shortcomings of the HCM take on greater significance because they are repeated in the 
Transit Capacity & Quality of Service Manual (TRB, 2003). This latter handbook will reportedly 
supplant discussion of transit systems in future editions of the HCM. The same ideas, moreover, 
have found their way into the Transportation Planning Handbook (ITE, 1999). 

Critiques of these capacity formulas already appear in the literature. Gibson et al. (1989), for 
example, argues that the complex stochastic processes at real bus stops limit the usefulness of 
HCM formulas. Fernandez and Planzer (2002) reports that the formulas tend to under-predict 
field-measured estimates of stop capacity. These findings are useful in that they highlight certain 
influences on bus-stop capacity. Yet, they do little to quantify these influences. 

Similarly, studies to increase the capacity of a multi-berth stop by either dispatching buses in 
certain ways (Gardner et al., 1991; Szász et al., 1978), or by reconfiguring the stop’s geometry 
(Gibson et al., 1989; St. Jacques and Levinson, 1997; etc.) offer only limited insights into cause 
and effect. The same is true of past efforts to estimate the parameter values for describing bus 
arrival processes (Danas, 1980; Fernandez, 2001; Ge, 2006; Kohler, 1991) and service time 
distributions (Ge, 2006; St. Jacques and Levinson, 1997). 

3 Single-Berth Stops 

It will be assumed that bus stops operate in the steady-state, such that the arrival process and the 
service time distribution are both time-invariant, and that the long-run average bus arrival rate 
never exceeds the stop’s capacity when  is 1. In this steady-state, the average bus inflow to 
the stop always equals the average outflow. 

Although some empirical studies show that bus arrivals at stops follow a Poisson process (Danas, 
1980; Ge, 2006; Kohler, 1991), other studies (e.g. Fernandez, 2001) argue that this is not always 
the case. To simplify our analysis and highlight the findings, we start by assuming two special 
cases in regard to the bus arrival process: Poisson arrivals (in Section 3.1), as can occur when the 
stop serves multiple bus routes; and uniform bus arrivals (in Section 3.2), as may occur, at least in 
theory, when the stop serves a single route with buses that are rigidly controlled. Finally, Section 
3.3 examines the case of a more general bus arrival pattern. Capacity formulas will be furnished 
for each of these three cases.  

3.1 Poisson Bus Arrivals 

In the steady-state, Poisson bus arrivals to a stop satisfy the PASTA (Poisson Arrivals See Time 
Averages) property; see Gross, et al. (2008). This implies that  is equal to the fraction of time 
that the stop’s single berth is utilized. This utilization fraction is the ratio of bus inflow, , to the 
single-berth stop’s maximal service rate (i.e. the inverse of the average time that each bus spends 
serving passenger boarding and alighting movements). We denote this maximal service rate as . 
Thus, for ,  
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.          (1) 

Since can be viewed equivalently as the stop’s capacity for a specified ; and since  is the 

stop’s output flow when ; the ratio  will henceforth be termed the normalized capacity.  

As per intuition, (1) shows that single-berth capacity is maximal when . It further shows 
that for Poisson bus arrivals, capacity is independent of the variation in bus service time (for 
boarding and alighting movements). This independence turns out not to hold in general, however, 
as we shall see next. 

3.2 Uniform Bus Arrivals 

Assume now that the bus arrival headways are deterministic and equal. Further assume that bus 
service time follows an Erlang-  distribution, which is a more general distribution than the 
commonly-used exponential distribution (and has been observed in Ge, 2006 to be suitable at 
some stops.) For this present case, our model does not have a closed-form solution. An analytical 
model that can be solved numerically is derived in Appendix A. A simple, closed-form 
approximation to the solution of this model is found to be: 

 ,         (2) 
where  is the coefficient of variation in bus service time. 

Equation (2) came by fitting a curve to our numerical solutions over the range of , 
since this is consistent with the range of  observed in the literature (St. Jacques and Levinson, 

1997). The result satisfies intuitive boundary conditions for the relation between  and .5 The 
inclusion of  in (2) is logical, since  for Erlang distributions, and this shows how stop 
capacity for the case of uniform bus arrivals depends on the coefficient of variation in bus service 
time as well as on . 

To explore matters more deeply, relations generated from (2) are shown with solid curves in 
Figure 1 for  0.1, 0.5, and 1. These curves collectively reveal that, for uniform arrivals and 
for , capacity increases as the coefficient of variation in bus service time diminishes. 
The curves further show that the maximal capacity of the stop (when ) is the same for all 

. The case of  corresponds to the perfect coordination of bus arrivals and bus service 

                                                            

5 These conditions are: i)  if  and ; and ii)  if  and if 
. 
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time, as previously discussed in Footnote 2, such that . The curve in this idealized case 
therefore reduces to a point, also as shown in Figure 1. 

The relation for Poisson bus arrivals revealed in (1) is shown in Figure 1 as well; see the dashed 
line. Comparing this dashed line against the solid curves reveals that for , capacity 
also increases with diminishing variation in bus headways. (We can see this because the 
coefficient of variation is 0 and 1 for uniform and Poisson bus arrivals, respectively). 

 
Figure 1 – Normalized capacity versus  for single-berth stops;  

comparisons between Poisson and uniform bus arrivals 

 

3.3 General Bus Arrivals 

We continue to model bus service time as above, and now use the Erlang-  distribution to 
describe a more general distribution for bus headways. A numerical solution was derived in 
similar fashion to the uniform bus-arrival case, for which an approximation is found to be: 

 ,       
 (3) 
where  is the coefficient of variation of bus arrival headways. 

From (3) we see that stop capacity is influenced by service time and headway variations. Readers 
can verify that reductions in the coefficient of variation for either of these factors will increase a 
stop’s capacity when , and ; e.g. one can fix either  or  and 
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obtain curves that are qualitatively similar (in their shapes and their relative positions) to the solid 
curves in Figure 1.6 

4 Multi-Berth Stops 

Two competing effects, which we term the “blocking” and the “berth pooling” effects, are found 
to influence the capacity of multi-berth stops, as explained in Section 4.1. The returns to capacity 
from added berths are studied for two limiting cases that isolate the above effects and for a third, 
more general case, all in Section 4.2. Further findings come by examining how returns to capacity 
are influenced by coefficients of variation in bus service time and bus headway, as shown in 
Section 4.3. For all these analyses, we will assume that the distribution of an individual bus’ 
service time (to load and unload passengers) is independent of the stop’s number of berths. 

4.1 Two Competing Effects 

Discussion begins with the blocking effect. A bus can enter a stop only when its upstream-most 
berth is open. (At this time, the entering bus proceeds as far as possible until encountering the end 
of the stop or a dwelling bus; and the entering bus will then dwell at the downstream-most 
available berth for its entire time in the stop.) Similarly, a bus can discharge from a stop only after 
all buses that were previously dwelling at that stop’s downstream berths have departed. This 
blocking effect for entering and exiting a stop tends to diminish the stop’s returns to capacity 
brought by added berths. The effect diminishes, however, when the load rate, , approaches 0, 

where  and  is the number of berths at the stop. 

We illustrate the second effect, berth pooling, with the following example. Consider two 
independent, single-berth stops, each with equal bus arrival rate, , as shown on the left side of 
Figure 2. (Dashed boxes in this figure denote berths, and shaded rectangles denote buses). If we 
ignore the blocking effect, the fluctuations in bus arrivals would be better served by pooling the 
two berths into a single, double-berth stop, as shown on the right side of Figure 2. Thus for the 
same total bus arrival rate (  for both the left and right sides in the figure), this berth pooling 
effect means that the double-berth stop would enjoy a lower  than would the two single-berth 
stops; i.e., the double-berth stop would have a higher capacity for a given . Berth pooling 
tends to improve the stop’s returns to capacity brought by added berths. The effect diminishes, 
however, when  approaches its maximum, meaning when the input flow, , approaches the 
stop’s maximal capacity (see Equation 4). 

                                                            
6 In addition to satisfying the conditions in Footnote 5, Equation (3) reduces to (1) for the case of Poisson 
bus arrivals where .  As an aside, analysis shows that (3) produces significantly lower capacities 
as compared with the formulas of the HCM (TRB, 2000).   
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Figure 2 – Berth pooling effect 

The above effects are countervailing: as  approaches 0 or its maximum, one effect diminishes 
while the other dominates.7 We will therefore isolate the two effects by examining multi-berth 
stops under the two limiting cases for . 

4.2 Returns to Capacity 

We next explore the returns to capacity i) when  is maximal; ii) when ; and iii) for the 
general case when  falls between these limits. 

4.2.1 Limiting case when  is maximal 

In this case, queued buses enter a stop in platoons of size , and the time required to serve a 
platoon is the maximal bus service time across the platoon. The stop’s maximal capacity, , is 
therefore: 

 ,      
 (4) 
where  is the expected value of the platoon service time; and  is the cumulative 
distribution function of the individual bus service time. The derivation of (4) is furnished in 
Appendix B. Intuitively, the bus arrival pattern (to the rear of the queue) does not influence 
capacity in this limiting case. 

The average capacity per berth, , decreases with added berths, since  increases 
with . Thus from the first equality in (4), we see how the blocking effect can create decreasing 
returns to capacity. 

                                                            
7 As per Footnote 2, an exception can occur under perfect coordination; i.e., when platoons of  buses 
arrive at uniform intervals and the service time is constant. In this case, neither blocking nor berth pooling 
take effect and the  is always zero. 
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4.2.2 Limiting Case of  

Computer simulation is used next to explore stop capacity under this second limiting case. The 
logic of our simulation model is described in Appendix C. For the analysis to follow, bus service 
time is assumed to follow the gamma distribution (a generalization of the Erlang distribution) 
with , as recommended by St. Jacques and Levinson (1997). Bus arrivals are assumed 
to follow a Poisson process, as if the stop were used by multiple bus lines. Simulations of other 
bus arrival patterns and service time distributions yield qualitatively similar results. 

The curves in Figure 3 display the normalized incremental change in stop capacity achieved for 

each added berth, , for the first through the sixth berth. These curves are shown for near-zero 
values of , since it is the assumed metric of interest and is a reasonable proxy for . (Note 
that  approaches zero when  does so, and that the maximal value of one coincides with the 

maximal value of the other.) The curves reveal that  increases with each additional berth; i.e., 
that added berths bring increasing returns to capacity. 

 
Figure 3 – Increasing returns to capacity caused by berth pooling effect 

Although  and  might seldom approach zero in an urban setting, the finding calls into 
question what handbooks have to say on the subject; i.e. the implication that added berths bring 
decreasing returns to capacity does not hold in general. More interesting evidence in this regard 
comes next by studying the more general case when  is between 0 and its maximum.  

4.2.3 General Case with Intermediate Values of  

We now use our simulation model (see again Appendix C) to explore bus-stop capacities for the 
range of . Once again, bus arrivals are assumed to be Poisson, and service time gamma-
distributed with . 
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The curves in Figure 4a display the  for the first through the sixth berth. These too are shown 
as functions of , our chosen service metric and proxy for . The curves reveal how the 
countervailing effects of blocking and berth pooling produce mixed results in terms of the 
capacities returned by adding berths to a stop. 

When  is small (but not approaching zero), additional berths can produce increasing returns 
to capacity, thanks to the berth pooling effect. For example, the figure shows that when 

, adding a second berth brings increasing returns. (Note that when , the 
curve for the second berth lies above that for the first.) This favorable trend does not continue, 
however. Note, for example, now the curve for the third berth lies below that for the second when 

. 

Toward the other extreme (e.g. when ), the curves reveal that added berths produce 
diminishing returns to capacity. This is because the blocking effect tends to dominate. 

These findings are logical in light of what was unveiled for the two limiting cases. Yet, our 
finding that returns to capacity vary with  or  runs counter to the HCM’s suggestion in this 
regard; i.e. using a single set of numbers for “effective berths” evidently does not suffice for all 
operating environments. 

 
(a) Normalized incremental change in capacity versus  
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(b) Normalized capacity versus  

Figure 4 – Normalized stop capacity and incremental change in capacity versus  for  
multi-berth stops with Poisson bus arrivals and gamma-distributed service time ( ) 

A graph like Figure 4a can be used in a number of practical pursuits. The same is true for variants, 

like the curves of  versus normalized capacity ( ) shown in Figure 4b. More will be said on 
these matters in Section 5. 

4.3 Variations in Service Time and Headway 

Having explored the influences of  and , we now examine how the returns to capacity are 
influenced by the coefficients of variation in bus service time and bus headway. Simulation is 
again used to this end. 

4.3.1 Bus Service Time 

We continue to assume that bus arrivals are Poisson and that service time is gamma-distributed. 
Now, however, capacities will be explored for the range of   

Figure 5a displays effects of  on the  for the first through the sixth berth when . 
Note from the figure that increased returns to capacity come by adding a second berth to a stop 
(i.e., the curve for the second berth lies above that for the first). This is again thanks to the 
pooling effect at low . Further note that the curves for the second through the sixth berth 
exhibit downward slopes. This reveals an inverse influence of  on the returns to capacity. 
Additionally, the downward sloping curves for  in Figure 5b reveal how  exerts an 
inverse influence on stop capacity itself. These inverse influences become more dramatic as  
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increases. To illustrate, the above analysis is repeated, but for . Results are displayed in 
Figure 6a and 6b. 

 
   (a) Normalized incremental change in capacity versus             (b) Normalized capacity versus  

Figure 5 – Normalized capacity and incremental change in capacity  
versus  for multi-berth stops with  

 
(a) Normalized incremental change in capacity versus             (b) Normalized capacity versus  

Figure 6 – Normalized capacity and incremental change in capacity  
versus  for multi-berth stops with  

4.3.2 Bus Headway 

To explain how variations in bus arrival headway affect things, we will assume that: ; 
bus service time is gamma-distributed with ; and bus headway is also gamma-
distributed with a coefficient of variation, , ranging from 0 to 1. 
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The curves in Figure 7a show that the first berth is relatively sensitive to ; i.e., the  

diminishes precipitously with increasing . As a result, the  for the second through even the 
sixth berth is greater than that achieved by the first berth when  is sufficiently high. For 
example, we see that adding a second berth to a stop produces increasing returns to capacity once 

 comfortably exceeds 0.6. Once again, however, we find that a stop’s capacity for any  
diminishes as  grows large; see Figure 7b. The above influences are found to disappear as  
approaches 1. 

 
(a) Normalized incremental change in capacity versus            (b) Normalized capacity versus  

Figure 7 – Normalized capacity and incremental change in capacity 
 versus  for multi-berth stops with  

 

5 Conclusions 

The models presented in this paper account for key influences on the capacities of isolated, 
curbside bus stops. They do so in ways that are more complete than what has been offered by 
formulas in well-known handbooks. Through this more complete accounting come insights. The 
insights have practical implications.  

For example, the models predict that variations in bus service time tend to diminish stop capacity, 
both for single- and multi-berth stops. (See Figures 1, 5b and 6b, and recall that an exception to 
this occurs when buses arrive at a single-berth stop as a Poisson process.) This finding speaks to 
the value of reducing service-time variations via the improved management of passenger 
boarding and alighting. Means of doing this might include the use of wider bus doors, improved 
loading platforms and off-board fare collection. Of course, these measures could also help reduce 
the average service time, and this too would favorably affect bus-stop capacity.  
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In contrast to formulas in professional handbooks, the present models also account for the effects 
of the bus arrival process at a stop. They predict that variations in bus headway can diminish stop 
capacity (Figure 7b), but can in some instances favorably affect the returns to capacity brought by 
a second through even a sixth berth relative to the returns from a single berth (Figure 7a). When 
the variation in headway is high and the  is low, adding a second berth to a single-berth stop 
can bring increasing returns to capacity (Figures 4a and 7a). Knowledge of these cause and effect 
relations can be useful when choosing the number of berths to be deployed at a curbside stop. 

To further illustrate the practical utility of our models, we ask the reader to refer again to Figure 
4b. It displays relations between  and normalized capacity for stops that range in size from 1 
to 6 berths. Note how the curves in this figure can be used to determine the number of berths 
needed to achieve targets for  and stop capacity. Or, they can be used to estimate  given 
bus arrival rate and a specified number of berths. The figure can also help determine when it can 
be advantageous to split a single stop with many berths into multiple adjacent stops. For example, 
the reader can use Figure 4b to verify that, for a , splitting a 4-berth stop into two 2-
berth stops could increase capacity by nearly 15%. (That capacity is increased by splitting the 

stop is clearly evident in Figure 4a, since at , the  for the third and fourth berths are 
lower than for the first and second berths.) Admittedly, this prediction assumes certain 
idealizations; e.g. that both the bus arrival processes and the service time distributions are 
comparable across the 2-berth stops; and that buses bound for one of these stops do not impede 
buses bound for the other. 

To be sure, all of our present models are idealized, particularly since they apply to isolated stops. 
Yet in our view, these models represent a step toward better understanding bus-stop operation. 
Work is ongoing in regard to stops: that are not isolated, but are instead affected by traffic signals 
and other bus stops; that have limited space for storing bus queues; and that allow bus overtaking. 
In the mean time, one may still use our models to develop graphs that are similar to those shown 
here, but that are tailored to local conditions for target , variations in service time and 
headway, and so on. 
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Appendix A 

Analytical Solution to a Single-Berth Stop with Uniform Bus Arrivals and Erlang-  
Service Time (in Section 3.2) 

Here we furnish a solution by applying a more general result given by Gross, et al. (2008) for a 

queueing system with generalized-Erlang distributed headways and service time ( , where 
 and  are the distributions of bus headway and bus service time, respectively)8. This 

general result is: 

 ,       
 (A.1) 

where  is the Laplace-Stieltjes transform of the cumulative distribution function (CDF) of 
bus waiting time;  is the rate of the -th exponential component of the  
distribution; and  is the -th complex root with negative real parts of the 
following equation with argument : 

 .    (A.2) 

Equation (A.2) is also given in Gross, et al. (2008). The  is the rate of the -th 
exponential components of the  distribution. 

Since the means of the headway and the service time are  and , respectively, we 
set , so that the bus headway and the service 
time are Erlang-  and Erlang-  distributed, respectively; and so that the bus arrival rate and the 
service rate are  and , respectively. Given that when  approaches infinity, the limit of 
the Erlang-  distribution is a deterministic value, we let , so that the headway becomes 

constant. Then (A.2) becomes . 

                                                            
8 A generalized Erlang distribution is the convolution of independent but not necessarily identical 
exponential random variables. Here a bus headway can be expressed as the sum of  exponential 
components that are independent but may not be identical; and a bus service time can be expressed as the 
sum of  such components. 
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Let  , such that the solution of the above equation is: 

 ,    
 (A.3) 
where function  is the inverse function of , which is multi-valued in 
the field of complex numbers, and has no closed-form expression; and  is the imaginary unit. 

By picking up the roots of ’s with negative real parts, plugging them into (A.1), and then 
taking a partial-fraction expansion, we obtain: 

 ,     
 (A.4) 
where  are constant coefficients to be determined by: 

 .       (A.5) 

By applying the inverse Laplace transform on (A.4), we obtain the CDF of the bus waiting time: 

. 

Therefore the failure rate becomes .   (A.6) 

For any given , the last term of (A.6) is a function of  . Thus we find the relation 

between  and . The results can be obtained numerically. 

Appendix B 

Derivation of Equation (4) in Section 4.2.1 

For a fixed number of berths, , let  be the platoon service time, 

where  is the service time of the -th bus in the platoon. All ’s are independent, identically 
distributed random variables subject to the CDF of . Let  be the CDF of . Thus 
we have: 
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 . 

From the identity , we have: 

 . 

Appendix C 

Simulation Algorithm for the Multi-Berth Stops Analyzed in Sections 4.2 and 4.3 

First we introduce the following notation used in our simulation model: 

 – Headway (in minutes) between the arrivals of  and , and  is the system 
idle time before the first bus arrives; 

 – Service time (in minutes) of , not including the time that  waits to depart the 
stop after it has finished serving passengers; 

 – The position (number) of the berth where  dwells to serve passengers; where berths 
are numbered  from the downstream to the upstream berth; 

 – Waiting time in the queue (in minutes) of  before it enters the stop; 

 – Waiting time in the berth (in minutes) of  after its service is finished; and 

    – Indicator that takes 1 if  fails to enter the berth immediately upon its arrival to the 
stop, and 0 otherwise. 

The dynamic equations describing our simulation model are: 

For each  
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The  and  are inputs to the simulation. We assume that  follows a gamma 

distribution with mean  and coefficient of variation . (For Poisson bus arrivals,  and 
 is exponentially distributed.) We further assume that   follows another gamma distribution 

with mean  and coefficient of variation . The simulation starts from an initial state in 
which the stop is empty (i.e.,  and ) and ends at the same state to 
diminish stochastic error. The resulting performance measure  is obtained by averaging the 

. 
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