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Abstract: We introduce a version of the DICE-2007 model designed for uncertainty
analysis. DICE is a wide-spread deterministic integrated assessment model of climate
change. Climate change, long-term economic development, and their interactions
are highly uncertain. The quantitative analysis of optimal mitigation policy under
uncertainty requires a recursive dynamic programming implementation of integrated
assessment models. Such implementations are subject to the curse of dimensionality.
Every increase in the dimension of the state space is paid for by a combination of
(exponentially) increasing processor time, lower quality of the value or policy function
approximations, and reductions of the uncertainty domain. The paper promotes a
state reduced, recursive dynamic programming implementation of the DICE-2007
model. We achieve the reduction by simplifying the carbon cycle and the temperature
delay equations. We compare our model’s performance and that of the DICE model to
the scientific AOGCM models emulated by MAGICC 6.0 and find that our simplified
model performs equally well as the original DICE model. Our implementation solves
the infinite planning horizon problem in an arbitrary time step. The paper is the
first to carefully analyze the quality of the value function approximation using two
different types of basis functions and systematically varying the dimension of the
basis. We present the closed form, continuous time approximation to the exogenous
(discretely and inductively defined) processes in DICE, and we present a numerically
more efficient re-normalized Bellman equation that, in addition, can disentangle risk
attitude from the propensity to smooth consumption over time.
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1 Introduction

To evaluate optimal climate policy, we have to integrate the endogenous evolution of
climate into economic growth models. Most integrated assessment models (IAMs) are
too complex to permit a proper incorporation of uncertainty. This limitation weighs
strongly because optimal policy today depends on forecasting the climate, the global
economy, and their interactions over at least a couple of centuries. The present paper
reduces the complexity of a wide-spread IAM, DICE, by simplifying the climate’s
representation, without sacrificing the original model’s quality in reproducing the
relation between emissions and temperature change found in the “big” climate science
models, the Atmosphere-Ocean Global Circulation Models (AOGCMs).

Nordhaus’s (2008) DICE model combines a Ramsey-Cass-Koopmans growth econ-
omy with a simple model of the carbon cycle and the climate. DICE is one of the
most wide-spread integrated assessment models. Three advantages of DICE are that,
first, the model balances parsimony with realism. The modeler can generate realis-
tic quantitative estimates of the optimal carbon tax without sacrificing an analytic
understanding of the mechanisms driving the results. Second, DICE is an open ac-
cess model that solves on an EXCEL spread sheet. It therefore has a large audience
familiar with the basics of the model. Third, the US government employs the DICE
model, in combination with FUND and PAGE, to determine the federal social cost
of carbon (Interagency Working Group on Social Cost of Carbon 2010, Interagency
Working Group on Social Cost of Carbon 2013).

DICE’s parsimony implies an original state space reducible to six state variables
(plus time). To implement stochastic shocks, persistent uncertainty, or Bayesian
learning, we have to implement DICE as a recursive dynamic programming model.
The curse of dimensionality in dynamic programming makes six (or seven) state
variables a very large model. The cost of increasing the dimension is a combination
of processor time, sacrifices in the numerical approximation to the true solution,
and/or introducing uncertainty only as small fluctuations around the deterministic
path. The most interesting uncertainties for climate change policy imply future states
of the world that can vary largely with respect to their expected values. Moreover,
persistence in shocks (e.g. on economic growth) or Bayesian learning (e.g. over climate
sensitivity) require additional informational state variables. Similarly, extensions on
the economic side of DICE (e.g. improving the abatement cost dynamics) require
additional state variables. The current model reduces the climate’s representation by
3 states and, thus, cuts DICE’s state space into half (plus time). It thereby permits
a combination of more informational states (uncertainty), extending the economic
dynamics, and improving numerical accuracy while allowing the uncertain variables
to stray sufficiently far from their expected values.

I briefly summarize how our model differs from the original DICE-2007 model.
First, we replace the difference equations describing exogenous parameters by their
approximate continuous time solutions. This change makes the exogenous drivers in
DICE even more accessible to introspection, and enables us to run DICE in an arbi-
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trary time step without recalibrating the exogenous processes. Second, we implement
a flexible time step. In particular, we suggest running the model in a annual rather
than decadal time step when analyzing economic fluctuations and shocks, and when
modeling learning over the climate system. Third, we simplify the ocean heat uptake
related temperature delay, approximating the evolution of atmospheric temperature
in a single delay equation (cutting one state). Fourth, we approximates the carbon
cycle by means of a time (or more generally state) dependent rate of atmospheric
carbon removal. Fifth, we normalize the model to effective labor units. This step re-
duces the node density required to achieve a given precision in the approximation and
ensures that the infinite planning horizon problem converges on a feasible, compact
support. Sixth, we present the dynamic programming equation for Epstein-Zin-Weil
preferences. As is well-known from the finance literature, the discounted expected
utility model overestimates the risk-free discount rate (risk-free rate puzzle) and un-
derestimates risk premia (equity premium puzzle). Tuning the discounted expected
utility model to get either of the discount rate or the risk premium right increases
the error on the other variable. Epstein-Zin-Weil preferences disentangle Arrow-Pratt
risk aversion from the propensity to smooth consumption over time. They are fully
rational and result in a better calibration of DICE to observed market data. In an
application of the current model, Crost & Traeger (n.d.) demonstrate the relevance
of Epstein-Zin preferences when evaluating climate policies with DICE.

Kelly & Kolstad (1999, 2001) implement the DICE-1994 model as a recursive
dynamic programming model, analyzing uncertainty and learning over the sensitiv-
ity of temperatures with respect to carbon emissions. Leach (2007) implements the
same DICE version showing that learning slows down further under additional uncer-
tainty. These papers are seminal contributions to uncertainty assessment in climate
change and careful implementations of the original DICE version. A major update of
this original version starting with DICE-1999 replaces a constant carbon decay rate
by an explicit 3 box carbon cycle (Nordhaus & Boyer 2000). Other updates include
the introduction of COy emissions from land use change and forestry and time vary-
ing abatement cost Our recursive implementation of DICE is similar in spirit to
Kelly & Kolstad (1999, 2001). With respect to their work, we update the model to
DICE—2007|§I, add a flexible time step, and re-normalize the model to effective labor
units enabling convergence on a (reasonably) bounded capital interval for an infinite
time horizon. The important extensions are threefold. First, instead of assuming a
constant decay of atmospheric excess carbon as in DICE 19944, we imitate the recent
DICE carbon cycle by means of a time (and possibly state) dependent rate of carbon

TLeach (2007) also cites Nordhaus & Boyer (2000), but the DICE-1999 model described there
already contains a 3 box carbon cycle model.

2External forcing from non-CO; greenhouse gases is already part of the DICE-1994 model even
though it was not taken up in the cited recursive implementations.

3The recently released DICE 2013 version mostly contains parametric but not structural updates

of the model. We test our main contribution, the simplified climate part of the model as well against
DICE-2013.
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removal. Second, we simplify the warming delay equations to eliminate the explicit
ocean temperature state. Third, we compare our model’s and DICE’s temperature
response to those of the scientific AOGCMs for the emission scenarios used by the
International Panel on Climate Chanve (IPCC). Fourth, we use a Chebychev basis
for our value function approximation, compare it to the performance of a spline basis,
and show what number of basis function is needed to reach full numerical precision,
i.e., invariance of the results to further increases in the number of basis functions or
reductions in tolerance.

A different set of papers introduces uncertainty into non-recursive implementa-
tions of integrated assessment models. Closest to our implementation, Keller, Bolker
& Bradford (2004) introduce uncertainty and learning into an earlier version of DICE.
Even with their highly efficient, paralellized implementation on a cluster, the em-
ployed non-recursive methodology only allows for a few discrete uncertain events, or
exogenous learning over three discrete state of the world realizations at one given time.
For many applications, such individual uncertain events deliver interesting insights.
However, these studies cannot replace comprehensive uncertainty evaluations using
state of the are stochastic dynamic programming methods. Finally, Monte-Carlo
methods are the most common approach to addressing uncertainty in the integrated
assessment literature. However, Monte-Carlo methods, as implemented in this strand
of literature, do not model decision making under uncertainty. They present a sen-
sitivity analysis that averages over deterministic simulations. In particular, these
models cannot derive optimal policies (Crost & Traeger 2013). Finally, the model
relates to a set of more stylized stock pollution models analyzing in dynamic program-
ming settings the optimal choice of the policy instrument (taxes versus quantities)
to control emissions. These models employ linearizations for uncertainty assessment,
linear-quadratic formulations from the start, or significantly more stylized models of
climate and abatement (Hoel & Karp 2001, Hoel & Karp 2002, Kelly 2005, Karp &
Zhang 2006, Heutel 2011, Fischer & Springborn 2011); these models are not designed
to quantify the optimal abatement [evel.

Section 2] presents the continuous time approximation to the exogenous processes
in DICE and the endogenous equations of motion for a flexible time step. Section
discusses our approximations to the carbon cycle and the warming delay equations.
Section Ml derives the normalized Bellman equation, extends it to Epstein-Zin prefer-
ences, and summarizes the solution algorithm. Section [l presents the result of our
model calibration, and compares its temperature response to DICE and an average
of scientific AOGCMs for the IPCC’s emission scenarios. It also presents a compar-
ison of results using a spline versus a Chebychev basis. Section [6] concludes. The
appendix presents the details of deriving the normalized Bellman equation and the
calibration, and discusses further comparisons between our model, DICE, and the
AOGCM average.
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2 The equations of motion

First, we introduce the exogenous processes in DICE. Our (approximate) continu-
ous time solution to the iteratively defined processes in DICE make them even more
amenable to introspection. Second, we introduce the heart of our DICE implementa-
tion, the endogenous equations of motions. These equations define the state transi-
tions and take a user defined time step. Third, we discuss how uncertainty modifies
the transition equations. We number (only) those equations needed for the numerical
implementation.

2.1 Exogenous processes

Six exogenous processes derive straight from DICE-2007. We graph the recursively
generated, decadal values from the original DICE model and our continuous time
approximations in Figure [Il In particular, exogenous technological progress and the
exogenously falling cost of abatement are main drivers of the so-called “ramp” struc-
ture of optimal abatement in DICE, i.e., the finding that abatement effort starts
moderately and increases over time. In section Bl we discuss two additional, exoge-
nous processes resulting from our carbon cycle and the warming delay approximation.
We abbreviate growth rates by ¢ and rates of decay by ¢ A

The exogenous processes in the economy determine population growth, techno-
logical progress, the carbon intensity of production, and an abatement cost coefficient.
Population L; simultaneously represents labor. We denote the annual growth rate of
labor in period ¢ by g1 ;. The difference equations defining annual population growth
in DICE have the continuous time approximatio

g1 /
gLt = . ) (1 )
LofioLo explg; t] — 1

corresponding to the analytic continuous time solution characterizing period ¢ popu-
lation

Ly = Lo+ (Lo Lo) (1 — expl—gj, 1]) (2)

Here, Ly denotes the initial and L., the asymptotic population. The parameter g;
characterizes the speed of convergence from initial to asymptotic population.
The technology level A; in the economy grows at an exponentially declining rate

gar = gaoexp[—iat] , (3"

4A subindex indicates the growing or decaying variable. We use 64 instead of §,, to denote the
rate of decrease of the growth rate g4 of the technology level. A “*” marks a “rate” that parametrizes
a speed of convergence from an initial to a final growth rate.

®We mark two equations below with a prime (1’ and 3’). These are not needed to evaluate the
exogenous processes; they can be used to evaluate the discount factor 8; in the renormalized Bellman
equation as we explain in section [4l
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Figure 1 shows the time paths of the DICE model’s exogenous parameters. The graph on the
left shows our continuous time interpolations (solid) and the original, recursively defined values in
the DICE model (crossed) for population (L), carbon intensity of production (o), abatement cost
coefficient (¥), emissions from land-use change and forestry (B), and exogenous forcing (EF). The
graph on the right shows the labor productivity (A) in DICE (crossed), the cited labor productivity
(dash-dotted), and our chosen interpolation (solid). The “t+10 rate” curves grow productivity with
the growth rate prevailing at the end of the according decade, while “t rate” curves grow labor
productivity with the growth rate prevailing at the beginning of the according decade. Together,
they bound a corresponding continuous model.

leading to the analytic continuous time solution

1 —exp|—d4 t]
0a

(4)

Ay = Agexp ga0

The parameter g4 denotes the initial growth rate and 0,4 its constant rate of decline.
While the original DICE model employs a Hicks-neutral formulation of technological
change, we use labor augmenting technological progress. The two are equivalent
under the given Cobb-Douglas production. However, the more wide-spread labor
augmenting formulation simplifies the reformulation of the model in effective labor
units. This reformulation improves the numerical approximation for a given number

of basis functions in the capital dimension
AtDICE
17109/“ ’

using 10 year time steps and the approximation ﬁ ~ 1+ g. However, the approx-
1

TT0g4s is significantly larger than 1+ 10g4: or exp(10g4,). Therefore the

effective growth rate employed in the DICE model is significantly larger than the

cited rate ga;. The dash-dotted line in Figure [Il depicts the continuous time produc-

tivity path that replicates the initial decadal growth rate gg,{)CE stated as the DICE

reference. The crossed decadal values correspond to the technology levels created in

DICE because of the growth rate approximation. We employ ¢7(“# /10 as the annual

The original DICE model calculates the technology level as APIGF =

1mation
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growth rate in our continuous time model, which generates the solid line between
the original DICE path (crossed) and the growth path matching the referenced value
g4CF (dash-dotted). The additional lines discuss consequences of the decadal time
step.

The DICE model assumes an exogenous decrease of the carbon intensity of pro-
duction. The decarbonization factor of production grows at the (decreasing) rate
Got = Go0 €Xp|—0, t], leading to the continuous time representation

1 — exp[—0, ]
Oc

(5)

Ot = 0g €XP [go,o

In addition, the economy can pay for abating emissions. The abatement cost coeffi-
cient W, falls exogenously over time and is given by

o (1 - L enlib )

(6)

v, = —aqag
a2 ai

The parameter ay denotes the initial cost of the backstop (in 2005), a; denotes the
ratio of initial over final backstopﬁ and as denotes the cost exponent (see also equation
below). The rate gj, captures the speed of convergence from the initial to the final
cost of the backstop.

The exogenous processes on the climate side of DICE govern non-industrial COq
emissions and radiative forcin@ from non-COy greenhouse gases. In addition, our
state space reduction introduces an exogenous process governing the removal of excess
carbon from the atmosphere and the cooling due to the ocean’s heat capacity. DICE

6The growth rate in DICE falls over time. In the original DICE model, the growth rate at the

beginning of a decade generates growth throughout the decade, which generates more technological
progress then with a smaller (or continuous) time step. The triangles bound this second, techno-
logical progress increasing effect by showing DICE’s evolution of the technology level if we used
the growth rate at the end of a given decade to generate growth. Similarly, the dots just above
and just below the dash-dotted calibration line show the effects of using a decadal time step. The
dots just above (below) the line use the growth rate at the beginning (end) of a decade, instead of
a continuous model. Together, the additional lines point out that this discretization effect is very
minor with respect to the approximation effect of the growth rate, which generates the difference
between the calibration line and the original DICE line.
Note that we depict the technology level in terms of labor augmenting technological progress. The
equivalent growth rates in terms of total factor productivity, employed in the original DICE model,
are lower by the factor 1—« (x denotes the factor share of capital, see equation (@) and the preceding
paragraph). Hence, the rounding error is slightly lower when using total factor productivity growth
rates, an effect that our triangled curve (and the original DICE curve) take into account.

"The ~general interpretation  is  more  precisely  that = ay is  the ratio
P Costol;z’;’gljsc;?ff fl;‘j;’ﬁt;ff T rachaiop- However, for the employed value of 2 both ratios are
the same, so we stick with Nordhaus’s interpretation.

8Radiative forcing is a measure for the change in the atmospheric energy balance. The reader
may think of it as the flame that greenhouse gases turn on to slowly warm the planet over time.
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assumes an exponential decline of COy emissions from land use change an forestry
B, = Byexp[—dp t] . (7)

Non-CO, greenhouse gases are exogenous to the model and cause the radiative forcing
EF, = EFy+ 0.01(EFi00 — EFy) x min{t,100} . (8)

Note that exogenous forcing starts out slightly negatively.

2.2 Endogenous equations of motion

Apart from time, the model features three state variables: produced capital K,
the stock of atmospheric carbon M;, and temperature T;. Temperature is a state
variable because atmospheric warming happens with a delay: the heat capacity of the
ocean and various feedback processes delay the temperature increase. Therefore, next
period’s temperature depends not only on the atmospheric carbon concentrations,
but also on current temperature. We follow Kelly & Kolstad (1999) in incorporating
time as a state variable, which makes it possible to contract the Bellman equation
to an arbitrary precision despite the intrinsic non-stationarity of the DICE model.
Moreover, the time state enables us to solve the model for an infinite time horizon
with an arbitrary time step. The present section discusses the deterministic equations
of motions replicating DICE-2007. The subsequent section discusses how to introduce
different types of uncertainty into the model.

Capital K, labor L;, and labor augmenting technology A; enter the Cobb-Douglas
production function, turning into gross (or potential) output Y,"*** = (A,L;)' " K}.
The parameter x is the income share of capital. Driven by technological progress and
population growth, capital grows by an order of magnitude over the next century.
Approximating K; on a time constant grid would either require an excessive amount
of nodes, or imply a crude approximation. We therefore follow the macroeconomic

tradition expressing consumption and capital in per effective labor units ¢, = -t
A¢Ly

K . . . o gross __ Y% .

and k; = AL Then, gross production in effective labor units is y; =T = (A

In effective labor units, the capital state is largely constant and, in the absence of
technological uncertainty, allows us to represent capital on a tight state space using
few nodesHl We introduce a flexible time step At, keeping our flow variables, including
consumption and production, defined in units per year. Then, production during the

9In the usual growth model, non-normalized capital grows without bounds, leaving quickly any
finite numerical support. The DICE-2007 model assumes falling growth rates of population and
technology level. Thus, in principle, at some point in the very long run future capital converges, but
at a level that would marginalize the evolution of capital over the next couple of centuries that are
most relevant for present climate policy. The per effective labor normalization implies a well-defined
infinite horizon limit on a narrow state space, allowing for a good resolution of both current and
future deviations from some steady state level.
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period [t,t + At] is kfAt. Our base case model calibration and results presented in
section Al uses At = 1.

The transformation of gross output into net output defines the interface between
the Ramsey-Cass-Koopmans economy and the climate system. Net production follows
from gross production by subtracting abatement expenditure and climate damages

L= AG) 1= W

= —_—— = —_— R' 9
PTIEDM) T (L nT) ®)

The function

A(Mt) = ‘I’tﬂ?

characterizes abatement expenditure as a fraction of gross output. It is a function of
the emission control rate p; € [0, 1] (abatement rate). This abatement rate charac-
terizes the percentage of emissions avoided under a climate policy, as compared to a
laissez-faire world.

As a fraction of gross output, the damage function

D(T) = b, T}

reduces net production as a consequence of the temperature increase T; over tem-
peratures in 1900. Net production not consumed is invested in capital, implying the
equation of motion

kraine = [(1 = 60)2 ki + s At — At exp[—(gas + gr.) A | (10)

where dg is the annual rate of capital depreciation. The exponential function is a con-
sequence of expressing capital in effective labor units; it reflects that the normalizing
effective labor units grow by ga: + gz from one year to the next.

Anthropogenic emissions are the sum of industrial emissions and emissions from
land use change an forestry B,

Et = (1 — ,ut) O'tAtLtk: + Bt . (1].)

Industrial emissions are proportional to gross production A;L:k;, and the emission
intensity of production o, and they are reduced by the emission control rate ;. The
flow of COy emissions accumulates in the atmosphere. Atmospheric carbon in the
next period is the sum of preindustrial carbon M,,., current excess carbon in the
atmosphere M; — M,,. net of its (natural) removal, and anthropogenic CO, emissions

Mt+At = Mpre + (Mt - Mpre) (1 - 5M,t)At + EtAt . (12>

The pre-industrial emission stock M,y,. is the steady state level in the absence of
anthropogenic emissions. Equation (I2) is our approximation to the carbon cycle in

8
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DICE-2007. Section ] introduces two different calibrations for the (time or state-
dependent) rate of carbon removal from the atmosphere 0.
The atmospheric temperature change is a delayed response to radiative forcing

ln Mt+At

M;m"eind + EFt ;

E—i—At = TNfore n 2

which is the sum of the forcing caused by atmospheric CO, and the non-COs forcing
that follows the exogenous process E'F;. Note that the forcing parameter 7., con-
tains the climate sensitivity parameter, which characterizes the equilibrium warming
response to a doubling of preindustrial CO4 concentrations. The temperature state’s
equation of motion is

F;
EJrAt = (1 - O'forc)ﬂ + O fore %At — Oocean AE . (1?))
The parameter
O forc = 1 - (1 - J;ch)At (14>

captures the warming delay and, thus, scales with the model’s time step. The pa-
rameter

Oocean = 1 - (1 - Uggg(lzn)At (15>
quantifies the ocean cooling in a given time step that derives from the atmosphere
ocean temperature difference AT;. This last term in equation (I3)) replaces the oceanic
temperature state in DICE-2007. Section B discusses two alternative calibrations of
the term AT, and the scaling of the parameters.

2.3 Uncertainty

The paper develops a model for analyzing uncertainty in the integrated assessment
of climate change. This section explains how stochasticity, persistent shocks, and
Bayesian learning alter the equations of the base model. We discuss these modifica-
tions in general, and refer to different applications.

Let S denote the vector of all state variables, and let S° denote a generic state
variable affected by uncertainty, e.g. the capital stock K, carbon concentration M, or
temperature T'. If we introduce persistent uncertainty over an originally exogenous
variable like population L, or technology level A, or over model parameters (e.g. gov-
erning emission intensity or abatement costs), then we have to include these formerly
exogenous variables as states as well. Let P denote the vector of model parameters
governing the equations of motion.

The simplest form of introducing uncertainty are iid shocks on the right hand side
of the equations of motion. Then, in addition to S and P, the transition equation

9
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S2iar = 9(S¢, P, &) depends on the stochastic iid shock €. The tilde emphasizes
uncertainty. For example, we could add additive noise in the carbon accumulation by
transforming equation (I2)) to the form Myins = Mpyre + (My — M) (1 — dprAt) +
E;At + €. If we model a persistent shock Z, the shock itself becomes a new state
variable governed by an equation of motion Z;;a; = h(zy, €); and z; becomes an addi-
tional state in the equation of motion for S7, , = ¢(S¢, P, 2). Applications of models
with growth shocks on the technology level in the climate policy context are Kelly
(2005), Heutel (2011), Fischer & Springborn (2011), Cai, Judd & Lontzek (20120),
and an application with persistent shocks to technological progress generating long-
term uncertainty is Jensen & Traeger (2013a). Note that the dynamic programming
approach ensures that the decision maker always responds optimally to the realiza-
tions of the shocks. More importantly, the decision-maker in the present anticipates
that the future decision makers will respond optimally to the actual evolution of the
states.

The uncertainties characterized in the previous paragraph do not evolve over time:
whereas the stochastic element might dependent on a persistent component, there is
no structural learning. In some occasions, we would like to capture that future de-
cision makers not only have a better knowledge of future states, but also gathered
more structural information about the equations governing e.g. the climate system.
Kelly & Kolstad (1999), Leach (2007), Kelly & Tan (2013), and Jensen & Traeger
(2013b) discuss the policy implications of structural learning about climate sensitivity,
i.e., the temperature response to the carbon stock. They treat climate sensitivity as
an unknown parameter, and model Bayesian learning over its distribution. Bayesian
learning combines a stochastic shock (which prevents immediate learning) with a sub-
jective prior capturing uncertainty that the decision maker learns over time through
observation. A tractable Bayesian learning model usually assumes that the stochas-
ticity (likelihood) and the subjective uncertainty (prior) are conjugates, ensuring that
the updated subjective prior belongs to the same class of probability distributions as
the initial prior. Then, we characterize the prior by the parameters of the distri-
bution ®. These parameters become additional, informational state variables, and
their equations of motion describe the evolution of learning ®;, A, = h(S;, Py, ®;).
In the wide-spread example of a normal-normal learning model, prior and likelihood
function interact additively, are both normally distributed, and the characteristic pa-
rameters of the distribution are the mean and the variance of the normal prior. To
condense notation, the vector ®, will henceforth capture exogenous variables that be-
came endogenous because of uncertainty, informational states for Bayesian learning,
and persistent components of stochastic shocks.

3 Discussion of the state reducing approximations

We replace the carbon cycle by a state dependent rate of carbon removal from the
atmosphere. Similarly, we replace the endogenous evolution of ocean temperature by

10
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a state dependent ocean cooling term. First, we discuss our qualitative simplifications
with respect to the original DICE model. Second, we discuss our base case calibration
of the state reduced climate equations. Here, carbon removal and ocean cooling only
depend on time. Section shows that this simple calibration competes well with
the original DICE model in replicating the climate dynamics of the “big” scientific
climate models (AOGCMs). Third, we discuss a more sophisticated interpolation of
DICE’s carbon cycle and temperature equations. Here, carbon removal and ocean
cooling are also functions of the atmospheric carbon content. This more sophisticated
approach replicates DICE’s carbon and ocean cooling more closely for perturbations
around the deterministically optimal path.

3.1 Qualitative discussion of the simplifications

In DICE 2007, the carbon cycle is a three box model. The first box, or carbon
stock, characterizes atmospheric CO, (measured in terms of carbon content). This
first atmospheric box absorbs the anthropogenic emissions. As atmospheric concen-
trations increase, atmospheric carbon diffuses into a second box, a carbon stock that
jointly measures the carbon content of the shallow ocean and the biosphere. Finally,
carbon from this second box diffuses into a third box, the deep ocean. Once anthro-
pogenic emissions decline, the equilibrium net flow resulting from the diffusion can
turn around, releasing carbon from the shallow ocean into the atmosphere. Nordhaus
calibrates the diffusion parameters to simulations of the MAGICC model that we
briefly discuss in section .21 The simplified three box model captures two impor-
tant effects of carbon removal from the atmosphere. First, if antropogenic emissions
increase, so does the partial pressure of atmospheric carbon relative to the shallow
ocean. In consequence, we observe a higher net flow of carbon into the ocean. Second,
in the long-run, the shallow and the deep oceans fill up with carbon and reduce their
uptake. Then, less carbon leaves the atmosphere into these natural carbon sinks.
We replace DICE’s three box model of the carbon cycle by an exogenous rate of
removal of excess carbon from the atmosphere dy¢. For simplicity, we fre-
quently call it a decay rate, acknowledging that atmospheric C'Oy does not actually
decay, but only moves into the biosphere and shallow ocean. Our decay rate only
acts on the carbon in excess of the long-term equilibrium concentration preceding the
industrial revolution. Section shows that our simplified climate system competes
well with the original DICE model. Here we discuss why replacing DICE’s carbon
cycle with a time-dependent but exogenous rate of carbon removal only has a second
or third order policy impact. Uncertainty causes a first order deviation of the optimal
policy. This first order deviation slowly changes the stock of carbon in the atmosphere
and in other reservoirs. The evolving change in the difference of carbon concentra-
tions between atmosphere and other carbon reservoirs causes a change of the rate of
carbon removal, which is a second order effect. Simulations with the original DICE
model show that even largely different abatement scenarios imply almost the same
decay rate of excess carbon for the first century. The effective decay rates only start
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to differ more notably when we approach peak carbon concentrations, under optimal
policy one to two centuries in the future. This second order change in the decay rate
is a flow change and, thus, only builds over time into a notable stock (concentra-
tion) difference. The resulting difference in the atmospheric CO;y concentration then
impacts warming. But warming is governed by a delay equation, delaying economic
impact once more in the order of decades. Thus, our approximation of the carbon
cycle causes a rather moderate approximation error in far future impacts. Under
the usual economic discounting regimes, these have a very minor impact on welfare
and, thus, optimal policy. The approximation eliminates two state variables from the
original DICE model, corresponding to the carbon stock in the deep ocean, and the
combined carbon content of the shallow ocean and biosphere.

Our model also simplifies the temperature delay dynamics with respect to the
original DICE formulation. A given increase in the atmospheric C'Oy concentration
results in a corresponding change of the radiative forcing, which is a measure for the
change in the plant’s energy balance. We can think of radiative forcing as the flame
that we turn on (or up) to warm a big pot of soup. The radiative forcing does not
immediately warm the planet to a new equilibrium temperature, but only step by
step from period to period. The temperature in the next period is a function of the
temperature the current period and the radiative forcing. The DICE model captures
the major part of the warming delay by making atmospheric temperature a delay
equation

Tiv10=T; +C1 [Ft—i-l() — M, + C3(TPee™ — T;t)} .

The parameter \ specifies the equilibrium relation between anthropogenic forcing F
and temperature change 7', and the parameters C'1, C'3, and C4 (below) are constants
in the original DICE model. In addition, the oceans with temperature 72" keep
cooling the atmosphere until their temperature catches up with the atmospheric tem-
perature increase. The ocean temperature itself is modeled as another delay equation

T = TO™™ 4+ CA(T, — TO*™) = (1 — CHTO*™ + CAT,,

Note that energy balance based climate models like MAGICC, to which DICE is cali-
brated, generate the warming delay almost entirely through explicit models of oceanic
heat uptake. However, for a state reduced model, the delay equations employed by
Nordhaus are significantly more convenient. In fact, we find that we can completely
eliminate the ocean temperature as a state variable, and still achieving a similarly
good approximation to the actual temperature dynamics.

We model oceanic cooling of the atmosphere through the atmosphere-ocean
temperature difference AT, = T; — TP, We rewrite the first of the two
equations above as

F
T;H—IO — (1_0.??;6)/1} +O_dec t+10 O_dec AE :

fore A ocean
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and replace the second by a time dependent, and possibly carbon stock dependent,
approximation of the atmosphere-ocean temperature difference AT;. The parameters
a?iﬁc = C1* X and 0% = C1 % C3 are decadal lag parameters, governing how at-
mospheric temperatures adjust to radiative forcing and to oceanic temperature. The
subsequent sections explain the downscaling of the temperature delay equation to
smaller time steps and two alternative calibrations of the atmosphere-ocean temper-

ature difference AT;.

3.2 The simple base case calibration

We now discuss how we calibrate equation (I2) replacing the carbon cycle, and equa-
tion (I3) replacing the ocean temperature delay dynamics. The rate dp;; of atmo-
spheric CO4 removal (in excess of preindustrial levels) governs the carbon dynamics in
equation ([I2)). In our first calibration, we make this decay rate a parametric function
of time

5M,t(t) = 5M,oo + ((SM70 — 5]\/[700) exp[—&}, ﬂ . (16)

The parameter 0,7 characterizes the initial decay of excess carbon, the parameter
dn,00 captures the long-run decay rate, and the parameter 03, characterizes the speed
of change from the initial decay rate to the long-run decay rate. Figures bl and [0l in
Appendix [B] show our calibration.

The temperature equation (I3) depends on the the parameter of,.. governing
warming delay, the parameter ..., governing ocean cooling, and the atmosphere-
ocean temperature differential AT;. The calibration in the next section presents a
sophisticated approach to reproducing the temperature differential along the optimal
path and its perturbations. The present calibration seeks a simple parametric form
that represents the temperature difference between the atmosphere and the ocean
reasonably well along the optimal policy trajectory of the original DICE model. Hav-
ing tried a set of simple parameteric functional forms, we decided for the following
combination of the max and a linear-quadratic approximation

AT,(t) = max{0.7 + 0.02¢ — 0.00007¢,0} . (17)

Figure § in Appendix [Bl shows that equation (I7) captures the atmosphere-ocean
temperature difference AT; of the original model almost perfectly for the first 150
years. Later, it deviates notably until both the true temperature difference and
its approximation converge to zero in the equilibrium. Our model calibrations in the
appendix (e.g. Figure[]) reflect a small deviation of our atmospheric temperature path
from that in the original DICE model during the second 150 years. This deviation
is an immediate consequence of this simple to implement, but for the distant future
slightly crude, approximation. The impact on optimal policies is minimal because of
discounting.

13
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Section 5] laid out the relation between our equation (I3]) for the temperature
dynamics and the corresponding system of equations in the original DICE model for
its decadal time step. An exact mapping between a decadal and our finer time resolu-
tion is only possible for specific or stationary trajectories. The next section pursues a
mechanical downscaling replicating the temperature dynamics in a stationary world.
Here, we view the parameters ooceqn and oo as free parameters and calibrate them
for a one year time step model to replicate the original DICE model’s decadal output.
Figure [[in Appendix [Bl shows our calibration. It turns our that the delay parameter
Ofore calibrates to the same parameter predicted by the mechanical downscaling in
the subsequent section, whereas we find a marginally lower ocean cooling parameter
Oocean 1N the present approach.

3.3 The sophisticated calibration

A more sophisticated DICE interpolation proceeds as follows. We first determine the
deterministically optimal trajectory, and then run the original DICE model for vari-
ations of the optimal emissions path. These emission responses of the original DICE
model result in an average time trend and a residual that varies across trajectories.
We fit the time trend using a set of basis functions and regress the residual on one of
the (other) state variables in the model, e.g., on the atmospheric carbon stock or the
temperature.

We now proceed to explain our more sophisticated interpolation of the full DICE
model. Using the original DICE model, we determine the deterministically optimal
emission trajectory E;, t > 0. We then run the original model in non-optimization
mode, feeding variations of the emission trajectory. In the example discussed here,
whose output we present in section (.3, we vary emissions from half the optimal
emission level to twice the optimal level in steps of one quarter, generating seven tra-
jectories B! = iE} for all t and i € {0.5,0.75,1,1.25,1.5,1.75,2}. We then calculate
the rate of carbon removal from the atmosphere d,/,, and the temperature difference
AT, between the atmosphere and ocean along these seven trajectories. These trajec-
tories result in an average time trend that we fit as 5;/[775(15) and AT}/ (t) using flexible
functional forms, here a third order spline with 30 nodes.

We subsequently regress the seven detrended residuals in every time period (decade)
on the carbon stock. We thereby obtain linear, period-specific corrections of the gen-
eral time-trend of the form AT, (M) = n,+m,M,, where a is a particular decade and
ng, m, € IR are the period-specific regressions parameters. For the function iteration,
we have to evaluate the decay rate and the atmosphere-ocean temperature difference
at arbitrary points in the continuous time state space For this purpose, we take a
time-distance weighted, convex combination of the decay rate and temperature dif-

10For generating time paths we need to evaluate decay and temperature difference on the smaller
time step, here, annual. But, already in the function iteration, the numerically optimal grid, e.g.
consisting of Chebychev nodes, will not coincide with the decadal information deriving from the
original DICE 2007 model.
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ference at the nearest neighbors. Let the original model generate values AT, (M) and
ATy(M), on a decadal scale at points a and b = a + 10. We then construct the value
at time ¢, a < ¢ < b, by setting ATM(t, M) = XLAT,(M) + S2AT,(M). Following
the same procedure, we generate the carbon stock based correction of the decay rate
as (S]\A;[[’t(t, M) = bl—_Ot(SMﬂ(M) + tl_—oa(SMJ,(M).

The total rate of removal of excess carbon in the atmosphere is then the sum of
the rate captured by the time trend (ﬁw(t) and the period-specific, linear, carbon
stock based correction 037 (¢, M)

§ase (t, M) = 84, (t) + 051 (¢, M) . (18)

Similarly, we obtain the overall temperature difference as the sum of the time trend
AT/ (t) and the period-specific, linear, carbon stock based correction ATM (¢, M)

AT, (t, M) = AT](t) + ATM(t, M) . (19)

Figure [0 shows that the flexible time trend together with the simple, linear, carbon
stock based correction nicely reproduces both the rate of atmospheric carbon removal
and the temperature differences for the original perturbation scenarios.

Finally, we have to rescale the time step of the equations. A one to one mapping
of the general non-stationary dynamics between a decadal and a finer time step is not
possible. Here, we assume constancy of forcing, feedbacks, and emissions in establish-
ing the equivalent dynamics for different time steps. E.g., the decadal equation for
atmospheric temperature in section B1] then takes the form Ty110 = (1 —0%5,) T, + T,
for some I' € IR, and downscaling to an annual time step implies

o4 =1 — (1 — o, )16 ~0.032 (20)

fore

dec

where we obtain o, = C'1 % A = 0.28 directly from the original DICE parametriza-
tion. Similarly, we obtain the parameter
gl =1 — (1 — o V1o ~ 0.007 . (21)
The stationarity assumptions underlying the downscaling are not generally satisfied
along an optimal trajectory, but seem the most natural, mechanical approach without
recalibrating the model. For a one year time step, however, our calibration-based
approach in section finds values very close to those deriving from the downscaling
argument laid out here. The atmosphere ocean difference AT; is independent of the
time step, and equations (I4]) and (I5]) are all we need for a rescaling of the time step.
The rate of excess carbon removal from the atmosphere 5%}}5(15, M) characterizes
decadal decay instead of the annual rate entering equation (I2]). Similar to equations

(20) and (210), we obtain
Sara(t, M) =1— [1—85(t, M)] ™ (22)
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by rescaling the corresponding decay factor.

We will employ the sophisticated calibration discussed here to compare the original
DICE dynamics on a decadal time scale to that of the interpolated model on an annual
time step. Therefore, we will change our pick of g4 = gf’{)cE /10 discussed in section
2.1] by a value that reproduces the DICE model’s technology dynamics, including

what we argue is likely a rounding error in setting up the DICE 2007 model. We

oe(1—10%(1—x)gPICE
calculate this value as g = —6A(11i1)(11£)e$)(_1%§f)) ) — 1.46%[

4 Welfare and Bellman equation

We first explain the dynamic programming problem using standard preferences. Then,
we discuss the solution algorithm. Finally, we present the comprehensive Bellman
equation for Epstein-Zin-Weil preferences that disentangle risk aversion from the
propensity to smooth consumption over time.

4.1 Bellman equation for standard preferences

An optimal decision under uncertainty has to anticipate all possible future realizations
of the random variables together with the corresponding optimal future responses.
The Bellman equation reduces the complexity of the decision tree by breaking it up
into a trade-off between current consumption utility and future welfare, where future
welfare is a function of the climatic and economic states in the next period. This
so-called value function V (K, My, T;, t) characterizes the maximal expected welfare a
decision maker can derive over the infinite time horizon, given a particular state of the
economy. The optimization problem is essentially solved once we find an approxima-
tion to the value functions V. In the case of uncertainty, the value function generally
relies on additional states summarized in the vector ®,, capturing uncertain (for-
merly) exogenous states, Bayesian information, or persistent components of stochastic
shocks (see section 2.3]). We then write the value function as V (Ky, My, Ty, @4, t).
The welfare flow in a period is the population L, weighted utility from per capita
consumption (Lj—: DICE uses a constant intertemporal elasticity of substitution, and
we denote its inverse, the coefficient of aversion to intertemporal change, by 1. We
denote the rate of pure time preference, also called utility discount rate, by d,. The

TFP

1The DICE model uses Aﬂqg = 1_’?6% in total factor productivity units. Using labor aug-
At

menting technological progress and picking ¢ = 0 we obtain Ay = 4 —, where

(1-10gR1CE (1—k)) I-~

TFP
gﬁ),ItCE = % is the original DICE model’s initial growth rate when converting into labor aug-

menting technological growth. Setting this equation for A;¢ equal to our continuous time expression
in equation (@) delivers the cited formula for g4 ¢.
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Bellman equation for standard (entangled) preferences is

(Cfr) "
V(Kt, Mtvﬂa (bt,t) = Imax Ltl—At ‘l—

Ct,pt -7

exp[—0,At] E V(K iy ae, Misar, Tevat, Priar, t+AL),

where E takes expectations over uncertainty in the equations of motion governing
period t + At states. The right-hand side of the Bellman equation describes the
optimization problem in period ¢. The optimal decision maximizes the sum of imme-
diate consumption utility and the discounted expected value of future welfare. This
maximization is subject to the equations of motions (I0), (I2)), and (I3]), or their
modifications including uncertainty discussed in section 2.3l and the constraints

0< i <land 0<C;, <Y} .

As we pointed out in section 2.2 approximating the value function over K; would
be computationally inefficient, because capital levels change significantly over time.
Using effective labor units for measuring consumption, capital, and production, we
also define a new value function measuring the value of the optimal program in units
closely resembling effective labor

V(Ktv Mt7 Tt7 (ﬁtJrAta t)

V*(ku My, Ty, @iy ars t) = A
t t Ki=kiA¢Lt

Then, Appendix [Al transforms the Bellman equation into the dynamic programming
equation

1-n
V*(ky, My, Ty, ®par, t) = max —-— At + (23)
Ct, [t — 7’]

Brat

1 — n E [V*(kt+At7 Mt+At7 E+At7 @t+At7 t+At)]

The parameter 8; a; defines the growth adjusted discount factor

Bt,At = €Xp [(—5u + gA,t(l - 77) + gL,t)At] . (24)

Its time dependence arises because of the non-constant growth rates in DICE. The
factor determines the contraction of the Bellman equation. We can either use the

12For too low a time preference relative to growth and intertemporal substitutability, the Bellman
equation will not contract. Practical convergence problems can already arise before expected welfare
diverges and makes the maximization problem theoretically ill-posed. Note that the time dependence
of B¢ A+ is entirely a consequence of the non-constant growth rates and does not imply a time
inconsistent objective function.
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exact, time-step dependent formulas for the growth rates

grt = [In(Lirar) — In(Ly)] /At and (1%)
gaz = [In(Apar) — In(Ay)] /AL, (3%)

or their continuous time approximations and at the expense of a small error.
We derive the normalized Bellman equation (23) in Appendix [A] for the general

case of Epstein-Zin preferences. A co-benefit of solving for the value function, rather

than just an optimal path, is that we obtain the social cost of carbon directly as

oV OV
SCC, =—=2 = M 4, L, .
ET g,V OV

With this formula, we can calculate the social cost of carbon even when full abate-
ment is achieved, i.e., we can calculate the value of carbon sequestration from the
atmosphere also after the abatement rate hits the constraint

4.2 Solving the model

For the numerical implementation, it is usually more efficient to maximize over the
abatement cost A rather than over the abatement rate p. The two are strictly mono-
tonic transformation of each other, but (only) the constraints on A are linear

ki ki
14012 | [ ) <1407 | andeAa>0. (25)
A
0 1 v,

Apart from the physical states, we have to approximate the value function over the
state variable ¢ on the interval [0, c0). Its natural unboundedness is inconvenient when
generating the approximation grid. It is helpful to introduce a strictly monotonic
transformation that maps ¢ € [0, 00) to

7=1-exp[—¢t] €[0,1).

13The error is bounded by the change of the growth rate. A more precise evaluation of the
differences results in a truly negligible error for g4 ,, changing the discount factor in the order 10~°
for an annual time step. The initially quickly growing labor can imply an approximation error in
the continuous time formula of up to a percent of the discount factor, i.e., of the order 10~* in the
discount factor. That error is still small as opposed to any knowledge we have with respect to the
true discount factor, but we can avoid it using equation instead.

14The DICE-2007 model obtains the social cost of carbon indirectly from the condition that it has
to equal the optimal abatement cost. Once full abatement is achieved, usually some time during the
next century, such an approach can no longer track the actual social cost of carbon.
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We refer to 7 as artificial time. We then generate the grid on the time axis using
e.g. Chebychev nodes on [0, 1) A larger choice of the numerical parameter ¢ moves
the nodes closer to the early (real-time) periods After generating the nodes, we
transform them back to real time using the inverse transformation ¢t = —@.

The challenge is to find a reasonable approximation to the true value function.
The solution technique relies on Bellman’s observation that, in our infinite horizon
setting, the value function on the left and on the right of equation (23]) coincide.
We obtain a solution to equation (23]) by function iteration, approximating the value
function V' by a set of basis functions. We recommend Chebychev polynomials.
A frequently used alternative are cubic splines, and section [5.3] compares the two
approaches, showing that the Chebychev basis requires a lower dimensional bases
for the same numerical approximation quality. In Matlab, the compecon toolbox by
Miranda & Fackler (2002) provides convenient tools for the function approximation
step, requiring little to no knowledge of the underlying theory. The following steps
outline the algorithm.

1) Setting up the problem:

1. Choose the intervals on which to approximate the value functions. We suggest
such intervals in the appendix. In general, a reasonable interval choice depends
on the type and magnitude of the modeled uncertainty.

2. Choose an approximation method for the value function V. Our suggested
calibration of the model uses Chebychev polynomials.

3. Generate a grid on the product space of the approximation intervals. When
using Chebychev polynomials, use Chebychev nodes 17

4. Start with an arbitrary guess for the value function or the coefficients charac-
terizing its approximation.

2) The function iteration:

15Chebychev nodes do not lie on the boundary of the interval. In contrast, splines usually take
the boundary of the support interval as an evaluation node, and we have to choose an upper bound
strictly smaller but close to unity.

16The logarithmic transformation clusters nodes densely in early as opposed to late periods. Such
a clustering is useful for the DICE model, where most of the action happens relatively early in
the time horizon, when the exogenous processes exhibit the highest rates of change, and when the
economy transitions from a high emission to a low emissions path. However, a simple logarithmic
transformation would exaggerate such clustering. A low parameter  is necessary to moderate the
clustering at early times and spread the support to a sufficient range in real time. The parameter ( is
a purely numeric parameter and we chose ¢ = 0.02 for the runs depicted in the appendix. In general,
we suggest smaller values rather than increasing the parameter. Sometimes it will be worthwhile
playing with the parameter spreading nodes differently in order to improve the value function fit or
even convergence properties.

17A simple an efficient basis for a multi-dimensional state space is the tensor basis. It contains the
tensor product of all combinations of basis functions in the different dimensions. The corresponding
grid and basis is automatically generated when using the compecon toolbox. Sometimes, it is
suggested to drop higher order cross terms as a way of saving basis functions or nodes. The loss in
approximation quality of this approach strongly depends on the precise form of the value function.
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1. Solve the right hand side optimization problem of the Bellman equation (23))
for every point i on the grid. Save the optimal control variables ¢(i), u(i) (or
A(i)), and the maximized objective v(z) for every point on the grid.

2. Fit a new value function approximation using the newly generated values v(7).
This new fit generates new basis coefficients g(i).

3. Check whether the change in coefficients or values satisfies a given tolerance
criterion. If yes, stop. If not, use the new coefficients ¢(i) returning to step 1,
employing the optimized controls from the previous iteration as initial guesses
for the maximization problem.

Given the (approximate) value function, we can analyze the control rules and simulate
different representations of the optimal policy over time. For the simulation, we either
fit a continuous control rule, or we forward-solve the Bellman equation, knowing the
value function, starting from the initial state. Under uncertainty, we can quickly
simulate a large set of runs and depict statistical properties. After a first solution, we
recommend checking whether changes in tolerance, number of approximating basis
functions, and changes in the interval bounds still affect the results. Plotting of
the control rules, more precisely their two or three dimensional cuts, often gives
a good idea of the approximation quality. Using Chebychev polynomials or cubic
splines, a low order of the basis generally results in major wave patterns in the
control rules. These patterns are generally of numeric origin. Some modifications
of the basic function iteration algorithm described above can be used to speed up
convergence. The most important acceleration derives from an algorithm known as
Howard’s method or modified policy iteration: after every value function iteration,
we iterate the Bellman equation several times without re-optimizing the controls. We
emphasize, first, that the algorithm solves the problem on the continuous state and
control space. Second, by making time a state variable, our approach contracts to
the true solution without depending on the initial guess.

We can reduce the state space to only 3 dimensions, if we are willing to step back
discretely in time from a finite planning horizon. The solution algorithm is similar to
the one described above. However, it becomes more important to start with a good
initial guess, because this guess directly determines optimal policies close to the end of
the planning horizon. The time horizon should therefore be at least several centuries.
The modeler should test different initial guesses and compare the solutions. As long
as the result stays sensitive to the initial guess, he should push the time horizon
further out["

18Tf we have a solution to the 4 state model for a related scenario, we obtain a very good initial
guess for the 3 state problem by evaluating the 4 state value function at the final year of the planning
horizon of the 3 state problem. Other guesses sum utility over a few centuries fixing the investment
rate to a reasonable value and the abatement rate to 100%, independent of the initial state. A
similar method iterates the stationary Bellman equation fixing exogenous parameters to their values
at the end of the planning horizon (again replacing the processor intensive maximization step by
merely guessing an optimal policy). See Cai, Judd & Lontzek (2012q) for an example of solving the
DICE model over a finite time horizon.
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4.3 Epstein-Zin preferences

The Bellman equation in section 1] reflects the discounted expected utility model.
A serious short-coming of this model is its inability to correctly capture the risk-
free discount rate and risk premia. Basal & Yaron (2004) show how Epstein-Zin
preferences explain the corresponding equity premium and the risk-free rate puzzles
in finance. Their approach builds on a model by Epstein & Zin (1989) and Weil
(1990) that disentangles risk aversion from a decision maker’s propensity to smooth
consumption over time. Note that these preferences are fully rational (Traeger 2010),
in particular they obey the von Neumann & Morgenstern (1944) axioms and time
consistency. Traeger (2012) and Crost & Traeger (n.d.) argue in detail why Epstein-
Zin preferences are relevant to climate change evaluation.

We denote the measure of relative Arrow Pratt risk aversion by RRA, and the
measure of aversion to intertemporal substitution, or the propensity for consump-
tion smoothing, by 1. In an intergenerational interpretation, the parameter 1 can
also be interpreted as the parameter of intergenerational consumption smoothing.
Appendix [A] derives the Bellman equation disentangling risk aversion from intertem-
poral substitution

]
V*(k't, Mt7 E7 ¢t+At7 t) = Imax © At + (26)
Ct, it -1

L_RRA \ T-RLA
28 (B (1= )V (e Mo T, Bt 4 A1) 75 ) 707
We solve the generalized Bellman equation (20) the same way as the original Bellman
equation ([23), and V* has the same normalization. Equation (26]) uses a transforma-
tion explained in Traeger (2009) making the Bellman equation linear in the time step
(as opposed to the original formulation of Epstein-Zin preferences). Under certainty,
the non-linear exponents in equation (23]) vanish and we are back in the setting of
equation (23). The same observation holds if RRA = 7, i.e., when risk preference
happens to coincide with the decision maker’s propensity to smooth consumption
over time.

Vissing-Jorgensen & Attanasio (2003), Basal & Yaron (2004), Bansal, Kiku &
Yaron (2010), and Nakamura, Steinsson, Barro & Ursua (2010) provide preference
estimates for Epstein-Zin preferences, explaining observed asset market behavior.
These papers either estimate the preferences based on Campbell’s (1996) approach
of log-linearizing the Euler equation in the asset pricing context, or calibrate asset
pricing models to the financial market data. A somewhat representative estimate is
n = % and a risk aversion coefficient around 10. Note that also the original DICE
model picks n based on observed market interest. With a single entangled parameter,
or in a deterministic setting, however, the original DICE model cannot match both
the risk-free interest (or discount) rate and the risk premia. The application of the
model by Crost & Traeger (n.d.) analyzes the effects of preference disentanglement
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under damage uncertainty in detail, and Jensen & Traeger (2013a) analyze the effects
of preference disentanglement in the context of growth uncertainty.

5 Calibration Results

We now present the results of our calibration, the comparison to DICE and the sci-
entific AOGCMs, and numerical insights regarding the type and number of basis
functions. First, we present the result of our simple base case calibration discussed in
section 3.2l Then, we compare the temperature response in this simplified model, the
original DICE 2007 model, and the DICE 2013 model to the temperature response
generated by the scientific AOGCMs for the IPCC’s emission scenarios. Finally, we
present the result of our sophisticated calibration discussed in section 3.3 and com-
pare the numerical quality of the results across different types and dimensionalities
of the basis functions.

5.1 The simple base case calibration

Figure 2 shows our simple base case calibration, resulting from the approach discussed
in section3.2l Our main focus in calibrating was matching DICE’s mitigation policies,
i.e., the abatement rate and the optimal carbon tax. Our calibration matches optimal
policies, and the trajectory of the optimal carbon stock well, with slightly too low
a carbon stock four centuries from today. Our temperature evolution shows a slight
overshooting two to four centuries from today. It is the immediate result of the simple
min-quadratic function used for ocean cooling discussed in section (see also Figure
[Rlin the appendix). The social cost of carbon extends beyond the DICE values when
full abatement is optimal. The DICE model calculates the optimal carbon tax using
the abatement costs. Once reaching full abatement, this optimal carbon tax is the
minimal tax the regulator has to impose on carbon to keep full abatement in place.
This crossed line slowly falls over time as abatement becomes cheaper (see equation
[6). Our dynamic programming solution obtains the social cost of carbon directly
from the value function and, therefore, we can trace out the actual social cost of a
ton of atmospheric carbon also beyond the point of full abatement. It then represents
the value of capturing a ton of carbon from the atmosphere.

5.2 Base case calibration, DICE, and MAGICC

This section compares our simple base case calibration with exogenous, time-dependent
rates of atmospheric carbon removal and ocean cooling to the performance of the cli-
mate modules in the DICE 2007 and the DICE 2013 models. As benchmark, we use
the MAGICC 6.0 model. The Working Group I of the IPCC (2013) uses MAGICC for
Projections of Global and Regional Climate Change (chapter 5), and DICE itself is
calibrated to an earlier version of the MAGICC model. MAGICC emulates the state
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Figure 2 shows the result of our base case calibration to the DICE 2007 model along the determin-
istically optimal trajectory. We calibrated simple parametric functions to capture a time dependent
rate of carbon removal from the atmosphere as well as a simplified temperature delay equation
omitting the ocean temperature state. Section discusses our simplifications and the calibration
approach in detail. Appendix [Bl presents our calibration graphs. Our calibration focuses on re-
producing DICE’s optimal policy. The different lines reflect different numbers of basis functions
(effective capital, carbon stock, temperature, time). They mostly coincide, showing that further
increases in the number of basis functions no longer change the result. We use a tensor basis, i.e.,
the basis containing all combinations of the first 18 Chebychev polynomials in the (effective) capital
dimension, the first 6 Chebychev polynomials in the carbon stock dimension, the first 10 Cheby-
chev polynomials in the time dimension, and the first 6 Chebychev polynomials in the temperature
dimension.
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of the art climate models. We employ its baseline calibration III (Meinshausen, Raper
& Wigley 2011). Figure 4 in Meinshausen et al. (2011) shows that the MAGICC 6.0
emulation replicates well the mean response of 19 Atmosphere-Ocean Global Circu-
lation Model (AOGCM) models employed in the Fourth Assessment Report IPCC
(2007) for different policy scenariosd MAGICC is an upwelling diffusion model
building on a hemispherically averaged energy-balance equation. It models carbon
uptake and (both transient and long-run) warming feedbacks in much more detail
than DICE’s simple 3 box carbon cycle and temperature delay equations.

DICE and our integrated assessment model only endogenize fossil fuel bases COq
emissions. CO, emissions from land use change and forestry follow the exogenous tra-
jectory described by equation ([7), and all other greenhouse gases are summarized in
the exogenous radiative forcing term characterized by equation (8). In contrast, the
MAGICC model, like the big, scientific climate change models, explicitly models the
dynamics of a large set of greenhouse gases. The IPCC’s emission scenarios vary CO,
emissions as well as the emission levels of other greenhouse gases. Indeed, stricter
mitigation policies would not only regulate industrial CO5 emissions more strictly, but
also other greenhouse gas emissions. Our comparison presented here stacks the cards
against DICE and our model: we show how well our model represents the different
SRES and RCP scenarios if we only adjust endogenous CO, emissions. We thereby
answer the question how well the simplified integrated assessment models, endogeniz-
ing only the main source of greenhouse gas emissions, replicate the responses to more
comprehensive policy approaches regulating greenhouse gases in general. Appendix
presents the complementary approach: Figures[IT] and [I2] compare the temperature
response from DICE and our model to MAGICC when feeding the radiative forcing
implied by all greenhouse gases in the SRES and RCP scenarios. In this compari-
son, DICE 2007, DICE 2013, and our base case model perform significantly better
in reproducing MAGICC’s temperature response as compared to the case presented
here. Moreover, in the majority of cases our model performs better than DICE 2007
or DICE 2013.

Figure [B] compares our base case calibration from section to the emission
response of the MAGICC 6.0 model. We selected 3 common SRES scenarios used in
the IPCC’s assessment reports up to Assessment Report 4 (left), and 3 RCP scenarios
used in the newest Assessment Report 5 (right). The new RCP scenarios have an
extended time horizon as compared the 100 year time horizon of the SRES scenarios.
Figure [[2] in Appendix [C] presents the comparison for the remaining Scenarios All

YFourteen modeling groups had submitted data for 23 AOGCMs and MAGICC 6.0 is calibrated
to the 19 of these AOGCMs for which sufficient data was available to carry out the calibration.
Calibration IIT uses the widest set of calibration runs. See section 4.3.2 of Meinshausen et al. (2011)
for a discussion of the emulation error using MAGICC 6.0. For individual AOGCMs the the error
is small as compared to the disagreement of individual AOGCMSs. For the purpose of the current
paper, I am interested in the model’s ability to emulate the mean response of the AOGCMs, where
MAGICC 6.0 performs even better.

208ee IPCC (2000) for details on the scenarios. They reflect a wide range of emission forecasts
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Figure 3 compares the temperature response of our simple calibration, of DICE 2007, and of DICE
2013 to MAGICC’s temperature response. We show selected emission scenarios used in the 4"
(SRES, left) and 5" (RCP, right) assessment reports of the IPCC. Appendix [C] presents additional

results.
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integrated assessment models resemble MAGICC’s temperature response to emission
reasonably well. While there clearly is room for improvement, we find that our much
simplified model is no worse in reproducing temperature responses for a large set
of emission scenarios than either of the DICE 2007 or the DICE 2013 models. We
observe the strongest deviation from MAGICC in Figure Bl for the RCP 8.5 scenario.
The scenario exceeds 7°C temperature increase during the next century and is far
from an optimal emission trajectory that our model is designed to generate. The
largest deviation to both the original DICE and our base case model is generated by
the RCP 3 scenario depicted in Figure in Appendix [Cl This RCP 3 scenario is
MAGICC’s version of the IPCC’s RCP 2.6 scenario and assumes extreme, very quick
emission reductions. By the end of the century fossil fuel based emissions are negative
(net carbon capture). Neither DICE nor our model are designed to simulate such an
extreme emission reduction scenario.

5.3 Sophisticated calibration, Chebychev polynomials, splines

In this section, we briefly present optimal abatement in the more sophisticated in-
terpolation of the DICE model presented in section [3.3l As we discussed there, the
climate response necessarily differs for different non-stationary emission trajectories
between decadal and annual models. In addition, despite our careful interpolation of
DICE’s exogenous processes, the dynamics of our, endogenous, downscaled, economic
equations of motions will not exactly match those of the decadal model. In addition,
our annual time step allows the policy maker to set a slightly better targeted policy
with increased efficiency.

The solid blue lines in Figure [ compare the optimal policies between the original
DICE 2007 model and our sophisticated interpolation in an annual model. These solid
blue lines are partially covered by a dashed yellow line showing that further increasing
the order of the basis does not change the numerical results. The left panels present
the results using a Chebychev basis, and the right panels present the solutions using
a cubic spline basis. We discuss the numerical insights from the graphs further below
and start discussing the relation between the crossed line (markers) representing the
original decadal DICE model and our solid lines for an annual time step. The upper
two panels in Figure ] show that the optimal abatement rate and the optimal emis-
sion levels in the present coincide for both models. Later, both the abatement rate
and the absolute emission levels fall slightly below the DICE values, returning to the
DICE values during the next century. The main reason why both abatement rate and
emission levels can fall below their DICE counterparts is that the capital stock grows

that represent different assumptions on population growth, technological development and cross-
regional spill over, and economic development and convergence. The new RCP scenario are labeled
by the radiative forcing they produce by the end of the century and are described in Moss, Babiker,
Brinkman, Calvo, Carter, Edmonds, Elgizouli, Emori, Erda, Hibbard, Jones, Kainuma, Kelleher,
Lamarque, Manning, Matthews, Meehl, Meyer, Mitchell, Nakicenovic, O’Neill, Pichs, Riahi, Rose,
Runci, Stouffer, van Vuuren, Weyant, Wilbanks, van Ypersele & Zurek (2007).
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at a slightly slower rate, a consequence mostly of the capital decay change along the
non-stationary path in the annual time stepZ] The main message from comparing the
more sophisticated interpolation and the original DICE model is that, first, a sophis-
ticated interpolation of DICE in combination with a more mechanical downscaling of
the time step will not necessarily imply the same policy and temperature dynamics
as the original model. Second, these deviations, however, are not particularly large.
We note that paralleling research by Cai et al. (2012a), Lemoine & Traeger (2014),
Cai, Judd & Lontzek (2012¢), and Alex L. Marten (2013) also discusses the conse-
quences of the time step on integrated assessment. For the purpose of the current
paper we take the following stand. The current paper’s goal is to promote a model
that helps analyzing the policy implications of uncertainty in climatic change. Our
simple calibration discussed in sections B.2] (.1l and perfectly resembles DICE’s
optimal policy in a deterministic world, and captures reasonably well the tempera-
ture response to a wide set of emission scenarios. We consider the simple calibration
a perfectly suitable tool for our suggested purpose: analysis building on the model
will capture the response of optimal policy to uncertainty. Such analysis derives its
insights relative to the original DICE model’s deterministic policy. The convenience
of having a model that reproduces the DICE model’s deterministic policy and that
is easy to implement outweighs the costs of not taking a more sophisticated stand on
optimal policy changes from downscaling the time step in a deterministic world.
Figured also discusses numerical aspects of the solutions. The legend entries state
the numbers of basis functions in each dimension. The first number corresponds to
the effective capital state, the second number to the carbon stock, the third number
to the temperature state, and the fourth number to the time state. We use a tensor
basis, i.e., the basis of our full space consists of all possible combinations of basis
functions in each dimension. Thus, the number of basis functions approximating the
value functions is the product of the different legend entries, which is also the number
of nodes on our supporting grid. First and most importantly, we show that our results
are independent of our choice of the basis type. Once we have picked a sufficiently
large number of basis functions, the solid lines on the left using a Chebychev basis
closely match the solid lines on the right using a spline basis. Second, we show that
using too low a number of basis functions can imply significant numerical mistakes in
the solution (dotted, and green and red dashed lines). Third, the figure shows that
Chebychev polynomials yield the same quality of the solution with a significantly
lower number of basis functions than splines. We suggest to employ the number of
basis functions stated next to the solid blue line. Further increasing the number of
basis functions (dashed yellow line) changes the results so slightly that the yellow

2L A small difference also results from the fact that the EXCEL spreadsheet version of DICE that
we use for our comparison differs slightly from the GAMS version that we implemented in Matlab.
We realized the EXCEL version of DICE subtracts abatement costs in a way that is independent
of climate damages, whereas abatement costs in the GAMS and, thus, our version of DICE scale
with production net of climate damages. The effect of this difference is very small (proportional to
damages times abatement cost, both measured as percent of world output).
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Figure 4 presents the optimal emission policy and temperature evolution in our “sophisticated” DICE
2007 interpolation (section B3] for an annual time step. The graphs on the left use a Chebychev
basis, whereas the graphs on the right use a spline basis. The legend entries state the numbers of
basis functions in each dimension: effective capital, carbon stock, temperature, time. The yellow
dashed lines mostly lie on top of the solid blue lines.
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dashed line lies essentially on top of the solid blue line, making it appear a single
dashed line. In the case of Chebychev polynomials we find that 5 x 4 x 11 x 4 = 880
basis functions already yield a very good numerical approximation to the value func-
tion, while in the case of splines we need 5 x 5 x 23 x 5 = 2875 basis functions to reach
a similarly good solution. Using collocation, the number of evaluation nodes equals
the number of basis functions, and processor time is approximately proportional to
the number of evaluation nodes.

The state space underlying Figure [ uses a the support [3, 6] for effective capital,
the support [550,2000] in Gt carbon for the carbon stock, the support [0, 5] for the
temperature increase in °C above temperature in 1900, and the support [0, c0) for
Chebychev polynomials and [0, 576] in the case of splines for real time in years into
the future The fourth finding from our figure is that, on this support, the time
dimension needs by far the highest dimensional basis to obtain a good approximation.
A reason for the finding is that the DICE 2007 model has a significant amount of
exogenous processes that drive a non-stationary dynamics The number of basis
functions needed for a precise value function approximation depends on the size of
the support intervals. Uncertainty can carry trajectories out of these supports. E.g.,
if uncertainty about climate sensitivity implies significant probabilities that we reach
higher temperature levels, we have to extend the support interval, and usually as
well the order of the basis in the temperature dimension. Our base case calibration
shown in Figure 2] prepared the model for growth uncertainty, in which case we need
a much larger effective capital state space because technological growth follows e.g.
a random walk. There, we used an effective capital state space of [0.5, 15] and ended
up using 18 rather than 5 capital nodes until the solution no longer depended on
further increasing the basis. In particular, this finding illustrates the convenience of
our renormalization of the model and Bellman equation in per effective labor units.
Our trajectories underlying Figure (] stay well inside the chosen support interval of
[3,6] over the full time horizon from the present to infinity. Without normalizing

22These time intervals correspond to [0,1) and [0,0.99999] in artificial time, respectively. Whereas
splines place a node on the bounds of the support interval, the Chebychev nodes lie stricly inside
of the support interval, thus, allowing us to use infinity as the upper bound. Also in the case
of the Chebychev basis our actual time nodes do not exceed the 600 year time horizon that our
sophisticated interpolation relies on for interpolating DICE’s original emission and temperature
dynamics. However, we show that further increasing the node numbers in the time dimension
has a negligible impact on the model results. Increasing the node number also pushes the highest
Chebychev nodes further out into the future. Note that placing the highest time node at year 576
does not imply that the policy maker’s planning horizon ends there. We use a smooth interpolation
in the time dimension, not cutting off the planning horizon at any given point.

23Note that our logarithmic transformation clusters more nodes on in the close future as opposed
the distant future. We found that this clustering is useful because the DICE model is particu-
larly non-stationary in the close future. We picked the current transformation after testing a small
set of different time transformations, including a logarithmic variation that reduces the clustering.
However, it is more than likely that other time transformations can be found that reduce the num-
ber of time nodes needed to obtain the same quality in the approximations. Note that for some
transformations the model becomes less stable than under the logarithmic transformation.
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capital to effective labor units we would need a much larger state space for capital to
cover at least a reasonably long time horizon, even without growth uncertainty.

6 Conclusions

The current paper develops a low dimensional model for analyzing the policy im-
plications of uncertainty in climatic change. In contrast to Monte-Carlo studies,
linearizations, or discretized models, our dynamic programming approach solves the
non-linear problem of finding the optimal policy in the face of uncertainty. The
present model relates closely to the wide-spread DICE model, but uses an annual,
or more generally flexible, time step. We interpolate the complex set of exogenous
difference equations in the recent DICE model by their continuous time solutions,
making this integrated assessment model even more accessible to introspection by a
large audience of environmental economists.

Our model extends the small set of existing state of the art implementations of
stochastic dynamic programming integrated assessment models. Our main contribu-
tion is to reduce the number of states needed to represent the climate side of the
current DICE model without sacrificing its benchmark in capturing the interaction
between emissions and temperature increase. Our reduction of the state space is cru-
cial to permit additional state variables needed to capture uncertainty. We cut the
number of state variables almost to half with respect to DICE 2007 and DICE 2013.
We compare the performance of our simple model, and of the original DICE 2007
and DICE 2013 models, to the temperature response of MAGICC 6.0. MAGICC
emulates the Atmosphere-Ocean General Circulation Models used in the IPCC’s as-
sessment reports. Our scenario comparison uses the IPCC’s SRES and RCP emission
scenarios and finds that our simplified model performs similarly well as the origi-
nal DICE model. In general, the accuracy of these integrated assessment models in
emulating the scientific AOGCM models can be improved.

Our paper is the first to carefully analyze the numerical quality of a stochastic
dynamic programming implementation of an integrated assessment model, comparing
results for different types of basis functions and determining the number of basis func-
tions needed for an accurate solution. In our DICE implementation, the Chebychev
basis reaches numeric precision with significantly less basis functions as compared to
cubic splines. In addition, we introduce a new, efficient normalization of the Bellman
equation and introduce Epstein-Zin preferences. These preferences allow the model
to distinguish effects of risk and risk aversion from those deriving from intertemporal
consumption smoothing. Our flexible time step thereby prepares the model to use the
recent consumption smoothing and risk aversion estimates from the finance literature.
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Appendix

A Normalizing the Bellman equation
The general Bellman equation expressed in terms of the original value function V' is
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and, thus, equation (26) and its special case equation (23]).

B Calibration

The section summarizes the numerical part of the calibration discussed in section
whose result we presented in section [5.Il Table [Il summarizes the model parameters.
We calibrate our model so that the optimal time paths of CO4y concentration, tem-
perature, abatement rate, and optimal carbon tax closely resemble those predicted
by the DICE-2007 model P Figures [l and [ show our calibration of equation (I6l),

24We used the EXCEL version downloadable from http://nordhaus.econ.yale.edu/DICE2007.htm
to generate the optimal time paths of DICE-2007. It generates a longer time series than depicted
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approximating the carbon cycle. Our carbon removal rate decreases from the initial
value 0pr to the asymptotic value dys ., where the rate of decline is characterized by
03s. Figure [7 shows the calibration of the heat capacity and feedback related delay
parameter oy, and of the parameter o,cqn, capturing ocean temperature related
feedbacks (equation [[3]). Any individual parameter change improving the fit in one
dimension worsens the fit in at least one of the other variables. Finally, Figure [§
depicts the difference between oceanic and atmospheric temperatures in DICE-2007,
and compares it to our simple quadratic approximation stated in equation (7).

We solve the Bellman equation (23)) by help of the function iteration algorithm
described in section 4.2l We approximate the value function V* by Chebyshev poly-
nomials. We update the basis coefficients by collocation at the Chebychev nodes
spelled out in Table 2 (rectangular grid). To arrive at this final node grid, we se-
quentially increased the number of nodes in each dimension, until a further increase
in the number of basis function no longer affected the solution. Figure [2] shows that
a further increase of the node number beyond our 18 x 6 x 10 x 6 = 6480 nodes has
no observable effect on increasing the accuracy of our simulation. Our convergence
criterion was a coefficient change of less than 10~*. The corresponding maximal rela-
tive change in the value function was less than 1071, Figure [I0] shows that a further
reduction of the convergence tolerance by an order of magnitude had no effect on the
optimal time paths of the variables of interest.

C Further comparisons to the MAGICC model

The present part of the appendix extends the comparison of our base case calibration
and of the DICE 2007 and DICE 2013 models to the average of the AOGCM models
used in the IPCC as emulated by MAGICC 6.0. We explained in section that
MAGICC and the SRES and RCP scenarios model a large number of greenhouse gas
emissions explicitly, and that the DICE (and our) integrated assessment model only
endogenize fossil fuel based CO5 emissions. Our comparison in section asks how
well the integrated assessment models perform in approximating more comprehensive
climate policy scenarios. Part of the failure in reproducing the temperatures of the
SRES and RCP scenarios is that these simplified integrated assessment models have
a fixed exogenous forcing proxy for all non-CO, greenhouse gas emissions. A more
favorable comparison between the integrated assessment models and MAGICC feeds
the joint radiative forcing of all greenhouse gases of the SRES and RCP scenarios to

in Nordhaus (2008). Note that the EXCEL model assumes a constant savings rate. We find an
almost constant savings rate in our optimizing model, and the EXCEL version of DICE seems to be
a close fit to the fully optimizing GAMS version as well for the time span for which we have both
data series. The EXCEL solver is not able to solve for both investment and abatement over the
full trajectory. We have also modified the EXCEL DICE model to explicitly optimize investement
over the first century and then jointly chose an investment rate for the remaining time horizon. The
impact on optimal abatement was very minor and Figure F] shows the crosses corresponding to this
modified DICE optimization (“DICE io” for “investment optimized”).
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Figure 5 shows the calibration of the rate governing COs removal from the atmosphere. We calibrate
the initial rate /7,0 and the asymptotic rate das,oc. The first line in the legend displays the parameter
values chosen in our calibration. The other lines show the value of the parameter that was changed
with respect to our chosen calibration.
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Figure 6 shows the calibration of the rate governing CO5 removal from the atmosphere. We calibrate
the parameter ¢}, governing the speed of convergence from the initial to the asymptotic rate of CO,
removal.
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Figure 7 shows the calibration of the warming delay parameter of,.. and the parameter ooccan
connecting atmospheric and oceanic temperatures. The first line in the legend displays the parameter
values chosen in our calibration. The other lines show the value of the parameter that was changed

with respect to our chosen calibration.
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Table 1 Parameters of the model

Economic Parameters

n 2 intertemporal consumption smoothing preference

RRA 2 coefficient of relative Arrow-Pratt risk aversion

by 0.284% damage coefficient

by 2 damage exponent

Ou 1.5% pure rate of time preference per year

Ly 6514 in millions, population in 2005

Lo 8600 in millions, asymptotic population

g7, 3.5 rate of convergence to asymptotic population

Ky 137 in trillion 2005-USD, initial global capital stock

Ok 10% depreciation rate of capital per year

K 0.3 capital elasticity in production

Ag 0.0058 initial labor productivity; corresponds to total factor productivity
of 0.02722 used in DICE

gap 1.31% initial growth rate of labor productivity; corresponds to total factor
productivity of 0.9% used in DICE, per year

04 0.1% rate of decline of productivity growth rate per year

09 0.1342 CO, emissions per unit of output in 2005

9o,0 —0.73% initial rate of decarbonization per year

Oy 0.3% rate of decline of the rate of decarbonization per year

ao 1.17 cost of backstop in 2005

a 2 ratio of initial over final backstop cost

Qg 2.8 cost exponent

gv —0.5% rate of convergence from initial to final backstop cost

Climatic Parameters

Ty 0.76 in °C, temperature increase of preindustrial in 2005

Myreing 596 in GtC, preindustiral stock of CO2 in the atmosphere

M 808.9 in GtC, stock of atmospheric CO5 in 2005

On 0 1.4% initial rate of CO5 removal from the atmosphere per year

OM,00 0.4% asymptotic rate of CO, removal from the atmosphere per year

Oy 1% rate of convergence to asymptotic rate of atmospheric CO5 removal

By 1.1 in GtC, initial CO2 emissions from LUCF

OB 1.05% growth rate of CO2 emisison from LUCF per year

S 3.08 climate sensitivity (equilibrium temperature response to doubling
of atmospheric CO5 concentration w.r.t. preindustrial)

Nfore 3.8 forcing of COs-doubling

A nyore/s & 1.23  ratio of forcing to temperature increase under COq-doubling

EF, —0.06 external forcing in year 2000

EFip0 0.3 external forcing in year 2100 and beyond

O fore 3.2% warming delay, heat capacity atmosphere, annual

O ocean 0.7% parameter governing oceanic temperature feedback, annual

DICE and our model. Figure[IT] presents the results for the same scenarios that Figure
[B] compares based on their industrial CO5 emissions component. As to be expected,
all models perform significantly better in reproducing the temperature response of
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Figure 8 compares our simple min-quadratic approximation of the temperature difference between
the atmosphere and the oceans given in equation (7)) to the actual difference resulting from the
DICE-2007 model. The noticeable difference emerging two centuries into the future causes also the
slightly more pronounced difference between our and DICE’s atmospheric temperature observed after
the year 200 in the earlier calibration plots. Section [5.3] discusses a more sophisticated interpolation
using a Chebychev basis and a larger set of interpolation paths (see Figure

Table 2 Location of Collocation Nodes

Node Effective Capital (k) Carbon Stock (M) Transformed Time (7) Temperature (T)
1 0.53 575 0.006 0.07
2 0.75 762 0.054 0.59
3 1.18 1087 0.146 1.48
4 1.81 1463 0.273 2.52
) 2.62 1788 0.422 3.41
6 3.59 1975 0.578 3.93
7 4.69 0.727

8 5.87 0.854

9 7.12 0.946

10 8.38 0.994

11 9.63

12 10.81

13 11.91

14 12.88

15 13.69

16 14.32

17 14.75

18 14.97
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Figure 9 compares our more sophisticated interpolation of the atmosphere-ocean temperature dif-
ference and the rate of carbon removal (section [B.3]). The circles show the decadal values resulting
from the original DICE paths (data). The dashed black line shows the (average) time trend fitted
by a 30 node cubic spline. The solid lines recover the original data using the time trend and a linear,
period-dependent correction based on the atmospheric carbon content.

MAGICC. In the majority of cases, our simplified model performs slightly better than
the original DICE model despite our simplifications of the temperature dynamics.

Figure fills in the same comparison undertaken in Figures Bl and [l for the
remaining SRES and RCP scenarios. The SRES A1F is a more fossil fuel intensive
scenario and, like RCP 8.5 in the new scenarios, it is not a candidate for an optimal
policy as it significantly exceeds 4°C before the end of the century. RCP 3 is the other
extreme. Here COy emissions become negative already in the current century as a
consequences of major immediate reductions in combination with carbon capture.
Again, it is not a candidate for an optimal policy — without significantly altering
abatement cost and damage assumptions and introducing cheap carbon sequestra-
tion. The major divergence between our base case calibration and the MAGICC
temperature in the emissions based graph on the left hand side is a consequence of
the major reduction of non-fossil fuel based emission in MAGICC not accounted for
in the integrated assessment models: the graph on the right hand side takes the radia-
tive forcing of all emissions into account and delivers a temperature response closely
resembling that of MAGICC.
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Figure 10 shows robustness of the results to a decrease in the convergence tolerance.
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Figure 11 compares our simple calibration and those of the DICE 2007 and DICE 2013 to the
MAGICC model. The scenarios are the same as in Figure Bl but here we directly compare the
temperature response to the radiative forcing generated in the different scenarios by all greenhouse
gases.
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Figure 12 compares our simple calibration and those of the DICE 2007 and DICE 2013 to the
MAGICC model. We show the temperature response to the remaining emission scenarios used in
the 4" (SRES) and 5" (RCP) Assessment Reports of the IPCC. On the left we show the direct
emission response, on the right the temperature response of the implied radiative forcing by all
greenhouse gases.
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