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Contracting with Externalities
Abstract

The paper studies inefficiencies arising in contracting between one principal and N agents when the
utility of each agent depends on all agents' trades with the principal. When the principal commits
to a set of publicly observable bilateral contract offers, the arising inefficiency is due entirely to the
externalities imposed on non-signers. In contrast, when the principal's offers are privately
observed, the distortion 18 due to the externalities given agents' equilibrium trades. Comparison of
the two exteralities determines the relative efficiency of the two contracting regimes. In both
cases, we show that when N is large, each agent can be treated as non-pivotal, provided that
appropriate continuity assumptions are satisfied.

We also study the case in which the principal can condition each agent's trade on other agents'
messages. We characterize the set of such mechanisms in which each agent's participation is
voluntary. When the principal can commit to any such mechanism, she implements the first-best
outcome, while threatening each deviator with the harshest possible punishment. However, in the
presence of noise that goes to zero slower than N goes to infinity, in the limit we obtain a (generally
inefficient) outcome in which each agent feels non-pivotal.
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1 Introduction

In many economic situations, bilateral contracting imposes externalities on
third parties. Here are some examples of such externalities that have received
attention in the economic literature:

e A shareholder tendering his shares to a corporate raider has a positive
externality on other shareholders (Grossman-Hart [1980]).

o A creditor exchanging debt for equity in a distressed firm has a positive
externality on other creditors of the firm {Gertner-Scharfstein [1991]).

e A buyer of a VCR has a positive “network” externality on owners of
compatible VCRs (Katz-Shapiro [1986b}).

o A party which accepts its offer in multi-party bargaining has a positive
externality on other parties left at the bargaining table (Cai [1996a,b]).

o A merger of competing firms has a positive externality on other firms
in the same market (Mackay [1984]).

s A private contributor to a public good has a positive externality on
other consumers of the good (Bergstrom-Blume-Varian [1986]).

e A buyer signing an exclusive dealing contract which hinders competi-
tion imposes a negative externality on other buyers (Rasmusen-Ramseyer-
Wiley [1991]).

e A producer purchasing an intermediate input from a manufacturer
imposes a negative externality on competing producers (Hart-Tirole
[1990], Katz-Shapiro [1986a).

¢ A principal designing an incentive scheme in a common agency situation
imposes an externality on other principals dealing with the same agent
(Bernheim-Whinston [1986], Pauly [1974]).

In all these instances, contracting externalities have been shown to yield
inefficiencies. However, the connections among existing models, and the
general nature of arising inefficiencies, have not been well understood.




This paper develops and studies a general model of contracting with ex-
ternalities which unifies the examples listed above, and many more. In the
model, outlined in Section 2, one party (the principal) can make contract
offers to N other parties (agents). The utility of each agent depends on the
vector of all agents’ trades with the principal. In Section 3, I describe a
large number of existing models which can all be seen as applications of the
general model.

Section 4 focuses on the case in which the principal commits to a sef
of bilateral comtract offers. In this setting, inefficiency arises because of
the principal’s incentive to extract rents from the agents by reducing their
reservation utilities, i.e., the utilities they would obtain by refusing to sign.
Therefore, even though in equilibrium all agents may sign contracts with the
principal, distortions are due entirely to the externalities on non-signers.

In most applications, the most interesting question is how the principal’s
rent-extraction motive affects the total trade (the sum of all agents’ trades).
To obtain an unambiguous answer to this question, I impose three assump-
tions, which are satisfied in almost all applications. First, I restrict the
principal’s profit to depend only on the total trade, and restrict each agent’s
utility to depend only on his own trade and on the total trade. Second, 1
make an assumption that ensures that the total surplus depends only on the
total trade. Third, I make an assumption on the agents’ trade domains. I
show that under these assumptions, the total trade is socially insufficient or
excessive depending on whether the externalities on non-signers externalities
are positive or negative.

In Section 5, I study a contracting game in which the principal’s offers
are privately observed. Since the principal is now unable to commit to com-
pensate agents for the externalities imposed on them in equilibrium, it is
these externalities that determine the direction of distortion. In particular,
under the same assumptions as in the previous section, I find the total trade
is insufficient or excessive depending on whether the externalities on signers
in equilibrium are positive or negative.

Using the technigues of monotone comparative statics (Milgrom-Shannon
11994|, Edlin-Shannon [forth.]), I am able to establish these results in consid-
erable generality, thus generalizing and systematizing the results in the spe-
cific applications listed above. Under additional assumptions, I am also able
to compare (in Section 5) the outcomes under the two contracting regimes.
The comparison hinges on the relative sizes of the externalities on signers
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and those on non-signers.

In both Section 4 and Section 5, I also study an asymptotic setting in
which the number N of agents goes to infinity. Is it justified to assume
that each agent thinks of himself as non-pivotal (i.e. not affecting the total
trade by his decision) when N is large? While this assumption is sometimes
made to simplify analysis (see e.g. Katz-Shapiro [1986b], Gertner-Scharfstein
[1991]), it has generated much controversy in the context of takeovers (see
e.g. Grossman-Hart {1980], Bagnoli-Lipman [1988]). In the settings of both
public offers (Section 4) and private offers (Section 5), I show that under ap-
propriate continuity assumptions, the equilibrium correspondence is upper
hemi-continuous at N = co. That is, as N — oo, every converging sequence
of equilibrium outcomes converges to a non-pivotal outcome. Therefore, the
raider’s ability to make stockholders pivotal for any N is due to the as-
surned discontinuity of the takeover process. At the same time, continuity
assumptions do not guarantee that the equilibrium correspondence is lower
hemi-continuous at N = oo, i.e., some non-pivotal equilibria may not be
approximated by equilibria with a large finite V.

In Section 6, I allow the principal to commit to a mechanism which makes
her trade with every agent contingent on all agents’ messages. I show that if
the principal is restricted to choose from a family of such mechanisms in which
agents’ participation constraints bind, distortions will again arise due to the
principal’s rent-extraction incentive, and thus will be entirely determined
by the externality on non-signers. At the same time, the principal’s fully
optimal mechanism involves offering the agents a first best trade profile,
while threatening any deviator with the worst possible punishment. In this
way, the principal maximizes total surplus and minimizes agents’ reservation
utilities at the same time. However, this solution requires making each agent
pivotal, which seems unrealistic when the number of agents is large and not
precisely known by the principal. To formalize this intuition, I consider a
setting in which each acceptance message has a probability e of being lost
in the mail. I show that when N — oo and ey — 0 in such a way that
Neny — o0, asymptotically a non-pivotal outcome obtains.




2 The Model

Consider a model in which one party, “the principal,” can contract with N
other parties, “the agents” (the parties will have various interpretations in
examples below).! The principal’s “trade” with each agent 7 is denoted by
z; € X%;, where X; is a compact subset of the set R, of non-negative real
numbers, with § € X;. We assume that all parties’ utilities are quasilinear
in money, and let £; € R denote the monetary transfer from agent ¢ to the
principal. The default (“no trade”) point for each agent i is ¢; = z; = 0. Let
the vector z = (z1,...2n5) € X; X ... X Xy denote the agents’ trade profile.

Externalities among agents arise because each agent’s utility depends not
only on his own trade z;, but also on other agents’ trades. Specifically, the
parties’ payoffs are

Agent i’s payoff = w(z)—1t;,fori=1,...N, (1)
The principal’s payof = f(z)+ Zti' (2)

In some examples described in the next section, the principal will be
“selling” z; to agent i, in which case both u;(z) and (—f(z)) (the principal’s
cost of producing z) are increasing in z;, and we can expect the price ¢; paid
by agent i to be positive. In other examples, the principal will be “buying” z;
from agent 7, in which case both (—wu;(z)) and f(z) (the principal’s net benefit
of 2} are increasing in z;, and we can expect f; to be negative. This distinction
between buying and selling will prove immaterial for our results. What will
prove important is whether agents’ utilities are increasing or decreasing in
other agents’ trades, i.e., whether externalities are positive or negative.

For future reference, let M C %; x ... x Xy denote the set of trade
profiles that maximize the total surplus of the N + 1 parties:

IM* = argmax  f(z) + Zuz(:c) (3)

c€EX1X.. XX

It should be noted that this definition does not take into account the welfare
of parties who do not participate in contracting but may be affected by its

1Lacking better unifying terminology, we use these terms to reflect this paper’s focus on
games in which the “principal” makes contract offers to “agents”. No “agency relationship”
1s impilied.




outcome. These include, for example, final consumers in vertical contracting
applications (Hart-Tirole [1990], Katz-Shapiro [1986a]), the firm’s employees
in takeovers (Grossman-Hart [1990]) and debt workouts (Gertner-Scharfstein
[1991]), ete. In each specific application, the contracting outcome should be
examined from the viewpoint of aggregate social welfare. However, in this
paper it will be convenient to use the surplus-maximizing outcomes as a
benchmark against which contracting outcomes are compared. Thus, the
word “inefficiency” will denote the contracting parties’ failure to maximize
their joint surplus.

Some of our results will require additional assumptions on the parties’
payoffs and trade domains. Here we state all the assumptions that will later
prove useful. In the next section, we will point out which of them hold in
specific applications.

Condition A: u;(x) = Uj(z;, X) for all 7, and f(z) = F(X), where X =
Zj Zj.

In words, each agent’s utility depends only on his own trade and on the
sum of all agents’ trades, and the principal’s utility only depends on the sum
of all agents’ trades.

Condition L: Condition A is satisfied, and U;(z;, X} = z;a(X) + 5;(X) for
all 7. '

In addition to Condition A, this assumption requires that each agent i’s
utility be linear in z;, and the coefficient with z; be the same for all agents.
The usefulness of this condition will stem from the fact that it ensures that
the total surplus can be written as a function of the total trade X only:

W(X) = F(X) + Xa(X) + Z Bi(X).

Condition D: Either X; = [0,%;] or X; = {kz: k= 0,1,..k;} for all 4, for
some z > 0.

This assumption says that all trades are measured in the same increments,
which could be either infinitesimal or finite.2

2Given that the sets X; are compact, an alternative way to state this condition is that
there exists z (interpreted as a unit of trade) such that sup{y € ¥;: y <z} =z — z for all
i and all x € X;\{0}.




Condition S: X; = {0,1} for all 7. Furthermore, for any trade profile
z € {0,1}" and any permutation 7 of {1,..., N}, letting z, denote
the permuted trade profile (1), ..., Znw)), we have f(x:) = f(z),
and u;(2x) = Ur()(z) for all 4.

The second part of this assumption states that all agents are identical, in
the sense that their payoffs are symmetric with respect to permutations of
agents. Observe that Condition S implies all the other Conditions. Indeed,
given the imposed symmetry among agents, the principal’s profit f(z) will be
completely determined by the total number X = 3 ;T; of agents who have
z; = 1. Similarly, by considering all the permutations = that hold i fixed,
we can see that agent 4’s utility can be written as U;(z;, X). Therefore,
Condition S implies Condition A. The symmetry imposed by Condition S
also implies that the function Us(-,-} is the same for all agents . Condition
L then also holds, since the fact that z; € {0,1} implies the linearity of
U(z;, X) in z;. Condition D also trivially follows from Condition S.

3 Applications

Application 1: Vertical Contracting (Hart-Tirole [1990], O’Brien-Schaffer [1992],
McAfee-Schwartz [1994], Rey-Tirole [1996}). The principal is a supplier of an
intermediate good to N agents (downstream firms), who produce substitute
goods. z; > 0 is firm ¢’s purchase of the intermediate good, and ¢; is its
payment to the supplier. Due to the ensuing downstream competition, each
firm 4’s utility, w;(@;, z_;), is decreasing in other firms’ purchases z_,. The
literature assumes that a downstream firm cannot produce without using the
principal’s input, and therefore 4;(0,z_;) = 0.

Hart-Tirole [1990] and Rey-Tirole [1996] study a specific model of down-
streamn competition which further restricts the firms’ payoffs. Namely, they
assume that the downstream firms produce a homogeneous final good, us-
ing a technology that transforms a unit of the intermediate good into a
unit of the final good at a cost ¢. After purchasing their inputs, the firms
play a standard Bertrand-Edgeworth game of dowmstream price competi-
tion with capacity constraints. Assuming that the firms utilize all pur-
chased inputs in equilibrium,® and letting P(X) denote the inverse demand

3See Tirole [1988, ch. 5] for more detail.




function for the final good, the parties’ payoffs satisfy Condition A with
Ui(zi, X) = [P(X) ~ c]z;. Observe that this model also satisfies Conditions
L and D.

Application 2: Vertical Contracting with an Inferior Substitute. (Katz-Shapiro
[1986a], Kamien et al. [1992]). As in the previous example, N downstream
firms (agents) use the input supplied by the principal to produce the final
good, but now each downstream firm also has access to an inferior technology
which does not use the principal’s input. Therefore, unlike in the previous
application, u;(0,z_;) can now be positive and can depend on z_; (the im-
portance of this difference will be shown in Section 4). As in the previous
application, due to the downstream competition, u;(x;, z_;) is decreasing in
.’.?3_1'.4

The two referenced papers assume that the intermediate good is a fixed
input: z; € {0,1} (specifically, they interpret the “input” as a licence to
use the principal’s patent). They also assume that the downstream firms are
identical. These assumptions imply Condition S, and therefore all the other
Conditions.

Application 3: Exclusive Dealing (Rasmusen-Ramseyer-Wiley [1991], Segal-
Whinston [forth.]). The principal is an incumbent monopolist who offers
exclusive dealing contracts to N identical buyers (agents). The contract
obliges the buyer not to purchase from a rival seller. Let z; = {0,1} indicate
whether buyer ¢ signs such a contract, and (—¢;) be the compensation paid
to the buyer by the incumbent. After observing the number X of signers, a
potential entrant decides whether to enter. Due to the entrant’s economies
of scale, the probability of entry p(X) is a non-increasing function of X. In
the case of no entry, in the second stage the incumbent makes the monopoly
profit 7™ on each buyer by charging him the monopoly price ™. In the case
of entry, the entrant and incumbent compete for the “open” buyers (those
who have not signed in the first stage), and the incumbent, whose marginal
cost is higher than the entrant’s, makes no profit on these buyers. The in-
cumbent can still charge p™ to the buyers who have signed exclusives, and
earn 7" on each of them.

Since the buyers are assumed to be identical, the model satisfies Condition
S, and consequently all the other Conditions. Specifically, the incumbent’s

4Kamien et al. derive this from explicit models of Cournot and Bertrand type models
of downstream competition.
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net profit can be written as
F(X) = [p(X}N + (1 - p(X))X] 7™

Normalizing each buyer’s surplus under price p™ to zero, and letting A
denote his surplus under the competitive price, his utility can be written as

Ui(iﬂi,X) == (1 - IL‘Z),O(X)A

Since U;(z;, X) is non-increasing in X, by signing an exclusive contract, each
buyer imposes a negative externality on other buyers.

Application 4: Selling a Nuclear Weapon (Jehiel-Moldovanu [1996,1997],
Jehiel at al. [1996]) The principal has only one unit of an indivisible good
(a nuclear weapon). Let z; € {0,1} indicate whether agent 7 obtains this
weapon, and t; be the agent’s payment to the principal. We can model the
principal’s inability to sell more than one weapon by assuming that f(z) =
—C whenever )~ z; > 2, with C very large. Letting c; denote the utility of
agent 1if agent j gets the weapon, we can write u;(z) = 3_; ayz;. Observe
that this model in general does not satisfy Condition A, since agent i’s utility
may depend on which of the other agents obtains the weapon. Therefore,
out of the Conditions described in Section 2, only Condition D is satisfied.

Application 5: Common Insurance. (Pauly {1974]) The principal is a risk-
averse individual who contracts with NV risk-neutral insurance firms (agents).
There are two possible outcomes, y € {0,1}. The individual suffers a mone-
tary loss @ > 0 when y = 1 (the “accident” state), and suffers no loss when
y = 0 (the “no accident” state). The individual’s insurance contract with
each firm ¢ specifies a premium (—t;) and a payment z; > 0 the individual
receives when y = 1.

Externalities among insurance firms are due to the individual’s moral
hazard. For example, suppose that the individual can choose the probability
p of accident, at a private cost ¢(p). If the individual’s risk preferences
satisfy Constant Absolute Risk Aversion, then her certainty equivalent can
be written as

; 1 —r{X—a
v(p, X) = e(p) + Y ti, with v(p, X) = ——log [1 — p+ pe™"*~],
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where X = 3, x;, and r > 0 is the individual’s coefficient of absolute risk
aversion. Then the parties’ expected payoffs satisfy Condition A, with

F(X) = v(p"(X)) — c(p™(X)),
Uﬁ(a:hX) = —p*(X)mi:

where p*(X) is the individual’s optimal choice of p. It is easy to see that
p*(X) is non-decreasing in X.5 Therefore, by increasing the individual’s
insurance and thereby raising the probability of accident, each company im-
poses a negative externality on other companies. Observe that the model
satisfies Conditions L and D.?

Application 6: Common Agency. (Bernheim-Whinston [1986]) Consider
the model of the previous application, with two modifications. First, the
individual herself suffers no monetary loss from either outcome, i.e., a = 0.
Second, each firm ¢ now receives a benefit b; when y = 1 (and the benefit
from y = 0 is normalized to zero). As in the previous application, the
individual’s contract with each firm ¢ specifies a lump-sum payment ¢; to the
individual and a “bonus” payment z; for the “good” outcome y = 1. Unlike
in the previous application, however, the motivation for contracting is not to
insure the individual, but to make her choose an action which increases the
probability of an outcome that is desirable for the firms.

The parties’ expected utilities satisfy Condition A, with

F(X) = »(p"(X)) - e(p*(X)),
U(z, X) = p"(X)[b:i — =]

Assume that b; > 0 for all 7, and restricting attention to contracts with
z; € {0,b;)] (higher bonuses are not likely to arise in equilibrium). Then
by increasing the total bonus and thereby raising the probability of y = 1,
each firm has a positive externality on other firms. Observe that the model
satisfies Conditions L and D.”

By observing that the individual’s utility is supermodular in {p, X), and applying
Topkis’ Monotonicity Theorem (see e.g. Milgrom and Shannon [1994]).

SIn the model of Pauly, the individual’s risk preferences need not satisfy CARA, and
therefore her behavior may exhibit wealth effects (in particular, her optimal choice of o
may depend on ), t;}. To simplify analysis, we abstract from wealth effects in this paper.

"The model of Bernheim-Whinston is substantially more general than our simple model
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Application 7: Takeovers. (Grossman-Hart [1980], Bagnoli-Lipman [1988],
Holmstrom-Nalebuff [1992]). The principal is a corporate raider, who makes
a tender offer to N shareholders (agents). Let z; denotes the number of
shares tendered by shareholder 7, and (—¢;) denote the raider’s payment to
this shareholder. Let v(X) denote the expected value of the firm’s shares
as a function of X, the total number of shares tendered. Finally, let ¢(X)
denote the raider’s “transaction cost” of acquiring X shares (it could also be
negative, reflecting the raider’s private benefit from controlling X shares).
Then the parties’ payoffs satisfy Condition A, with

F(X) = Xo(X)—e(X),
Uz-(:ri,X) = (Ei—$i)’U(X),

where T; is shareholder i’s endowment of shares. It is usually assumed that
the raider is more efficient than the incumbent management, and therefore
v(X) is non-decreasing in X. In this case, a shareholder who tenders his
shares has a positive externality on other shareholders.® The model satisfies
Condition L, and it satisfies Condition D provided that either shares are
infinitely divisible or all indivisible shares have the same value.

Application 8: Debt Workouts. (Gertner-Scharfstein [1991]) The princi-
pal is a collective of shareholders of a financially distressed firm, and the
agents are the firm’s creditors (of equal seniority). The shareholders offer
the creditors a debt-equity swap. Let Z; denote the face value of debt ini-
tially held by creditor ¢, and suppose that the swap results in the creditor
forgiving an amount z; € [0,Z;] of debt in exchange for an equity stake s;
in the firm. Let F(X) denote the expected value of the firm’s equity, and
d(X) denote the expected value of a $1 face value of debt, as functions of the

in several important respects. First, the individual’s risk preferences may exhibit wealth
effects (see the previous footnote). Second, they allow for more than two possible out-
comes, which requires considering contracts of more than two dimensions. (For example,
Holmstrom-Milgrom [1988] and Dixit [1995] study common agency models with a separate
dimension of agent’s performance for each principal.} Third, the firms’ preferences over
the two outcomes may diverge, e.g., we may have b; < 0 for some firms, in which case
contracting may have negative, as well as positive, externalities.

81t is also possible that an increase in X could reduce the firm’s public value v(X). For
example, the raider could use her control over the firm to divert some of its value to her
private benefit. In that case, which is considered, e.g., by Bagnoli-Lipman, a tendering
shareholder imposes a negative externality on other shareholders.
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total amount X = 3 z; of debt tendered. The principal’s payoff can then
be written as (1 — 3. s;) F(X), and each agent i’s payoff can be written as
(Z; — 2;) d(X) + s, F(X). If the offers are made publicly, then each agent 3
will be able to calculate the monetary value t; = 5;F(X) of the shares he is
offered. In this notation, the parties’ payoffs can be written in the standard
form. Observe that the model satisfies Conditions A, L, and D.

We can expect d(X) to be increasing in X, for two reasons: (i) when the
firm’s debt is lower, it will repay a greater portion of it in any state of the
world, and (ii) when the firm’s debt is lower, the firm is less likely to engage
in extracting surplus from creditors, e.g. by undertaking risky investments,
or triggering inefficient bankruptcy. Thus, a creditor who accepts his offer
has a positive externality on other creditors.® 1

Application 9: Merger for Monopoly. (Mackay [1984]). The principal makes
acquisition offers to N competing firms (agents). Let z; € {0,1} indicate
whether firm i accepts the offer, and let {(—%;) be the principal’s payment to
this firm. If the firms are identical, then the model satisfies Condition S, and
therefore all the other Conditions. Since a firrn that sells out does not make
any profit in the market, we have U;(1, X) = 0.

Since the market’s concentration is increasing in X, it is natural to expect
the profit U;(0,X) of a firm which did not sell out to be increasing in X.
Therefore, a firm which sells out has a positive externality on other firms.

Application 10: Network Externalities. (Katz-Shapiro [1986b]) The prin-
cipal is a seller of a good for which each agent (buyer) has a unit demand.
z; € {0,1} is buyer ¢’s purchase of the good, and #; is his payment to the
seller. Since all buyers are assumed to be identical, Condition $ is satisfied,
and therefore all the other Conditions. Because of 2 “network externality”,
each buyer’s valuation of the good is an increasing function a(X) of the total
number X of units sold,’ thus we have U;(z;, X) = z;0(X). A buyer who

Gertner-Scharfstein also consider exchanges of debt for cash or senior debt. These
exchanges cannot be captured by our simple model, since both of the goods exchanged
involve externalities on other creditors. For example, a creditor has a positive externality
on other creditors by forgiving his debt, but he imposes a negative externality on them by
accepting senior debt in exchange. Gertner-Scharfstein find that the net external effect of
such exchanges may be negative.

0K arni-Levin [1994] assume a similar “network externality” for restaurant dinners: a
diner’s valuation for a restaurant meal is assumed to be increasing in the total number of
diners at that restaurant.
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buys the good therefore has a positive externality on other buyers owning
this good.

Application 11: Bargaining Externalities. (Cai {1996a,b]) Consider a two-
period bargaining game in which the principal needs the agreement of all N
agents to realize a surplus S > 0. All players have the same discount factor
6 € (0,1). In the first period, the principal makes an offer to each agent 4. Let
z; € {0,1} indicate whether agent ¢ accepts his offer, and (—%;) > 0 denote
the principal’s payment to the agent. If some agents reject their offers, in
the second period all such agents cooperatively split the surplus S with the
principal. Specifically, suppose that the principal receives a share p € (0,1)
of the surplus, and the rest is equally shared by the agents who have not
signed in the first period.

Since all agents are identical, the model satisfies Condition S, and there-
fore all the other Conditions. Specifically, the parties’ payoffs can be written
as

S if X=N,

0 1f$z="—-1,
F(X)”{éps if X <N,

x2S if z;=0.

and U(z;, X) = {

Since U(0, X)) is increasing in X, this stylized model captures the intuition
of Cai that by accepting an offer in the first period, an agent has a positive
externality on the agents remaining at the bargaining table.l!

Application 12: Pure Public Goods. (Bergstrom-Blume-Varian [1986]) The
principal is a provider of a public good, who can contract with N consumers
of the good (agents). Let z; > 0 be the amount of the public good “con-
tributed by agent i”, and let ¢; be agent i’s payment to the provider. Then the
parties’ utilities satisfy Condition A, with U;(z;, X) = v;(X) being consumer
1’s benefit from X units of the public good. We assume that v;{X) is non-
decreasing in X, i.e., each consumer’s contribution to the public good has
a positive externality on other consumers. Observe that the model satisfies
Conditions L and D.

Application 13: Pure Public Bads. (Neeman [1997]) The model is the same
as in the previous application, except that now U;(z;, X) = v;(X) is non-

M Caj analyzes an infinite-horizon bargaining game in which agents are approached by
the principal sequentially, and inefficient delay occurs in some (but not all} equilibria. It
will follow from the analysis of the next section that the unique equilibrium of my model
involves inefficient delay when & is close enough to 1.
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increasing in X. Neeman offers several examples of such public bads. One
example is vote trading: a party (the principal) may be able to implement
a policy which hurts voters, by buying up their votes.'? Another example is
“yellow dog” employment contracts, which require workers not to join labor
unions. The assumption here is that workers’ wages are increasing in the
union’s bargaining strength, which is in turn increasing in the number of
union workers. In both cases, individual agents care only about the total

trade X, and not about their individual trades z; per se. The model satisfies
Conditions L and D.!8

All the applications, and the Conditions they satisfy, are listed in Table
1. Observe that all of the above applications satisfy Conditions A, L, and D,
with the exception of Application 1 (Vertical Contracting) in the case when
the final goods are differentiated, and Application 4 (Nuclear Weapons).
(Many of the applications actually satisfy the stronger Condition S.) Ob-
serve, however, that even with these conditions imposed, our model cannot
be reduced to the pure public good/bad settings described in the last two
applications. Indeed, in our general model, contracting has both a public
and a private component. Agent ¢'s benefit from the public component X
in general depends on his private trade z;, and, conversely, his willingness to
pay for z; in general depends on X.

4 Bilateral Contracting with Public Offers

In this section, we analyze the following two-stage game: In the first stage,
the principal commits to a set {(mz-,tz-)}fil of publicly observable bilateral
contract offers to all agents. In the second stage, all agents simultaneously
decide whether to accept or reject their respective offers. We analyze the
principal’s preferred Subgame-Perfect Nash Equilibrium (SPNE) of the game.

2In particular, this situation would arise in Takeovers {(Application 7) in the absence
of a “one share-one vote” rule, i.e., if shareholders could sell their voting rights to an
inefficient raider while keeping their profit shares.

'*Neeman also claims, erroneously, that Exclusive Dealing (as described in Application
3) offers another example of a pure public bad. The claim is incorrect, since each buyer
’s valuation for competition (and therefore for X) depends on whether he has signed
an exclusive (i.e., ;). Specifically, competition does not benefit buyers who have signed
exclusives, since they are charged the monopoly price in any case.
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(In Appendix B, we study conditions under which the game may have other
SPNE, and analyze the properties of such equilibria.)

4.1 Inefficiency Results

Since the principal can always offer (z;,%;) = (0,0), without loss of generality
we can restrict attention to equilibria in which every agent accepts his offer.
It will be a second stage Nash equilibrium for all agents to accept if and only
if the following participation constraint is satisfied for every agent i:

It is clear that in the principal’s preferred SPNE all agents’ participation
constraints must bind (otherwise, the principal could increase her profit by
raising £; for some agent i, while still keeping all participation constraints
satisfied). Substituting the resulting transfers in the principal’s objective
function, we can write her problem as

max _ f(z)+ Zuz(x) — Z 1:(0, z_;). (5)

TEXIX..XEpN

Let MM C X1 x ... x Xy denote the set of solutions to this program.

The principal’s objective function differs from that of the first-best pro-
gram (3} by its last terrn. This term is the sum of the agenis’ reservation
utilities, i.e., utilities they would obtain by rejecting their offer, provided that
everyone else accepts. If each agent’s reservation utility does not depend on
other agents’ trades (in which case we will say that there is no externality
on signers), then the profit-maximization program (5) is equivalent to the
first-best program (3), and we obtain

Proposition 1 If u;(0,z_;) does not depend on z_; € X_; for all i, then
o = I~

Intuitively, when externalities on non-signers are absent, and the prin-
cipal can commit to compensate the agents who contract with her for the
externalities imposed on them, externalities do not result in distortions. Ex-
ternalities on non-signers are absent in Applications 1 (Vertical Contract-
ing), 5 (Common Insurance), and 10 (Network Externalities), and the prin-
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cipal’s commitment to a set of public offers yields first-best outcomes in these
applications.*

On the other hand, when contracting affects the agents’ reservation util-
ities, inefficiency arises because of the principal’s incentive to reduce the
agents’ rents. Intuitively, this implies that the contracting outcome z will be
distorted to reduce the sum of agents’ reservation utilities, 7(z) = 3, u;(0,z_;).
To formalize this intuition, we use the monotone comparative statics tech-
niques described by Milgrom-Shannon [1994], which utilize the concept of
the strong set order:

Definition 1 For two sets A, B, we say that A < B in the strong set order
if whenever a € A, b€ B, and a > b, we must also have a € B and b € A.

In this paper we will only be concerned with cases in which A and B are
subsets of R, in which case A < B in the strong set order if and only if A\B
lies below A M B, which in turn lies below B\A. Armed with this concept,
we can formulate the following result:

Proposition 2 (M) < r(IN*) in the strong set order.

Proof. Using the “aggregation method” of Milgrom-Shannon [1994], define

w(?)zmax{f(:c)-!—Zu.;(:c) TeX X, X%N,r(m)=F}.

- the maximum value of total surplus which is consistent with a given sum 7
of agents’ reservation utilities. Consider the following parametrized program:

max w(T) — 2T,
r

where z = () corresponds to surplus-maxirmization (program (3)) and z = 1 to
profit-maximization (program (5)), and let r*(z) denote the set of solutions

14In the context of Application 11 (Pure Public Good), if the public good were exclud-
able, there would also be no externality on non-signers. In the context of Application 5
(Common Agency), Bernheim-Whinston assume that a firm that does not sign & contract
is not affected by the individual’s actions, in which case there would also be no externality
On non-signers.
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to this program. Since the objective function is supermodular in (7, z), by
Topkis’ Monotonicity Theorem, r{(I*) = r*(0) > r*(1) = r(90N). &

The next question of interest is how the principal’s rent extraction moti-
vation affects the contracting outcome z. Since the distortion is caused by
the externalities imposed on non-signers, intuition suggests that the answer
will hinge on whether these externalities are positive or negative:

Definition 2 We have positive [negative] externalities on non-signers if u;(0,z_;)
is non-decreasing [non-increasing/ in z_; € X_; for all 4.

Thus, Applications 2 (Vertical Contracting with an Inferior Substitute),
3 (Exclusive Dealing), and 13 (Pure Public Bads) described in Section 3
exhibit negative externalities on non-signers, while Applications 6 (Common
Agency), 7 (Takeovers), 8 {Debt Workouts), 9 (Merger for Monopoly), 11
(Bargaining), and 12 {(Pure Public Goods) exhibit positive externalities on
non-signers. In Application 4 (Nuclear Weapon), externalities could be either
positive or negative. These facts are summarized in Table 1.

Intuition suggests that with positive externalities on non-signers we will
have too little frade from the social viewpoint, and with negative externalities
we will have too much. Unfortunately, this intuition is not correct in general.
For example, with positive externalities, the principal has an incentive to
distort each agent 4’s trade z; downward given z_;, the vector of other agents’
trades. But since we can also expect z_; to be different from its first-best
value, we cannot conclude that the principal’s choice of z; will be lower than
its first-best level.

In almost all applications of the model, Condition A is satisfied (see Table
1), and the main question of interest is whether the total trade X at the
principal’s profit-maximizing outcome is socially too high or too low. It
turns out, however, that Condition A alone does not guarantee a definitive
answer to this question. Here is an example which satisfies Condition A
and exhibits positive externalities on non-signers, but in which the principal
distorts the total trade X upward:

Example 1 Let N = 2, X = X3 = R, suppose that Condition A holds, and

let Uy (1, X) = 21 [1 = XX, ug(zs, X) = 3X, and F(X) = { {i;‘:}%‘;’; ﬁhfnl,X o1
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Consider first the first-best program (3), which can now be written as

max  F(X)+z; [1 - X" +4X.
1,220
T1tre=X

First, observe that given the shape of F(-), we can restrict attention to X < 1.
Second, observe that it is optimal to allocate any given X < 1 between the
agents by setting 1 = X, zo = 0. Therefore, the optimal X will solve
maxxep W(X) = X[1— X1 + 4X. Since W/(1) = ~10+4 < 0, any
solution X* of this program must safisfy X* < 1.

As for the profit-mazimization program (5), it is now written as

max F(X)+z [1— X" 4+4X—7y—3z; = F(X)+2; [1 - X022, +3X.
1,222 .
z1+za=X

Again, given the shape of F(X), we can restrict attention to X < 1. Observe
that now the optimal way to allocate any X between the agents is by setting
z1 =0, z2 = X. Then the program can be written as maxXxep,y 3X, and ifs
solution is X = 1. Therefore, the profit-mazimizing total trade exceeds the
first-best total trade, despite the fact that we have positive externalities on
nON-Signers.

The key feature of the example is that the socially optimal allocation
of a total trade X < 1 between agents involves trading with agent 1 only,
while the principal’s profit-maximizing allocation involves trading with agent
2 only. Intuitively, the interaction between the principal’s choice of X and
her choice of allocation of a given X among the agents prevents us from
making a definitive comparison with the first-best.

In order to eliminate this interaction, we assume Conditions L and D,
which are satisfied in all economic applications which satisfy Condition A
(see Table 1). Observe that under Condition L we have positive [nega-
tive] externalities on non-signers if and only if all functions 3;(-) are non-
decreasing [non-increasing]. Condition L ensures that the allocation of a
given X among agents is irrelevant in the first-best problem, and the set
M* = {3, z; : z € 9"} of surplus-maximizing total trades can be defined as

M* =argmax W(X) =arg max F(X) + Xa(X) + Zﬁz(X) (6)
Xey % Xey, % P
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(where > . %, = {3,z @, € X, foralli € N}).
As for the principal’s profit-maximization program (5), under Condition
L it becomes

IS SRS S SRS 0 RS 0 el

i i

Using the “aggregation method” of Milgrom-Shannon [1994], define

R(X) = xexlﬂgl_lxh{z&(z:cj) : Z-Tj = X}

g i J

- the minimum sum of agents’ reservation utilities which is consistent with
the total trade X.'® Then, letting M = {3, z; : x € 9} denote the set
of the principal’s profit-maximizing total trades, the above program implies
that

M =argmax F(X) + Xa(X) + > _ 8i(X) — R(X). (7)

Xey, x;

In order to compare M and M™, we first establish the following lemma:

Lemma 1 If Condition D holds and all functions B;(-) are non~decreasing

[non-increasing], then R(X) is non-decreasing [non-increasing] over those
values of X for which it is defined.

Proof. First, let all §; (-) be non-decreasing. Take any X', X € } . X;, with
X' < X. Suppose that R(X) = 32, 8i(3 ;. 2;), with >, 2; = X. Under

condition D, there exist feasible z}; < z; suéh that >, z; = X'. This implies
that R(X") <3, Bi(3 ;. ;) < R(X) whenever R(X') is defined.

Now, let all 5; () be instead non-increasing. Take any X', X € > . X,
with X' > X. Suppose that R(X) = 37, 8D .. 3;), with > 2 = X.
Under condition D, there exist feasible ) > z; such that >, 2} = X’. This

implies that R(X") < 3, Bi(3_;4 2;) < R(X) whenever R(X") is defined. B

The Lemma implies

15The minimum may not exist when the functions 3;(-) are not continuous. When the
minimum does not exist for a certain total trade X, we will say that B(X) is not defined.
Note that such total trade cannot arise at a profit-maximizing outcome.
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Proposition 3 If Conditions L,D hold, then with positive [negative] exter-
nalities on non-signers, M < M* [M > M*] in the strong set order.

Proof. Consider the parametrized program

max F(X)+ Xa(X +Z:[3z ) — zR(X),

Xey %

where z = 0 corresponds to the first-best program (6), and z = 1 corresponds
to the profit-maximization program (7). Using Lemma 1, we see that with
positive [negative] externalities on non-signers, the objective function is su-
permodular in (—X,2) fin (X, z)]. Topkis’ Monotonicity Theorem implies
the result. B

This Proposition neatly summarizes many existing contracting inefficiency
results. For instances of positive externalities on non-signers, the Proposi-
tion predicts that an individual’s effort in a common agency situation may
be lower than its second-best level (Application 6), that takeovers and debt-
equity swaps are less likely to occur than is socially optimal {Applications
7,8), that merger for monopoly may not occur even though it maximizes pro-
ducers’ profits (Application 9), that multiparty bargaining may exhibit inef-
ficient delays {Application 11), and that a pure public good may be privately
underprovided (Application 12). For instances of negative externalities on
non-signers, the Proposition predicts that socially inefficient exclusion may
occur (Application 3}, that an intermediate good manufacturer may sell more
than the vertical profit-maximizing quantity when an inferior substitute is
available (Application 2), and that a pure public bad may be overprovided
(Application 13).*° When externalities on non-signers are absent (Applica-
tions 1,5,10), they can be thought of as both “positive” and “negative” at the
same time. In this case, the proposition implies that the set of contracting
outcomes coincides with the set of first-best outcomes.

As one application, this result demonstrates the fundamental difference
between excludable and non-excludable public goods (in the context of Appli-
cation 12). The possibility of exclusion eliminates the positive externality on

16While suggestive of distortions, all of our comparisons in this section are weak, e,
they do not rule out the possibility that contracting outcomes are socially efficient,. Nu-
merous examples of strict inefficiency can be found in the papers referenced in Section
4. In subsection 4.3, we will provide sufficient conditions for contracting ouicomes to be
inefficient when N is large enough.
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non-contributors and results in efficient provision (despite the remaining ex-
ternality on contributors), while without exclusion the positive externality on
non-contributors results in underprovision. To my knowledge, this is the first
formal demonstration of the role of excludability for the efficient provision of
a public good in a symmetric-information setting (in a private-information
setting, a similar point has been made by Maskin [1994]).%7

Our analysis assumes that all agents accept in the second stage whenever
it is a Nash equilibrium for them to do so. It turns out, however, that
even when “all accept” is a Nash equilibrium, there may exist other Nash
equilibria in which some or all agents reject their offers, and that these Nash
equilibria may sometimes be preferred by all agents. In Appendix B, we
study conditions under which this happens, and characterize the contracting
outcome when the agents always coordinate on a coalition-proof equilibrium.
We find that with some additional assumptions, the results of this section
are preserved.

4.2 Effect of Contracting on Agents’ Utilities

In the absence of externalities, the agents, who have no bargaining power,
would receive no contracting surplus. With externalities, we have the follow-
ing result:

Proposition 4 With positive [negative] externalities on non-signers, a ban
on centracting weakly reduces [raises] each agent’s utility.

Proof. Since in equilibrium each agent i’s participation constraint binds,
his utility equals u;{0,z_;), which, with positive [negative] externalities, is
weakly smaller [greater] than (0, 0), his utility if contracting were banned. B

The case of negative externalities is particularly interesting: in equilib-
rium, each agent would be better off if all of them rejected their offers, yet
all of them accept. A ban on contracting would raise all agents’ utilities, and
may even raise the total surplus.!®

'7A caveat: when the public good’s provider cannot commit to a set of contract offers,
inefficiency would arise due to the externality on signers, as will be shown in Section 5.

8Neeman [1997] independently argues, in the context of Pure Public Bad {Application
13) which exhibits negative externalities, that a restriction on the freedom of contract may
be beneficial.
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4.3 Asymptotics

When the number N of agents is very large and Condition A holds, it
seems natural to expect that each individual agent will take the total trade
X as given in making his decision, i.e., he will think of himself as non-
pivotal. Many papers have indeed made this assumption, including Gertner-
Scharfstein [1991] in the context of Debt Workouts (Application 8), Katz-
Shapiro [1986b] in the context of Network Externalities (Application 10),
and Grossman-Hart [1980] in the context of Takeovers (Application 7). In
the last context, however, the assumption has been subject to much contro-
versy, which we outline here.

Most of the literature on takeovers focuses on the case in which the value

of the firm as a function of the proportion X of equity tendered is given by

v(X) = v Wlf?n Xz 9'5’ If the raider takes over (i.e., X > 0.5), using
v < T otherwise.

(7), her profit can be written as

Av- Z T; — (X)),

ieN: X—g;<0.5

where Av = T—y is the firm’s value increase due to the takeover, and ¢ (X) is
the raider’s “transaction cost”. This expression demonstrates that the raider
appropriates only the appreciation in the holdings of those shareholders who
are piwotal for the takeover. Therefore, whenever some shareholders are not
pivotal, the raider receives less than 100% of the firm’s value improvement,
and in the presence of positive takeover costs she will not implement some
socially efficient takeovers. Moreover, Grossman-Hart [1980] argue that when
the number N of shareholders is large, each of them will think of himself as
non-pivotal. Therefore, the raider will not be able to appropriate any of the
firm’s value improvement, and will not bid in the presence of any positive
bidding cost.

In response to Grossman-Hart, Bagnoli-Lipman [1988] and Holmstrom-
Nalebuff [1992] pointed out that for any finite IV, the raider can make each
tendering shareholder pivotal by setting X = 0.5. This allows the raider
to capture a significant fraction of the firm’s value improvement Av. For
example, consider the case in which each shareholder i holds one indivisible
share: X; = {0,1/N}, and assume for simplicity that N is even. In this
case, X = 0.5 corresponds to having exactly N/2 shareholders tender. Since
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each of the tendering shareholders is pivotal, the raider appropriates 50%
of the firm’s value improvement. But the raider can do even better when
individual shareholdings are divisible. For example, by setting X = 0.5 and
z; = Z;/2 > 0 for all 4, the raider would make each shareholder pivotal, thus
capturing 100% of the firm’s value improvement! Observe that the raider
can implement this outcome simply by offering the price v — Av for each
share tendered. Given this offer, there exists an equilibriumn in which each
shareholder tenders exactly 1/2 of his holding. Indeed, even though the bid
is below the firm’s current value, each shareholder will tender, since he knows
that the takeover, for which he is pivotal, will raise the valie of the shares he
keeps by exactly the same amount as he loses on the shares he sells. Thus, the
raider will appropriate 100% of the firm’s value improvement, and a takeover
will take place whenever it is socially efficient, regardless of N.** This is very
different from the non-pivotal outcome described by Grossman-Hart.

In order to study conditions under which the agents feel non-pivotal when
N is large, we introduce the following “asymptotic setting”: Take one big
agent, whose payoff (under Condition A) is U(z, X) — ¢, and split his trade
among N small identical agents, so that Zf\; 1 Ti =z and Zii , = t. Suppose
that the payoff of each of these small agents is UV (z;, X) — ¢;. We want
to require that the total payoff of the small agents always equals to the big
agent’s payoff: 37, UN(z;, X)— Y. t;.= U(z, X) ~t. For this to hold, we need
UN(z;, X) (and consequently U(z, X)) to satisfy Condition L. Thus, we can
write U(z, X) = za(X) + B(X), and UV (z;, X) = z:a(X) + £6(X). We
take the latter utility function to be each agent’s utility in the asymptotic
setting with IV agents.

It remains to define the trade domain for each small agent. To reflect the
fact that each small agent ¢ is a 1/Nth replica of the big agent, we assume
that his trade domain is X; = X/N. The total trade, therefore, lies in the set

_N iom J¥ — :
>.; X; = " X/N, where we use the notation 7% =X+ ... + %X. Asymptotically,

J times

1*Bagnoli-Lipman only study indivisible shareholdings, and Holmstrom-Nalebuff do not
consider bids below the firm’s current value. For these reasons, in both setups, the raider
cannot appropriate more than 50% of the firm’s value improvement. Both papers study
syminetric mixed-strategy equilibria, in which the raider generally does worse than that.
However, in the “focal” symmetric equilibrium studied by Holmstrom-Nalebuff, random-
ization disappears as shares become infinitely divisible, and the raider comes close to
capturing 50% of the improvement,
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we will allow all total trades from the convex hull of X, which we denote by
X. Observe that Y%/N C X for all N.

Now we are prepared to define non-pivotal outcomes. When each agent 4
takes the total trade X as given, his participation constraint can be written
as z;0(X) — %; > 0. Substituting all the binding participation constraints in
the principal’s objective function, we find that her profit is given by F(X) +
Xa(X). Conveniently, it is only a function of the total trade X, and not
of its allocation among agents. The set of non-pivotal outcomes can now be
defined as

My =argmax mp(X) = F(X) + Xo(X).
Xex

Since the set X is compact, a sufficient condition for M, to be non- -
empty is for 7 (-) to be upper semi-continuous.?® This condition is more
often met in applications than the continuity of mg(-). For example, in
the context of takeovers (Application 7), ng(X) = —c(X). One often men-
tioned case is one in which the raider’s bidding cost is a fixed cost, ie.,
mo(X) = { (; i;eg ‘;-hezl_lo‘?{ >0, While this function is not continuous, it is
upper semi-continuous, and the set of non-pivotal outcomes is M, = {0}. In
words, due to the positive cost of making a bid, the raider does not attempt
a takeover when she expects all shareholders to feel non-pivotal.

Let My denote the set of solutions to the principal’s profit-maximization
program with N agents. Rewriting the program (7) for our asymptotic set-
ting, we obtain

My = argmax mn(X), where
Xe¥x/N

™w(X) = F(X)+ Xa(X)+ B(X) — Ru(X) = m (X) + B(X) — Ry(X),

with By (X) = mjn{%Zﬁ(ij):xjex/Nforallj, Z:cj-—-X}

i=1 g4 i

Since X is compact, YX/N is also compact, and non-emptiness of My
would be guaranteed by upper semi-continuity of g (-) together with con-

A function g(-) is upper semi-continuous at z¢ if for any ¢ > 0 there exists a neigh-
borhood of zp in which g{z) < g(zo) + . Any continuous function is, of course, upper
semi-continuous. More generally, if we take a continuous function and increase its value
at any one point, we obtain an upper semi-continuous function.
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tinuity of G (-) (observe that the latter implies that Ry(-) is continuous as
well).

Observe that unless % is a closed interval, the domain YX/N of the above
program is a proper subset of the domain ¥ of the non-pivotal program. For
example, when X = {0,1}, YX/N contains only N points, while X = [0,1].
The set U, X/N in this case coincides with the set of all rational numbers
in [0,1]. Of course, if 7 (-) is maximized at an irrational point at which it
is discontinuous, we cannot expect convergence to the solution of the non-
pivotal program. Such pathological cases are ruled out by assuming that the
domain X satisfies the following property:

Definition 3 The domain X is asymptotically adequate for a function g(-)
if Hmy— o0 sup g(VX/N) = sup g(X).

Observe that X is asymptotically adequate for g{-) when X it is a closed
interval (in which case VX/N=X = X for all N), or when g(-} is continuous
from a side. We are going to require that X is asymptotically adequate for
7o(-).

In order to analyze convergence of My to My, we need to define a no-
tion of distance between two sets. For any two sets A,B C R, define
d(A, B) = sup,c,infyep la — b] - a measure of how far A extends beyond
B. For example, d(A4, B) = 0 whenever A C B.2! For future reference, we
also define d (A, B) = sup, 4 infecp(a—b),. - a measure of how far A extends
above B. Now we are prepared to formulate the following result:

Proposition 5 Suppose that the domain X is asymptotically adequate for
7o (), and B(-) is continuous on X. Then (i) sup my(NE/N) — supmo(X). If,
in addition, mo (-) is upper semi-continuous on X, then (i) d (My, M) — 0,
and (1t) d (W{My), W(Mp)) — 0.

Proof. See Appendix A. B

While the proofs of this and other asymptotic results are given in Ap-
pendix A, here we briefly outline the logic of the proof. Part (i) of the
proposition follows immediately from the continuity of 8(-). If the functions
7n (+) were known to be continuous, part (ii) would follow from part (i) by

Z10bserve that d(.X, Y)is not symmetric. The (symmetric) Hausdorff distance between
X and Y can be defined as max {d(X,Y),d(¥, X)}.
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Berge’s “maximum theorem” (see e.g. Walker [1979]). Since I was unable to
find a version of the theorem stated for upper semi-continuous functions, I
essentially had to adapt the theorem’s proof for this case. Part (iii) follows
from parts (i) and (ii) in a straightforward way.

If we define M, = M), then Proposition 5(ii) can be interpreted as saying
that when $(-) is continuous, the equilibrium correspondence My is upper
hemi-continuous at N = oo, This result offers a resolution to the “Grossman-
Hart Paradox”: in practice, a takeover is not a discrete event. For example,
a raider who acquires 49% of the firm will probably be able to implement
most of the value improvement that she would implement after acquiring 51%
of the firm. Thus, the firm’s value, v(X), should be a continuous function
of the proportion X of shares tendered. As Proposition 5 establishes, this
continuity will make a small shareholder feel non-pivotal for a large N.22
(Another solution to the paradox is to introduce some noise into the model,
as in Subsection 6.7 below.) ,

It is worth noting that the equilibrium correspondence My is not neces-
sarily lower hemi-continuous, as the following example demonstrates:

Example 2 Consider the setting of Tokeovers (Application 7), with X =
{0,1}, with the firm’s value given by B(X) = v (X) =1— (1 - X)?, and with
no bidding costs, thus 7o(X) = 0. In this model, we have My =% = [0,1]. In
words, when agents feel non-pivotal, the raider makes zero profits no matter
how many shares she buys, and she is indifferent among all possibilities.

On the other hand, Tn(X) = X [B(X) - 8(X - L] =& 1 - X+ &),
which is maximized ot My = {% + ﬁ} The mazimizer converges o %, and
W(My) — B(3) = .

Thus, we get a unique prediction for any finite N, but the correspondence
“explodes” at N = oo. The example demonstrates that some non-pivotal
outcomes may not be good approximations for true outcomes.

Finally, we can use our convergence result to demonstrate that inefficiency
is in some sense “generic” when N is large.?® For this purpose, we first

*Neeman [1997], in the context of Pure Public Bads (Application 13), independently
observes the role of continuity in ensuring that agents feel non-pivotal when N — co.

31f trade domains X; are intervals, then using the strong monotone comparative static
technique of Edlin-Shannon [forth.], inefficiency can be shown to be generic for any N > 2.
For discrete domains, however, we may need N to be large enough.
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compare the non-pivotal outcomes to first-best outcomes when externalities
on non-signers are strictly positive or negative:

Proposition 6 Suppose that mo(-) and B(-) are differentiable on X, and

B(X) >0 [<0] for all X € X. Define M} =argmax W(X). Then for
Xex

any X* € Mg NintX and any Xo € My, X < X*, [X > X*].

Proof. Consider the parametrized program

max 7o(X) + 258(X),

Xe%
where z = 0 corresponds to the non-pivotal program and z = 1 corresponds
to the first-best program. Under the assumptions, when §/(X) > 0 [< 0], the
objective function has increasing marginal returns in (X, 2) [(—X, z)], as de-
fined in Edlin-Shannon {forth.] The result follows by their Strict Monotonic-
ity Theorem.

Using Proposition 5(ii), this strict inefficiency result can be extended to
the asymptotic settings with N large enough:

Corollary 1 Suppose that mo(-) and B(-) are differentiable on X, and #'(X) >

0 [< 0] for oll X € X. For any N, define M} =argmax W(X). Then when
XeNz/N

N is large enough, for any X* € M} NintX, and any X € My, we have
Xy < X*, [Xn > X*/].

Proof. The assumptions imply that W(-) is continuous, which in turn im-
plies that d(My, Mg} — 0 as N — oo. Since the assumptions of Proposition
5 hold, we also know that d(My, Mp) — 0 as N — co. Together with the
previous proposition, this implies the result. B

5 Bilateral Contracting with Private Offers

Some of the papers referenced in Section 3 study contracting games in which
the principal does not have as much commitment power as assumed in the
previous section. Thus, in the context of Network Externalities (Application
10), Katz-Shapiro [1986b] study a game in which the principal approaches
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two different groups of agents in two periods, and cannot commit to the sec-
ond period’s price in the first period. In the context of Vertical Contracting
(Application 1), Hart-Tirole [1990], McAfee-Schwartz [1994], O’Brien-Shaffer
[1992], and Rey-Tirole [1996] consider a game in which the principal makes
offers to all agents simultaneously, but each agent only observes his own of-
fer. In the context of Common Agency (Application 6), Bernheim-Whinston
[1986] study a game in which it is the agents (firms) who make simultane-
ous offers to the principal (a risk-averse individual). All these papers make
assumptions that rule out externalities on non-signers, thus, as shown in the
previous section, if the principal could commit to a set of publicly observable
bilateral offers, she would implement the first-best outcome. However, when
the principal is unable to commit to compensate signers for the exfernality
imposed on them, inefficiency arises.

In this section, we analyze this inefficiency in our general setting, in the
framework of the game often studied in the Vertical Contracting setting (Ap-
plication 1).2* The game consists of two stages: in the first stage, the prin-
cipal makes each agent ¢ an offer (x;,t;), which is privately observed by the
agent. In the second stage, the agents simultaneously decide whether to
accept or reject.?526

Each agent’s acceptance decision in this game depends on his beliefs about
offers extended to other agents. Since in a Perfect Bayesian Equilibrium we
can assign arbitrary beliefs following a probability-zero deviation, this gives
rise to enormous multiplicity of equilibria. To make a more precise prediction,
I follow the papers in the Vertical Contracting literature in restricting the
agents to hold so-called “passive beliefs”: even after observing an unexpected

24While we think that our qualitative results would generalize for other games in which
the principal does not have full commitment power, a comprehensive study of such games
is left to future research.

25The papers on vertical contracting referenced above actually analyze a more com-
plicated game, in which in the first stage the principal offers a tariff ti(z;) (sometimes
restricted to be a two-part tariff), and in the second stage each agent i chooses his trade
z;. However, if agent 7 chooses z; without observing other agents’ tariffs (McAfee-Schwartz
call this game the ex post unobservabilify game), this game can be seen to produce the
same outcome as our (simpler) game.

?In modeling debt-equity swaps (Application 8), we assumed that each creditor is able
to calculate the expected value of the equity he is offered. This assumption is not legitimate
when the creditor does not observe the offers extended to other creditors. Therefore, the
analysis of this section will not be valid for this application.
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offer from the principal, they continue to believe that other agents face their
equilibrium offers.

5.1 Inefficiency Results

As in the previous section, since the principal can always offer (z;,t;) = (0, 0),
without loss of generality we can restrict attention to equilibria in which all
agents accept their offers. If the equilibrium trade profile is ¥ = (7, ... Zx)
and agent ¢ holds passive beliefs, he will accept an offer of (z;, t;) if and only if
wi{2s, Ts) — i = 4;{0,7_;). The equilibrium trade profile ¥ should maximize
the principal’s profit subject to these participation constraints:

8)

€ arg max flz)+ Zt«;

zEFXIX...x Xy, tERN
st wiw;, Zo;) —t; > w(0,T.;) forallie N,

Since an equilibrium outcome must satisfy the same participation constraints
as those in the commitment program (5), the principal’s profit cannot exceed
that in the commitment case. Moreover, the principal is likely to suffer from
his lack of commitment, because of the additional requirement that Z should
be his best-response to the agents’ beliefs.?”

All participation constraints in the above program clearly bind, since
otherwise the principal could profitably deviate by raising ¢; for some agent
2. Using this, and the fact that the principal takes u;(0,Z_;) as given, the
above program can be rewritten as

Z € argmax f(z)+ Z {25, T_;). (8)
TEXI XXXy :
Let € denote the set of trades Z which satisfy this condition. The condi-
tion implies (but is stronger than) what McAfee-Schwartz [1994] call “pair-
wise proofness”, which says that for each agent 4,

.’Tfi Earg max f(.’L‘z', 55.2-) + ’U»;(il?i, E_z)
;X

?"By the same logic, a player always prefers being a Stackelberg leader to moving si-
multaneously with other players.
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Indeed, “pairwise proofness” only ensures that the principal does not find it
profitable to deviate by changing his offer to a single agent, and does not.
check the profitability of multi-agent deviations:

Example 3 Consider the takeover model of Ezample 2, except that the raider

has a positive fizxed bidding cost: ¢(X) = { ¢, X >0,

0, X=0 Whenever

¢> (1/N) B(1/N) = (2 - 1/N}) /N?,
Ty =... =y = 0 constitutes a pairwise equilibrium, since
F(1/N)+U;(1/N,1/N)=1/N - 3(1/N) — ¢ < 0 = F(0) + U;(0,0).

At the same time, whenever ¢ < B(1) = 1, the point T does not satisfy the
true equilibrium condition (8), since the principal can profitably deviate by
offering x1 = ...y = 1/N:

F(1)+ > U(1/N,1/N) = (1) ~c=1-¢> 0.

In order to ensure the existence of an equilibrium, we need to impose
certain additional assumptions, which are discussed in Appendix C. All of this
section’s results will be vacuous (but formally correct} when the equilibrium
set € is empty.

Intuition suggests that since the principal can no longer commit to prop-
erly compensate the signing agents for the externalities imposed on them,
distortion will be due to these externalities, rather than due to externalities
on non-signers. Indeed, it turns out that when externalities on signers are
absent at a first-best trade profile, private contracting produces efficient out-
comes, regardless of any externalities that might exist at other trade profiles:

Proposition 7 If there exists £ € I such that w;(zf, z_;) does not depend
onz_; € X_; for alli, then & C DT*.

Proof. For any T € €, the equilibrium condition (8) implies that

F@) + Zué(ff) > flz") + ZU(fc Z5)=f@")+ Zui(:c*),
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where the equality follows from the assumption that w;(z},z_;) does not
depend on z_; for all . Therefore, z € IN*. A

In Applications 5 (Takeovers), 9 (Merger for Monopoly), and 11 (Bar-
gaining), externalities are absent on agents who “sell out”, i.e., trade the
maximum amount. Af the same time, it is often assumed in these contexts
that trading the maximum amount maximizes total surplus. Under these
assumptions, Proposition 7 establishes that the only candidate equilibrium
outcomes are first-best outcomes.

Example 4 Consider again the takeover model of Example 2, with no bid-
ding costs. Then the unique first-best outcome has all shareholders selling to
the raider, i.e., x7 = 1/N for all i. But at this trade profile there are no
externalities on signers: U;(1/N,X) = 0 for all X. Therefore, according to
Proposition 7, * is the only candidate equilibrium outcome. It is easy to see
that it 13 indeed an equilibrium outcome.”® On the other hand, as shown in
Ezample 2, we get inefficiency with public offers: X = %-i— fﬁ < 1. (For
a general comparison of efficiency with private offers and public offers, see
Subsection 5.8.)

As another application of Proposition 7, consider Application 6 (Common
Agency) with a risk-neutral individual. In this case there exists a first-best
allocation in which all firms “selling out” to the individual, i.e., z} = b; for all
1, and in this allocation there are no externalities on the firms. Proposition
7 then establishes that every equilibrium outcome in this case is a first-best
outcome, which parallels Theorem 2 of Bernheim-Whinston [1986].

On the other hand, when externalities on signers are always present, they
will distort the contracting outcome. To formalize this intuition, consider
the following definition:

Definition 4 We have globally positive [globally negative] externalities if for
each agent i, u;(z;, T..;) is non-decreasing [non-z’ncreasz'ng] mzx_; € X_; for
all z; € %,;.

*®Note, however, that in the presence of a bidding cost e > [8(1) — 8(1/N)] N = 1/N,
the described outcome is not an equilibrium outcome, hence no equilibrium exists. See
Appendix C for sufficient conditions for existence of equilibrium.
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It is easy to see that we have globally negative externalities in Applica-
tions 1-5 and 13, and globally positive externalities in Applications 6-12 (see
Table 1).

We are tempted to conjecture that under Condition A, with globally pos-
itive [globally negative] externalities, the total equilibrium trade X = ", %;
will be weakly lower [higher| than socially optimal, but this conjecture runs
into the same problem as in the case of public offers. For example, with
positive externalities it is easy to see that in equilibrium each agent i’s trade
z; will be too low given Z_;, but this generally does not imply that Z; will be
lower than its first-best level. To obtain a definitive comparison, we again as-
sume Conditions D and L. Then, letting F denote the set of equilibrium total
trades X (and recalling that M* is the set of surplus-maximizing outcomes
defined in (6)), we obtain the following result:

Proposition 8 If Conditions D, L hold, then with globally positive [negative]
externalities, EU M* < M* [EU M* > M*] in the strong set order.

Proof. Consider the case of globally negative externalities. Suppose that
X* € M* and X € EUM~, and that (%, ... ,En) € €, with 3,7 = X < X*.
Since we trivially have X* € E U M*, to establish the strong set order
comparison we only need to prove that X € M.

Under condition D, we can choose X* = >z} with z} € X; for all i so
that 27 > 7; for all 4, and consequently X*; = 3", 2% > X, = 254 25 for
all 2. Now we can write

W(X) = +ZU (&, X) > F(X*) +ZU(&: X ) >

?.7'1.

> X)—;—ZU:E X*) = W(X").

The first inequality obtains by the equilibrium condition (8). The second
inequality follows from the fact that X*, > X_; for all i and externalities are
globally negative. For the last equality, use Condition L. Therefore, we must
also have X € M*. This implies the result for globally negative externalities.
The proof for globally positive externalities is analogous. B

The Proposition compares the sets £ and M* in a somewhat weaker
way than would the strong set order. For example, with globally positive
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externalities, the statement means that the set E\M* lies below AM*, but
allows some elements of E N M* to lie above M*\E. But when |M*| = 1,
the statement says that sup £ < M™*, which is a pretty strong result.

Finally, it is easy to see that Section 4’s Proposition 4 on the effect of con-
tracting on agents’ utilities also obtains in this setting, since in equilibrium
the agents’ participation constraints bind:

Proposition 9 With positive [negative] externalities on non-signers, a ban
on contracting with privately observed offers weakly reduces [raises/ each
agent’s utility.

Note that unlike all the other results of this section, this result depends
on the sign of externalities on non-signers.

5.2 Asymptotics

As in the case of public offers, when the number N of agents is very large and
Condition A holds, it seems natural to expect that each individual agent will
think of himself as non-pivotal, i.e., he will take the total trade X as given
in making his decision. In that case, under Condition L, agent 7 accepts his
offer if and only if ¢; < z;0(X), where X is his expectation of total trade.
Since in equilibrium all participation constraints bind, the principal solves

max m(X|X) = F(X) + Xo(X).

Xex

X € % is a non-pivotal equilibrium total trade if and only if X € arg max ez To(X1X).
Let Ej denote the set of such non-pivotal equilibrium trades. But will the
contracting outcomes with N trades converge to the outcomes from F as
N — 007

Consider, for example, the setting of Vertical Contracting (Application
1) with private offers. If the supplier takes her total sales X as given in de-
ciding how much to sell to each downstream firm, this is equivalent to taking
the downstream price P(X) as given. Therefore, even though the supplier is
a monopolist, the non-pivotal outcome is a competitive (price-taking) out-
come. Rey-Tirole {1996] indeed show that in a very specific setting of linear
demand and constant marginal costs, the equilibrium outcome converges to
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the competitive outcome as N — oo. But how general is this convergence
result? .

As another example, consider the setting of Common Insurance (Apph-
cation 5). In this setting, if an insurance company takes an individual’s total
purchase of insurance (and therefore the chosen probability of accident) as
given, it will insure him fully. Therefore, in the non-pivotal outcome, the
agent will be fully insured, and will choose the least-cost level of care. Pauly
[1974] indeed argues that this outcome will obtain in the “competitive” equi-
librium. But will this outcome be approximated in a setting in which the
number N of insurers is very large but finite?

In this subsection, we present a result which provides sufficient conditions
for convergence to the non-pivotal outcome. Letting EV denote the set of
equilibrium total trades in the asymptotic setting with N agents introduced
in Subsection 4.3, we have

Proposition 10 Suppose that o (-) and B(-} are continuous functions, f ()
18 upper semi-continuous, and domain X is asymptotically adequate for the
function mo(-|Xo) for all Xo € X. Then (i) d(mo(En), mo(Eo)) — 0, ()
d{En, Eo) — 0, and (i1i) d(W(EN), W(Ep)) — 0 as N — oo.

Proof. See Appendix A. B

In Vertical Contracting (Application 1), the proposition’s assumptions are
satisfied whenever the inverse demand function P({.) is continuous and the
principal’s cost function is lower semi-continuous (this allows, for example,
for a positive fixed cost). In such cases the price-taking outcome obtains in
the limit. In Common Insurance (Application 5), the proposition’s assump-
tions are satisfied whenever the probability of accident p(X) is a continuous
function of the amount X of insurance.?® In such cases, the individual will
fully insure herself in the limit.3°

2This rules out cases in which the insuree only has a finite number of actions to choose
from. Whether convergence to full insurance outcomes obtains in such cases is an open
question. :

30Pauly [1974] observes that in some cases the individual strictly prefers not to purchase
any insurance, rather than fully insuring herself. However, it is easy to see that not
purchasing any insurance cannot be an equilibrium outcome. Therefore, in such cases no
equilibrium exists. For sufficient conditions for the existence of equilibrium, see Appendix

C.
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5.3 Comparison to the Case of Public Offers

As we have seen, with public offers the distortion stems from the externalities
on non-signers, while with private offers it stems from the externalities on
signers. This suggests that in order to compare the outcomes in the two
cases, we need to compare the two externalities. For this purpose, consider
the following definition:

Definition 5 We have increasing [decreasing] externalities if for each agent
i and oll z; € X; the difference ui(z;, z_;) —u:(0,2_;) is non-decreasing fnon-
increasing/ in T_; € X_;.%

The definition can be interpreted in two ways:

1. With increasing [decreasing| externalities, agent ¢ is more [less] willing
to accept his offer when he expects more other agents to accept. This
interpretation is used in Appendix B to study the possibility of multiple
equilibria.

2. The definition can be restated as
w2, 2l )—ui(zs, 2-5) > [<] %(0,27,)—w(0,z_;) whenever z’_; > z_;,

i.e., with increasing [decreasing] externalities, the externality imposed
on agent ¢ by increasing z_; is more {less] positive when he signs than
when he does not. This interpretation is used in this subsection.

It is easy to verily that we have increasing externalities in Applications 10
(Network Externalities) and 3 (Exclusive Dealing), and we have decreasing
externalities in Applications 1 (Vertical Contracting}, 5 (Common Insur-
ance), 9 (Merger for Monopoly), and 11 (Bargaining). We also have decreas-
ing externalities in Application 7 (Takeovers) as long as we restrict attention
to the case in which X; = {0,%;} for all £.3? In Applications 12 and 13 (Pure
Public Good and Bad), externalities are increasing when the functions v;(-)

31This is implied by, but weaker than, the requirement that the function w;(z;,z_;)
satisfy increasing differences in (x;, 2_;) [in (x4, —2—;)] (Milgrom-Shannon [1994]).

32This has been informally noted by Holmstrom-Nalebuff [1992]: .. Everyone wants
to be negatively correlated with the majority. When the majority tenders, everyone wants
to hold out, while when the majority holds out, everyone wants to tender.”
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are convex, and decreasing when they are concave. In Application 2 (Verti-
cal Contracting with a Substitute), externalities may be either increasing or
decreasing (both cases are analyzed in Katz-Shapiro [1986a]).

Intuition suggests that with increasing externalities, the principal’s incen-
tive fo trade too much will be lower, or her incentive to trade too little will
be higher, with private offers than with public offers, and conversely with
decreasing externalities. Unfortunately, just as with similar intuitions above,
this conjecture is not always true because of the interaction of the principal’s
choice of X and her choice of allocating a given X among agents. Moreover,
unlike with intuitions above, even Conditions L and D do not guarantee a
definitive comparison. The problem is that while Conditions L ensures that
the allocation of a given X is irrelevant for total surplus, it may still be
relevant in the principal’s program both with public offers and with private
offers. For this reason, we are only able to establish a definitive comparison
under the stronger Condition S, which ensures that the allocation of a given
X among agents is always irrelevant:

Proposition 11 When Condition S holds and externdlities are increasing
[decreasing], we have E U M < [>]M.

Proof. Under Condition S, the set M of profit-maximizing outcomes with
public offers solves

M =argmax F(X)+ X[U(1,X)—-U(0,X —1)]
Xe{o,..N}
Consider the case of increasing externalities. Suppose that X € M and
Xe E, and X < X. Since we obviously have X € E U M, to establish the
strong set order comparison we only need to prove that X € M. Since the
agents’ participation constraints bind in the private-ofier equilibrium X each
agent ¢ with z; = 1 pays £, = U(1, X) — U(0, X — I). Consider a deviation
from the equilibrium in which the principal offers z; = #; = 0 to X — X

agents who previously had z; = 1. Since the deviation must be unprofitable,
we have

FR)+ % [U(l,)?) ~U(0,X - 1)] > F(X)+ [U( 1,X)-U(0,X - 1)] >
2 FX)+X[ULX)-U(@0,X ~1)],
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where the second inequality follows from the property of increasing exter-
nalities. Therefore, we must also have X € M. The proof for decreasing
externalities is similar, except that we should consider the principal’s devia-
tion to offer z; = 0 to X — X agents who previously had z; = 1. B

Another way to corpare the outcomes with private and public offers is
to focus on the situations in which N is large. Observe that in the corre-
sponding non-pivotal programs under condition L, the allocation of a given
X does not matter. Thus, we should be able to compare the sets M and
Ey of the corresponding non-pivotal outcomes. Then we can use asymptotic
convergence results to compare the outcomes in the asymptotic setting with
N large enough. Observe that the proper notion of increasing [decreasing]
externalities in the non-pivotal setting in which each agent takes the total
trade as given is to have the function a(-) non-decreasing [non-increasing.
The sign of o/(-) for all the examples of Section 3 is given in Table 1. Note
that in all cases of increasing externalities we have o/(-) > 0, and in all cases
of decreasing externalities we have ¢/(-) < 0. In the settings of Pure Public
Good and Bad (Application 12,13}, we may have increasing or decreasing
externalities for any finite N, but not asymptotically, since o/(-) = 0.

Using the technique of strictly monotone comparative statics developed
by Edlin-Shannon [forth.], we obtain the following result:

Proposition 12 Suppose that F(-} and o(-) are differentiable on X, and
that o/(X) >0 [< 0] for all X € X. Then for any Xo € My NintX and any
XEE@,X<X{), [X>X0]

Proof. Consider the case in which o/(X) > 0 for all X € X. First, observe
that if we had X > X, then, using the fact that X € Ey, we could write

71'0(55) = ﬂ'g(}?[)?) 2 ‘.TI'Q(X()I)?) = F(Xo)‘f‘Xoa(ji:) > F(Xo)'i‘XoOl(Xo) = WQ(XU),

which would contradict the assumption that X, € My. Therefore, we must
have X < X,. To see that the inequality is strict, observe that since X, €
My NintX, the following first-order condition must be satisfied:

a’ﬂ'g(X)

X = F'(Xo) + a(Xo) + Xoo!/ (Xo) =

X=Xs

39




Since o/(Xjp) > 0, this implies that

9mo(X|Xo) = F'(Xp) + a(Xp) <0,

0X X=X
therefore Xj ¢ Ey, and consequently X # X. Therefore, we must have
X < Xo. The proof for the case in which ¢/(-} < 0 is similar. W

Using Propositions 5(ii) and 10(ii), this comparison is easily extended to
the asymptotic setting with N large enough:

Corollary 2 Suppose that F(-) and of-) are differentiable on X, that B(-) is
continuous on X, and that o/(X) > 0 [< 0] for al X ¢ X. Then when N is

large enough, for any Xo € My N intX and any Xe En, we have X < Xo,
[X > X{)]

What do these comparisons imply about the relative efficiency of out-
comes with private and public offers? The implications are unambiguous
when the total surplus W (X)) is a quasiconcave function of X. Under this
assumption, which is reasonable in all applications listed in Section 3, the
closer is X to its first-best value, the greater is the total surplus:

Proposition 13 Suppose that Conditions L,D hold, we have globally positive
[globally negative/ externalities, W (-) is quasiconcave, X € M and XecE.
Then we have W (X) > W(X )zfandonlyzfX>X[X<X]

Proof. Consider the case of globally positive externalities. In this case,
Propositions 3 and 8 imply that there exists X* € M* such that X, X< x~
If X > X, then X € [X,X *], and quasiconcavity of W (-} implies that

W(X) > min {W(X), W(X*)} = W(X). Conversely, if X < X, then X €
[X, X*], and quasiconcavity of W (-) implies that W (X) > min {W(X),W(X"} =
W (X). The proof for the case of globally negative externalities is analogous. H

Putting this result together with the results of Proposition 11 and Corol-
lary 2, we see that when the externalities on signers have the same sign, but
a greater absolute value, than those on non-signers, then (under Condition
S) contracting with private offers is more distortionary than contracting with
private offers. This includes cases in which externalities are globally positive
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and increasing, such as Application 10 {(Network Externalities), and cases in
which externalities are globally negative and decreasing, such as Application
1 (Vertical Contracting) and 5 (Common Insurance). In these three settings,
externalities on signers are absent altogether, and inefficiencies can be as-
cribed to the principal’s inability to commit. This point has been made in
the three respective literatures.

At the same time, to my knowledge, it has not been observed before that
the principal’s inability to commit can raise the total surplus of the contract-
ing parties. This happens when the externalities on signers have the same
sign, but a smaller absolute value, than those on non-signers. This includes
cases in which externalities are globally positive and decreasing, such as Ap-
plications 7 (Takeovers), 9 (Merger for Monopoly), and 11 (Bargaining), and
cases in which externalities are globally negative and increasing, such as Ap-
plications 3 (Exclusive Dealing) and 9 (Common Agency). This observation
gives rise to novel policy implications. In the contexts of Exclusive Deal-
ing, Common Agency, and Takeovers, total welfare is increased when the
principal is not legally allowed to commit herself.33-34

6 General Commitment Mechanisms

In this section, I assume that the principal can commit to a mechanism in
which one agent’s trade can be made contingent on other agents’ messages.
In the context of Vertical Contracting with a substitute (Application 2),
Katz-Shapiro [1986a] and Kamien et al. [1992] study a first-price auction in
which the seller commits to sell X units of the good to the highest bidders.

33This conclusion has an imperfect analogy in the “Coase conjecture”, which says that a
durable good monopolist who is unable to commit to a high price will sell a more efficient
quantity (see e.g. Tirole {1988}). In the same way, a raider who is unable to commit will
buy more shares from shareholders.

Observe also that if the durable good monopolist needs to Incur a sunk cost before
producing, her inability to commit may prevent her from recouping this cost. If this
happens, she will not produce at all, which hurts consumers. In the same way, a raider’s
inability to commit may prevent her from recouping the sunk cost of a takeover. Taking
such a cost into account would qualify our policy recommendation.

3In the setting of Merger for Monopoly, which also exhibits globally positive and de-
creasing externalities, the policy impHcation is different if we take the welfare of consumers
into account. The acquirer’s commitment, this reduces the market’s concentration, which
benefits consumers.
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Unlike with bilateral contracting, whether buyer ¢ obtains the good now de-
pends on other buyers’ bids. In the context of Takeovers (Application 7),
Bagnoli-Lipman [1988] study conditional bids, in which the raider commits
to purchase exactly X shares at a certain price if at least X shares are ten-
dered by stockholders, and to buy no shares otherwise. Unlike with bilateral
contracting, the number of shares sold by shareholder ¢ now depends on other
stockholders’ tenders.

We begin this section with characterizing all the feasible mechanisms in
which agents’ participation is voluntary. We then study principal’s problem
of choosing from a family of such mechanisms. We find that all the results of
Section 4 generalize for this case; however, in the particular case in which the
family includes all conceivable mechanisms, the first-best is always attained.
‘This happens because the principal can now maximize surplus and at the
same time extract the maximum rent from the agents, by threatening a
deviator with the harshest possible punishment. However, in the presence of
noise which goes to zero slower than the number NV of agents goes to infinity,
the principal will no longer be able to make each agent pivotal, and in the
limit we obtain the non-pivotal outcome described in Subsection 4.3 (which,
as demonstrated in that subsection, is usually inefficient).

6.1 A Characterization

A general mechanism (game form) can be described as T = (S1,..., Sy, g(-)),
where S; is agent i’s message space, and g : 5] X ... X Sy — ¥y X ... X
Xy x RY is the outcome function describing all agents’ trades and monetary
transfers as functions of the messages sent. We will write g(s;,...sy) =
(z(s1,...5~),t(51, ... sn)), where z(sy,...sx) and (s, .. sy) are the trade
and transfer profiles prescribed for the message profile (sq,...sy). We as-
sume that the principal can commit to the mechanism, and can induce the
agents to play any given Nash equilibrium of the mechanism. The concept
of implementation can then be defined as follows:

Definition 6 A mechanismI' = (Sy,...,Sn,g(-)) implements an allocation
(Z,1) € X1 x ... x En x RY if there exists a Nash equilibrium s of T such
that g(s) = (z,1).

In addition to the standard incentive-compatibility requirement that the
agents play a Nash equilibrium of the message game, we will reflect the fact

42




that agents’ participation in the mechanism is voluntary by endowing each
agent -4 with a special “reject” message s; = 0, which guarantees him the
bundle (z;,t;) = (0,0).

Definition 7 A mechanism [ = (S3,...,Sn,(z(-),t(-))) is voluntary if 0 €
S; for all i, and s; = 0 = z;(s) = t;(s) =0,

Definition 8 An allocation is implementable if it can be implemented by a
voluntary mechanism.

A special class of voluntary mechanisms consists of mechanisms in which
each agent can only send two possible messages, “reject” (s; = 0), and “ac-
cept” (s; = 1), and in equilibrium all agents accept. We will call such
mechanisms “direct”:

Definition 9 A voluntary mechanismT = (S1,...,Sn,g(-)) is a direct mech-
anism if S; = {0,1} for all i, and (1,...,1) is o Nash equilibrium of the
mechanism.

Every play s € {0,1}" in a direct mechanism can be represented by
the corresponding “acceptance set” A(s) = {i € N : s; = 1}. Thus, the
outcome function of a direct mechanism can be described by functions x :
2V — X1 x...xXyand t: 2V — RV, s0 that g(s) = (z(A(s)), t(A(s))).% In
words, z(A) is the trade profile prescribed when the set of accepting agents is
A, and t(A) is the transfer profile in this situation. Since a direct mechanism
must be voluntary, we must have z;{A) =¢;,(4) =0 fori & A.

By definition, a direct mechanism (x,t) implements an outcome (T, %) if
and only if (i) (z(N),t(N)) = (Z,1), and (ii) A = N is a Nash equilibrium
play. The latter requirement means that each agent weakly prefers to accept
if he expects all other agents to accept, which gives rise to the following
participation constraints:

u(z(N)) = t:(N) > 14(0,z_;(N\i)) for all i € N. (9)

Since agents do not have any private information to report, in the spirit
of the revelation principle it can be seen that an arbitrary mechanism can be
replaced with a direct mechanism which implements the same allocation:

35We will use boldface type to denote functions on 2V, e.g. x, and normal type to
denote their values, e.g. z({1,2}).
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Proposition 14 An allocation (ZT,1) € X1 x ... x Xx x RV is implementable
if and only if it can be implemented by e direct mechanism.

Proof. Suppose that a voluntary mechanism I' = (S51,..., Sy, (z(),2(:)})
implements (Z,f). By definition, this means that there exists a message
profile 3 = (31,...,3x) € 81 X ... X Sy such that (i) (z(3),t(3)) = (Z,1), and
(ii} § is a Nash equilibrium of T', i.e.,

ui(Z(3)) — t:i(8) > wi(2(s},5-4)) — tas},5_) for all s € N, and all s, € S;.

0,i¢ A,

5,1 € A
direct mechanism (X,t) given by Z(A) = z(5(A)) and t(A) = z(¢(A)). Then
we know that (E(N),?(N)) = (z(5(N))},t(3(N))) = (z(3),t(3)) = (’:E, f).
Also, the above inequalities imply that (X,t) satisfies the participation con-
straints (9). Therefore, the direct mechanism (X,t) implements the allocation
(Z,7). W

Just like the revelation principle in the standard implementation setting,
this is a very powerful result, which will allow us to restrict attention to direct
mechanisms.*® The difference from the standard implementation setup lies
in the fact that even though the agents have no private information to report,
we need to allow the agents to send messages in order to give them an option
not to participate in the mechanism.

Using the proposition, we can restrict our analysis to the study of direct
mechanisms. We will allow the principal to choose from a family of such
mechanisms. Participation constraints (9) demonstrate that as long as we
are interested in Nash implementation and do not worry about the existence
of unwanted equilibria, only equilibrium transfers ¢(N), and only trades z(4)
for |A| = N ~ 1 are relevant.

In addition, we impose another restriction on the mechanisms we consider:

For any A C N, and any i € N, define 3;(A) = { Consider a

36 Just like the standard revelation principle, our result does not guarantee that the direct
mechanism will not have “unwanted” Nash equilibria, in which case “indirect” mechanisms
may be useful for ruling out such equlibria. For example, Segal-Whinston [forth.] find
that in the setting of Exclusive Dealing {Application 3), the incumbent firm can exclude
at zero cost if it can induce the buyers to play its preferred Nash equilibrium, and at a
positive cost if the buyers coordinate on their preferred Nash equilibrium. Segal-Whinston
find that in the latter case, exclusion can be attained at a lower cost when the agents play
a sequential acceptance game, rather than the corresponding direct mechanism {which is
a simultaneous acceptance game).
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Definition 10 A direct mechanism (x,t) is binding if all agents’ participa-
tion constraints (9) bind.

One justification for focusing on binding mechanisms is that if the prin-
cipal is able to charge fixed participation fees, she will optimally make all
agents’ participation constraints bind. Moreover, as will be seen in examples
below, even when the principal is not allowed to charge participation fees,
she may optimally adjust some other parameters of the mechanism (such as
linear prices) to make all agents’ participation constraints bind.

6.2 Examples

Bilateral Contracting with Public offers (studied in Section 4): A set {(&;,7; }Nl
of bilateral contract offers is equivalent to a direct mechanism (x,t) which

has (z:(A), (A ))={ (8:,1;) if i € A,

0 otherwise. Since the principal is free to adjust

t;, she will optimally make all agents’ participation constraints bind.

Auctions (Katz-Shapiro [1986a}, Kamien et al. [1992]): For definiteness,
suppose that the principal sells z; to the agents. The principal commits to
sell a quantity X € > %; via an auction. (To ensure that X can always
be allocated among participating agents, assume that condition D holds.)
While Katz-Shapiro study an auction in which the X highest bidders receive
exactly one unit of the good each, it will be clear below that their results
generalize to a much wider class of auctions.

Taking into account that the principal cannot sell the target quantity
unless sufficiently many agents participate, we find that the corresponding
direct mechanism (x,t) has 3, 2;{A) = min{X, > icamaxX;} for all A C
N. Since only acceptance sets A with |A| > N — 1 are relevant for Nash
implementation, whenever X < > % —max; X;, we have }_, z;(A) = X for
such acceptance sets. In this case each agent will take the total trade X as
given when making his acceptance decision.

But under Condition L, an agent who takes the total trade X as given is
willing to pay exactly oz(X ) for each unit of the good. Therefore, in a wide
class of auctions, all trades will take place at this price. This implies, in
particular, that all agents’ participation constraints (9) will bind, even when
the principal cannot charge a participation fee.
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Conditional bids (Bagnoli-Lipman [1988]): For definiteness, suppose that
the principal buys z; from the agents. Suppose that the principal sets a
price p at which all agents can tender their goods. If fewer than X units are
tendered, no trade takes place. If more than X units are tendered, then the
principal purchases only X units, using some rationing device. Suppose that
n equilibrium exactly X units are tendered, and let #; denote the equilibrium
tender from agent 4. Then the corresponding direct mechanism (x, $) is given

by (2:(4),t:(4)) = { (&:,p2:) if A= N,

0 otherwise.

If the principal is constrained to offer a linear price p, in order to have all
participation constraints (9) binding, we would need to have pZ; = u;(%;, X)—
1;(0,0) for all agents 4. In the symmetric case in which Condition L is
satisfied, this implies that

0%; = a(X)2; + B(X) — 5(0) for all agents 1.

This can hold if either 3(X) = 8(0), or the equilibrium trade ; is the same
across agents. The latter property is satisfied in takeover bids studied by
Bagnoli-Lipman, in which the raider offers to buy 100% of the shares, and
stockholders are homogeneous (and therefore, £; == max %; is the same across
agents).¥

The examples demonstrate that restricting attention to binding mecha-
nisms is reasonable in many, but not all, contexts.

6.3 Inefficiency Results

In a binding direct mechanism (x,t), the equilibrium transfers ¢(/V) can be
obtained from the trade component x of the mechanism using the binding
participation constraints (9). Since all other transfers are irrelevant for Nash
implementation, our mechanisms will be fully described by their trade com-
ponents. Let ® denote the set of all binding direct mechanisms:

D={xe(X;x...x %N)ZN : T;{A) = 0 whenever ¢ ¢ A}.

37Bagnoli-Lipman also argue that even if the stockholders were heterogeneous, the raider
would be able to extract their surplus by tailoring her offers appropriately (presumably,
using fixed fees), and thus participation constraints (9) would still bind.
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We assume that the principal is restricted to choose from a subset (“family”)
§ C D of such mechanisms. (The case in which § = ® will be studied
in more detail in Subsection 6.5 below.) The set M} of mechanisms that
maximize total surplus within the family ¥ can be defined as®®

M =arg max Flz(N)) + Zm(x(N)), (10)

On the other hand, if the principal chooses a binding mechanism from §
to maximize her profit, she solves the following program:

max f(z(N)) + Z’ui(m(N)) - zw(Ua z_(N\1)). (11)

XEF

Let Mz denote the set of solutions to this program. It is clear now that
when there are no externalities on non-signers, the two problems coincide,
and we have

Proposition 15 If u;(0,z_;) does not depend on z.; € X_; for all i, then
My = M.

When externalities on non-signers are present, on the other hand, the
principal will in general distort her choice of mechanism to extract surplus
from the agents. To see this, define r(x) =>_, u;(0,z_;(N\7)).*® Then we
have the following result:

Proposition 16 For any family § of binding direct mechanisms, r(Mz) <

Proof. Using the “aggregation method” of Milgrom-Shannon, define

w(F) = max{f(a:(N)) + Zuz(m(N)) 1 x €F, r(x) = F} .

Consider the parametrized program maxrep w(7) — 27, where z = 0 cor-
responds to surplus-maximization and z = 1 to profit~maximization, and

38(bserve that when F(N) =%y x ... X X, ie. all possible trade profiles can arise in
equilibrium of mechanisms from family ¥, then we have M3 = T, as defined in Section
2. For the sake of generality, however, we do not restrict attention to this case.

33The definition of this function is changed from that in Section 4.
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let 7*(z) denote the set of solutions to this program. Since the objec-
tive function is supermodular in (v, 2), by Topkis’ Monotonicity Theorem,
7‘(93?%) =7*(0) > r*(1) =r(J;). A

In order to see the direction of distortion in the total trade X, we need
to assume Condition L, just as we did in Section 4. Under this condition,
the objective functions in both the surplus-maximization program (10) and
the profit-maximization program (11) can be written as functions of total
trades, X(A) = 3 ..;#;(A), for A C N. For any family § of mechanisms,
let F = {3, % : x € §} denote the “aggregate representation”of family §.
Then IO (N) will represent the set of equilibrium total trades in surplus-
maximizing mechanisms, and L9Mz(N) will represent the set of equilibrium
total trades in profit-maximizing mechanisms.*® Observe that 9% (N) =
M* (as defined in program (6) in Section 4) whenever ZF(N) = 5. 3&, ie.,
all possible fotal trades can be implemented as equilibrium total trades in
family §.

To determine the direction of distortion, we will also require the family
& to have the following property:

Definition 11 Forany X € 3. X, define £F|X = {X € £F : X(N)y=X}.
We will say that the mechanism family § is ascending if for any X, ¥ € 3, %,
such that X <Y, we have

(i) for any X € TF|X there exists Y € LF|Y such that X <Y, and
(i) for any Y € SF|Y there exists X € TF|X such that X < Y.

In words, a family § is ascending if there is always a way to increase or
decrease the equilibrium total trade X (V) within the family while increasing
(or decreasing) the out-of-equilibrium total trades X(A) for all acceptance
sets A at the same time.

To give some examples, the family of bilateral contracting mechanisms
studied in Section 4 and the family of auctions described above are both
ascending whenever Condition D on trade domains is satisfied. The family
of conditional bids is also ascending, since we always have X(N\i) = 0.
We can think of the ascendance property as the appropriate generalization
of Condition D to general mechanism families. This property allows us to
compare the firm’s proﬁt—ma.ximizing outcomes to the first-best outcomes:

40We use the notation TF(4) = {X(4) : X € £F}.
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Proposition 17 Suppose that Condition L holds, and § ¥s an ascending fam-
ily of binding direct mechanisms. Then with positive [negative] externalities
on non-signers, we have EMz(N) < DML (N) > TDG(N)] in the strong
set order.

Proof. When § is ascending, the function R(X) = minxcszz 3.; G:(X(N\7))
can be shown to be non-decreasing [non-increasing in X| with positive [neg-
ative] externalities on non-signers. Consider the parametrized program
_max W(X) - zR(X),
XeTF(N)
where z = 0 corresponds to the first-best program (10), and z = 1 corre-
sponds to the principal’s profit maximization program (11). With positive
inegative] externalities on non-signers, the objective function is supermod-
ular in (—X, 2) fin (X, 2)] Using Topkis’ Monotonicity Theorem, we obtain
the result. M

This proposition generalizes Proposition 3 of Section 4. It demonstrates
that the relation between the direction of distortion and the sign of external-
ity on signers is not specific to bilateral contracting; rather, it is holds quite
generally when the principal can commit to a mechanism from a family of
binding mechanisms. For example, when the principal uses auctions (as in
Katz-Shapiro [1986a], Kamien et al. [1992]), the arising distortion will be of
the same sign as when the principal uses bilateral contracts.*!

Section 4’s Proposition 4 on the effect of contracting on agents’ utilities
also generalizes in a straightforward way:

Proposition 18 With positive [negative] externalities on non-signers, a ban
on contracting weakly reduces [raises] each agent’s utility.

Proof. Since each agent ’s participation consfraint binds, his utility equals
u;(0, z_;{N\1)), which, with positive [negative] externalities, is weakly smaller
fgreater] than u;(0,0), his utility if contracting were banned. M

41For example, in the context of Vertical Contracting with a Substitute (Application
2), Kamien et al. [1992} find that if the principal’s input (patent) provides a sufficiently
iarge improvement so that the downstream firms who do not purchase it are driven out
of the market, the principal’s optimal auction yields an efficient outcome. Qur result
demonstrates that in this case, due to the absence of externality on signers, the principal’s
choice from any ascending family of mechanisms yields an efficient outcome.
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6.4 Asymptotics

We can also generalize the asymptotic result of Subsection 3.3 under appro-
priate assumptions. Consider a sequence {§n}y_; of mechanism families in
asymptotic settings with N agents (as defined in Subsection 3.3).

Definition 12 A sequence {§n}y_; of mechanism families in the asymp-
totic settings with N agents is asymptotically adequate if

sup mp (X (N)) — supmg () as N — co.
XesFn

(This definition generalizes the asymptotic adequacy of domain defined
in Subsection 3.3)

Definition 13 A sequence {§n )}y, of mechanism families in the asymp-
totic settings with N agents is asymptotically continuous if

sup | X(N\i) — X(N)| - 0 as N — .
XETgy, €N

Intuitively, a sequence of mechanism families is asymptotically continuous
if a single agent asymptotically has a negligible effect on the total trade. The
bilateral contracting and auction examples described in Subsection 6.2 satisfy
this property, while conditional bids described in that subsection do not.

- Letting Mg, = X903, (N) denote the set of equilibrium total trades in
the asymptotic setting with N agents, and recalling that M is the set of
non-pivotal total trades as defined in Section 4, we have the following result:

Proposition 19 Suppose that the sequence Fn of families is asymptotically
adeguate and continuous, and 3(-) is continuous on X. Then (i) supny(VE/N) —
supmo(X). If, in addition, my(-) is upper semi-continuous on X, then (ii)

d (Mg, My) — 0, and (iii) d (W (Mg, ), W(Mg)) — 0.

The proof of this result is virtually identical to that of Proposition 5.

This result establishes that when 5(:) is continuous and N is very large,
the outcome of contracting does not depend on which mechanisms the princi-
pal can use, as long as they are asymptotically adequate and asymptotically
continuous. For example, since both auctions and bilateral contracts have
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this property, the advantage of the former over the latter which was demon-
strated by Katz-Shapiro [1986a] and Kamien et al. {1992] disappears when
N — occ. On the other hand, conditional bids are not asymptotically con-
tinuous and are not covered by this proposition. In the next section, we will
see that using such discontinuous mechanisms, the principal may be able to
do much better than in the non-pivotal program even when N is large.

6.5 Fully Optimal Mechanisms

Here we study at the principal’s optimal choice when all mechanisms are
allowed, i.e. §=9:

Proposition 20 My = Mip (N) x [T, Mo (N\4) X [Tacn ajen—1 Fn (4),
where

Win (N) = IM* (as defined in Section 4),
Mo (N\i) =argmin u;(0,2_;) for alli € N, and
T_;EX_;

Mo (A) = D(A) for all AC N with |4 < N —1.

Proof. Follows from the additive separability of the objective function in
the profit-maximization program (11) in z(N)and z(N\i) for all i, and the
fact that © =[],y P(4). B

Corollary 3 With positive [negative] externalities,
My D {x €D :2(N)eM, z;(N\i) =0 /= maxX;] whenever j i} .

These results can be interpreted as follows. If the principal can choose
any mechanism from %, then she maximizes her profit by implementing a
surplus-maximizing trade profile z{N) in equilibrium, while at the same time
minimizing the agents’ rents by choosing the harshest punishment z{N\7)
following each agent i’s deviation (and the trades following multilateral de-
viations do not matter, since we are only concerned with Nash equilibrium
implementation).*? With positive externalities, the harshest punishment for

#2Q0ne might wonder whether these optimal mechanisms may have other Nash equilibria
which are preferred by all agents. In fact, it is easy to ensure that “all accept” is a unique
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agent i is z;{N\i) = 0 for all j. This punishment is implemented by an
offer that requires unanimous acceptance: if at least one agent rejects, no
trade takes place. {A mechanism of this kind has been suggested by Bagnoli-
Lipman [1988] in the context of Takeovers (Application 7).) With negative
externalities, the harshest punishment is z;(/V\i) = maxX; for all j # 4.
In words, the deviator is punished by implementing the maximum possible
trades with all other agents. (Mechanisms of this kind have been suggested
by Katz-Shapiro [1986a] and Kamien et al. [1992] in the context of Vertical
Contracting with a Substitute (Application 2).%3) In both cases, the separa-
tion between rent extraction and surplus maximization results in efficiency.

Observe that this result does not contradict the previous results of this
section. Indeed, all the inefficiency results of Subsection 6.3 are weak: they
determine the direction of distortion, but do not rule out the possibility
that an efficient outcome arises. The asymptotic result of Proposition 19 is
stronger: it establishes that for a large N we obtain a non-pivotal outcome,
which is likely to be inefficient (see Subsection 4.3 for sufficient conditions
for this to occur). However, this result is only true for asymptotically contin-
uous mechanisms, and the fully optimal mechanism derived above is clearly
not asymptotically continuous: it requires triggering the harshest possible
punishment following any individual agent’s deviation.*

6.6 Noisy Asymptotics

The discontinuity of the fully optimal mechanism derived above seems un-
realistic in environments in which N is large and the principal faces some
uncertainty about the number of accepting agents. To formalize this intu-
ition, consider an asymptotic setting in which the principal cannot foresee

Nash equilibrium. Indeed, since the out-of equilibrium payments ¢;(A) for A # N do
not affect the principal’s equilibrium profits, she can promise these payments to be large
enough so that each agent strictly prefers to accept if he knows that at least one other
agent rejects. This would make acceptance a weakly dominant strategy. Furthermore, by
slightly raising the equilibrium payments ¢;{¥V), the principal could ensure that acceptance
is a strictly dominant strategy.

“3In the context of Nuclear Weapons (Application 4), a similar mechanism has been
suggested by Jehiel et al. [1996].

“Note in passing that with negative externalities, each agent is pivotal in the sense
opposite to that of bilateral contracting (Section 4): his rejection increases the total trade
X!
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the number of accepting agents precisely. Namely, suppose that with some
probability exy > 0 any given agent is unable to respond to the principal’s
offer (e.g. because he has passed away, he has not seen the offer, or his
acceptance message is lost in the mail). Suppose also that these events are
independent across agents. If an agent’s response has not been received by
the principal, she will not be able to trade with that agent. Since the prin-
cipal cannot precisely predict the exact number of responders, it becomes
significantly harder to make agents pivotal.

Let A C N denote the random set of agents who are able to respond
to the principal’s offer. As before, without loss of generality we can restrict
attention to direct mechanisms, in which all agents who are able to respond
accept in equilibrium. For these strategies to constitute a Nash equilibrium,
each agent must prefer accepting to not responding when he knows that
others accept whenever they can, i.e., the following participation constraints
must hold:

Eacn [u(z(A)) —t:(A)] i € Al > Eacn [wi(0,2_;(A\i))| i € 4] foralli € N.

Note that unlike in the case of certainty studied before, all acceptance sets
A C N will be observed in equilibrium with a positive probability, and thus
the values of z;(A) and ¢,(A)for all these sets A are relevant for agent i’s
acceptance decision. The principal will optimally choose payments t;(A)
to make all agents’ participation constraints bind, from which we can ob-
tain each agent ¢’s expected payment to the principal, Facy [£:(A)| i € A].%
Substituting in the principal’s objective function, we can write her expected
profit as

F@(A) + Y () Fle(A) + > (w(z(A)) — (0, :c--z-(A\i)))} :
iGA icA

We will study the asymptotic setting defined in Subsection 4.3, which satisfies
Condition L. In this setting, the principal’s expected profit can be written as

a fonction of the mechanism’s aggregate representation X =3, x; only:

F(X(A4)) + X(A)a(X(4)) + 31; > [B(X(A) - B(X (A\i))]] :

€A

EACN = EACN

T N(X) = Facwn

#5(bserve that the principal is indifferent about the choice of payments t;{ A) for different
acceptance sets A, as long as each agent #’s participation constraint binds. She could
achieve this, for example, by charging each accepting agent ¢ a fixed fee ;.
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Letting ®x denote the set of all direct mechanisms in the asymptotic
setting with /N agents, the set My of the aggregate representations of the
principal’s profit-maximizing mechanisms can be defined as

My =argmax wx(X)
XelDy

Since the acceptance set A is now random, we can think of X as a random
variable, and of My as a random set. We are therefore going to use the
concept of convergence in probability to establish the convergence of My to
the set M) of non-pivotal total trades defined in Subsection 4.2.

Our result will require the domain X to satisfy a property which is slightly
stronger than the condition introduced in Subsection 4.3:

Definition 14 The domain X is strongly asymptotically adequate if for some
v < 1, limy— o0 sup mo("NME/N) = sup mp(%).

This is a stronger property than simple asymptotic adequacy, since bNx/N C
NX/N C X, and therefore

sup mo(")2/N) < sup m("X/N) < sup mo(%).

We need this strengthened assumption to rule out situations in which profit
maXimization requires us to implement the maximum possible total trade
max X, and this cannot be approximated due to noise. The property is
satisfied, for example, when My # {max X}, and either ny(-) is continuous
from a side, or X is a closed interval (in which case X /N=X = X for all N).

Finally, perhaps the most important condition for our asymptotic result
is that noise goes to zero slower than NV goes to infinity. Intuitively, it is hard
to make an agent pivotal if the probability that any given number of signers
is realized goes to zero as N — oo. To ensure this, we are going to assume
that the variance in the number of signers, which equals Ney(1 — EN), gOES
to infinity. Then we obtain the following result:

Proposition 21 Suppose that Condition L holds, the domain is strongly as-
ymptotically adequate, and 8(-) and my(-) are bounded on %. Suppose also that
Ney — oo and ey — 0 as N — oo. Then (i) supmy(Dy) — supm(%X). If,
in addition, mo(X) is upper semi-continuous, then (i) d(My, My) £ 0. If, in

54




addition, B(-) is upper semi-continuous®, then (iii) d, (W (My), W(Mp) =
0. If, moreover, B(-) is continuous, then (i) d(W{(My), W(My)) 4o.

Proof. See Appendix A. B

Note that for bounded random variables, convergence in probability im-
plies convergence of expectations. Therefore, parts (ii) and (iv) of the the-
orem imply that the expected values of the total trade and total surplus
converge to the sets My and W{M,) respectively: d(E [My], Mg) — 0, and
A(E [W (Mx)], W (My)) — 0.

To obtain some intuition for the result, consider the principal’s incentives
to choose total trades X (A) for various acceptance sets A C N. First observe
that the choice of X (N) affects only the total surplus in the case A = N (all
agents accept), and does not affect any agent’s reservation utility. There-
fore, in any profit-maximizing mechanism, the principal will choose X (N) to
maximize total surplus (i.e., X(N) € Mpy). But what is the probability of
A= N7 If N is large and ¢y is small, this probability can be approximated
by

—Ne
(1 _ EN)N - [(1 _ EN)—]-/EN] N ~ e..-NEN‘

Therefore, if Ney could be bounded regardless of N, then with a positive
probability, all agents would accept and the first-best outcome would obtain.
On the other hand, if Ney — o0, as assumed in Proposition 21, the prob-
- ability that all agents accept goes to zero as N — oo (moreover, it can be
seen that the maximum probability of any given number of responders goes
to zero). The principal’s optimal choice of X(A4) for A # N is determined
by two considerations: first, it affects the total surplus when A is the set
of agents whose messages are received, and second, it affects the reservation
utility of each agent ¢ € N\ A when the set of agents who are able to respond
is AU 4. Thus, unlike in the case of perfect certainty, profit maximization
and rent extraction can no longer be separated. As a result of the optimal
trade-off between the two motives, the principal asymptotically chooses a
non-pivotal outcome.

Observe that in contrast to the asymptotic results of Proposition 19, parts
(i) and (ii) of Proposition 21 do not require the function 5(-) to be contin-
uous. Intuitively, the presence of noise smooths all discontinuities, whether

46Which is satisfied in all applications described in Section 3.
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they arise in the mechanism or come with the function 8(-). Therefore, our
analysis supports and extends the Grossman-Hart conjecture on takeovers:
regardless of the mechanisms the raider can use (e.g. conditional offers con-
sidered by Bagnoli-Lipman [1988], restricted offers, etc.), and regardless of
how the firm'’s value depends on the raider’s final share, with a large num-
ber of shareholders and in the presence of noise an inefficient non-pivotal
outcome will obtain.

Proposition 21 bears some resemblance to the asymptotic inefficiency re-
sults of Rob [1989] and Mailath-Postlewaite [1990) on the one hand, and that
of Levine-Pesendorfer [1995] on the other. However, my model is substan-
tially different from either setup, as I argue below.

Rob and Mailath-Postlewaite study a setting of Pure Public Good (Ap-
plication 12), in which “noise” is present in the form of agents’ private in-
formation about their willingness to pay for the public good. When N is
large, agents will asymptotically feel non-pivotal and will not contribute to
the public good. My setup is more general in that it incorporates situations
in which contracting has a private, as well as a public, component. While my
agents will asymptotically take the amount of the public good X as given,
they will still trade the private good with the principal.

Levine-Pesendorfer show that noisy observation ensures that agents in
some two-stage games become non-pivotal as their number goes to infinity.
This result is applied, in particular, to resolve the Grossman-Hart paradox.
My setup is more general in that rather than considering a specific game,
I show that if the principal can choose any mechanism, asymptotically the
same non-pivotal outcome obtains. For example, the Grossman-Hart con-
jecture is established not only for non-discriminating single-price offers, as
in Levine-Pesendorfer, but for arbitrary mechanisms. A second difference is.
that the result of Levine-Pesendorfer is based on “disappearance of informa-
tion”: observation noise asymptotically prevents the principal from observing
any single agent’s deviation. In my setting, on the other hand, the princi-
pal asymptotically perfectly observes any given agent’s deviation, and can
design 2 mechanism which makes a singie agent (or a finite group of agents)
pivotal. What Proposition 21 shows is that asymptotically the principal will
maximize her profits by choosing a mechanism in which the vast majority of
agents are non-pivotal.
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7 Conclusion

In recent years, economic theorists have focused on private information as
a source of all “transaction costs”. Our analysis identifies and studies a
new kind of “transaction cost”, which arises in environments with a large
number of agents. Our last result, in particular, demonstrates that in such
environments, the presence of private information is not necessary to produce
contracting inefficiencies: any exogenous source of noise (such as a probability
of messages being lost in the mail) would asymptotically give rise to the same
non-pivotal outcome. This gives a theoretical foundation for the study of
inefficiencies in the various instances of contracting with externalities.

Since our analysis identifies a failure of the Coase theorem, it should have
implications for the optimal design of property rights. As one application,
we can now better understand the role of the right to exclude others from
using an asset, which Hart-Moore [1990] consider to be the most important of
property rights. Consider first an asset in “common property”, which many
parties can use at the same time, and from which no party can exclude others.
Due to the well-known “tragedy of the commons”, such an asset is likely to
be used inefficiently. Moreover, our analysis suggests that contracting will
not necessary yield efficient outcomes in this situation. On the other hand,
suppose that one party (the principal} has the right to exclude others from
using the asset. According to our analysis, if the principal has commitment
power, an efficient outcome will arise.*” This happens because giving the
principal the right to exclude others eliminates externalities on non-signers,
even though in equilibrium all parties may work with the asset and impose
externalities on each other.*®

47This result obtains regardless of who is given the property right over the asset. In
particular, the principal may be an outsider, in which case f(X) = 0. However, if the
parties can make asset-specific investments, Hart-Moore [1990] in deomstrate that it may
be optimal to give the property right to the party whose investment is the most important.

“®In a different but related model, Jehiel-Moldovanu [1996b] study various allocations
of property rights which involve negative externalities on non-signers. They find that the
same inefficient outcome obtains regardless of the initial allocation of property rights.
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A Proofs of Asymptotic Results
The following three lemmas will be useful in some of the proofs:

Lemma 2 (Triangle Inequality) For any three sets A, B, C, di(4,0) <
diy(A, B) + diy(B, C).

The Lemma easily follows from the triangle inequality: (a — S < (a—
bl + (b — -

Lemma 3 If d(MN, M) — 0, My is compact, and B(-) is upper semi-
continuous, then d,(B8(My), 5(Mp)) — 0. If, moreover, B(-) is continuous,
then d(8(My), (M) — 0.

Proof. For the first statement: Suppose not. Then there exists a subse-
quence such that d, (8(Xy), 5(Mp)) > o > 0 for some Xy € My, for all N.
Since ¥ is compact, we can choose this sequence to be converging: Xy —
X € %. Since B(-) is upper semi-continuous, we have d (8(X), B(Mo)) 2
0. On the other hand, since d(Xy, My) — 0, we must have d(X, My) =
limy o0 d{ Xy, Mp) = 0, which _together with compactness of M, implies
X € My, and consequently d(3(X), 8(Ms)) = 0 - a contradiction.

The proof of the second statement is obtained by replacing d, with d and
u.s.c. with continuity. M

Lemma 4 Ifmg isu.s.c., My = argmaxy 5 mo(X), and d(mo(My), mo{Mp)) —
0, then d(My, My) — 0.

Proof. Suppose not. Then we could find a subsequence Xy € My such

that d(Xn, M) > & > 0 for all N. Since ¥ is compact, we can choose this

sequence to be converging: Xy — X, with d(X,My) > 6 > 0. On the

other hand, by assumption, WQ(X ~) — mo{ M), and u.s.c. of g (+) implies
70(X) > mo(Mp), and therefore X € My - 2 contradiction. &

Proof of Proposition 5: Since 3 (-) is continuous, it is also uniformly
continuous, which implies

sup |y (X) ~mo(X)| = sup |Ry(X)—B(X)| = 0as N — 0. (12)
XeNx /N XelNx
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Therefore,
|sup 7y (VE/N) — sup7o(X)| < _
< |sup mn(NX/N) — supmo(VE/N)| + [sup mo(VE/N) — sup mo(X)| <
< supxewz/y [T (X) — mo(X)| + [sup mo(VE/N) — sup mo(X) ,

and now (12) and asymptotic adequacy of X imply (i).
Now, using the triangle inequality, we can write

d(mo(Mn), mo(Mo)) < d(mo(Mn), mn (M) + d(mn(My), 7o(Mo)) < B
< XSSE/N |7 (X) — mo(X)] + | sup mn (N X/N) — sup mo(X)|.

Using (12) and (i), we see that d{my(Mn),mo(Mp)) — 0, which together
with Lemma 4 implies (ii).
Finally, note that W{X) = wo(X) + 8(X), and therefore

d(W(Mn), W(Mo)) < d(mo(My), mo(Mo}) + d(8(Mn), 5(Mo))-

The first term has been proven to go to zero. The second term goes to zero
by Lemma 3, since §(-) is contimious (ii} holds. Thus, we obtain (iii). B

Proof of Proposition 10: Let €y denote the set of equilibrium trade
vectors from (X/N)Y. Observe that EY = {3°F z;: z € €V}. Define

an(X|Z) = f(X)+ ¢ (X|z), where

w(XE) = s D |melmt D) e+ D8y~ {AO T
z 2. TSR 4 J#E J# gt
Take any sequence zV € €y such that XV = 3" 2 — Xj. Since a(:)

and B (-) are continuous on the compact set X, they must also be uniformly
continuous, which implies that

sup 17TN(X|CCN) - WQ(X|X0)| = sup |’§[)N(X|$N) — XCi(Xg)| <

XeNx/N XeNE/N

< sup (.X . Ia(a:z--l-XN —zV) — a(Xg)| + |ﬁ(:c1 + XN — 2y - B(x¥ —:civ)l) —
z;,zY €X/N

— Das N — 0. (13)
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Since mx (X |2") = sup my (VX /N|zV), we can write

ITTN(XleN) — sup Wo(leo)l < _
< [supan(VE/N|zV) - sup 7o (VY X[ Xo)| + |sup 7o (VX[ Xo) — sup mo(X| Xo)| <
< Supxengn [T (X|2N) - mo( X | Xo)| + |sup mo (Y X| Xp) — sup 70( %] Xo)|

As N — o0, the first term goes to zero by (13), and the second term goes to
zero by asymptotic adequacy of domain X for the function my(-|X;). There-
fore,
im T (XN 2N) = sup o (%] Xo).
—0 .

On the other hand, using Lemma 2, we can write

dy (ma (XN ]2N), m0(Xol X)) <
< dy (i (X [2V), 70( XN Xo)) + dy (mo(X V| Xo), m0( X0} Xo)) <
S SU.pXENg/N |7TN(X|$N) _— Wo(XIX{))l -+ d.;. (WQ(XNIXD),‘JTO(X()I.X())) .

As N — oo, the first term goes to zero by (13), and the second term
goes to zero by upper semi-continuity of (-{Xo) (which is implied by up-
per semi~continuity of f(.)). Putting together with the last result, we see
that sup 70(X|Xo) = lmp—e 7y (XV]2) < mo(XolXo), which implies that
Xo € Ep. Since this is true for any converging sequence XV ¢ Ex, and the
set X is compact, this establishes (ii).

Now we can also see that

I\}1_15%0 WN(XNI:IN) = Sllpﬂ'g(%]Xo) = Wo(Xngg) = ’JT{)(X()) = Wo(Eg). (14)

Since this is true for any converging sequence XV € Ey, and the set X is
compact, this establishes (i).
For the welfare result, since W(X} = m(X|X)} + 8(X), we can write

[W(XT) = W(Xo)| < |mo(XN|XY) = mo(Xo| Xo)| + |B(XY) — B(Xo)| <
S |7T0(XN!,XN) - ’ﬂ'o(XNIXG)[ + |7T0(XN,X(}) - WN(XN|$N)| +
+ |ma (XN |z) — To(Xo[ Xo)| + |B(X™) — B(X0)|

< XV e XN - a(Xo)| +XESS£/N |mn (X |2y — To(X | Xo)| +
+ | (XN 2y — mo{Xo| Xo)| + | B(XY) — B(Xy)|
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The second term goes to zero by (13), the third term goes to zero by
(14). Continuity of e () and 3 (-) implies that the first and the last term go
to zero. Therefore, limy .o W(XY) = W(Xo) € W{Ep). Since this is true
for any converging subsequence X~ € Ey, and the set X is compact, this
establishes (iii). M

Proof of Proposition 21: The principal’s expected profit can be rewrit-
ten as

1 .
7y (X) = Eamo(X(4)) + Ea [Z ﬁ{ﬂ(X(A)) — BX(A))]] -
icA
The first term is the profit in a non-pivotal mechanism. The second term
can be rearranged as

Cacw Tiearha B(X(4)) — BX(AVi))] =

= Lacw APRHBX(A)) — Tpcn(N = Apf 1B(X(4)) =

= e PhlA = (N = A (X () =
P%%imxmﬂ,

where pi = eV ~4(1 — &) - probability of a given acceptance set A C N.
(With a slight abuse of notation, we sometimes let A and N stand for the
sizes of the respective sets.)

This term can be bounded using Jensen’s inequality:*°

A—N(1-¢)
Ne

ﬁ(X(A))H < g, |A=NO-9)

Ne

- A—N(1-¢)
Sﬁ\/EA (T

-7 Var(£)=3 Ns(l—s)=B l—¢

Ne N2g2

where 3 = sup |3(%X)|. Therefore,

suprn(EDy) — sup EAWU(X(A))i < sup |Fn(X) — Eam{X(A))| <
XeIDy XeTDy

- l—EN
<
< B New

4°T am grateful to Jim Powell for suggesting this bound.

—~0as N - co. (15)
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Now we can write

jsup 7y (EDnN) — supmo(E)| <

suprn(XDy) — sup EAﬂo(X(A))‘(‘].'ﬁ)

Xty

-

sup Eam(X(A)) — sup ﬁo(—x—)l .
XexZDy

The first term has been shown to go to zero, so it remains to show that
the second term goes to zero as well. For this purpose, observe that we
haveVX /N C A%/N C X when A > vN, and therefore we have the follow-
ing double inequality

supmo(X) > sup Eamo(X(A)) = Egsupmo(AX/N) > (17)
XeEDy
> supmo(™%/N) ~ Pr{A < yN}-2sup |0 (X)] .

As N — o0, the first term in the last expression goes to sup mg (X) by strong
asymptotic adequacy of the domain. To bound the second term, we use
Chebyshev’s inequality, which says that

Pr A-N(1-¢) > 5 SVa:v"(A)221~—6
Ne 62 (Ne) 82Ne
The inequality implies that

A—N(1l-¢)
Ne

forany 6 >0.  (18)

— 0 as N — o0,

(19)
since by assumption ey — 0 and Ney — oco. Therefore, from the double
inequality (17) we see that supx ey, Eamo(X(A4)) — supm(E) as N — oo.
Now we can use (16) and (15) to obtain (i).

To show (ii), rewrite the principal’s problem as

mgx Ea [1o(X(4)) + il%%“—%(xm))]] .

Pr{A< 4N} SPr{

o, _ 2
S lze 7} < €)§N
£ (1—e—7)"Ney

The expectation can be maximized statewise, i.e. for every A,

MN(A) =arg max ﬂ-ﬁ(X) = WO(X) + w
XEAZ/N Ne

B(X).
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Using Chebyshev’s inequality (18) and the assumption that Ney — o0, we
see that supyx [T (X) — mo(X)| 0.
Now, using the triangle inequality, when A > vN, we can write

- dmo(Mn(A)), mo(Mo)) < dlmo(Mu(A)), my (M (A))) + (i (M (A)), mo(Mo)) <
< sup [ (X) — mo(X)| + suprf(“X/N) — sup ()| <
< 2sup |mi(X) — mo(X)| + [sup mo(*Z/N) — supmo(E)| <
< 250 [rf(X) = mo(X)| + [sup mo("1%/N) — sup mo(%)|

The first term has been shown to go to zero in probability, the second term
goes to zero by strong asymptotic adequacy of domain, and Pr {4 > yN} —
1 by (19). Therefore,

d(mo(My), mo(Mp)) £ 0 (20)

Since 7o(+) is u.s.c., Lemma 4 now implies (ii).
For the welfare results, write

W(X(A)) = mo(X(4)) + B{(X(4))
and therefore
d+(W(Mp), W(Mo)) < dy(mo(Mn), mo(Mp)) + d1(8(My), 8(Mo))

The first term is zero. When 3(-) is u.s.c. and (ii), the second term goes to
zero in probability by Lemma 3. Thus we obtain (iii).
Finally, we can write

d(W{(My), W(Mo)) < d(mo(My), mo(Mo)) + d(B(Mn), B(Mp))

When (-} is continuous and (ii), Lemma 3 implies that the second term goes
to zero in probability. Using in addition (20), we obtain (iv). B
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B Multiple Equilibria and Coalition-Proofness

In the main body of the paper we assume that all agents accept their offers
whenever it is a Nash equilibrium for them to do so. But can there be
other Nash equilibria in which some or all agents reject? In this appendix
we show that the answer depends on whether externalities are increasing
or decreasing, as defined in Subsection 4.3. We find that with decreasing
externalities, multiplicity of equilibria is not a serious a problem for the
principal, while with increasing externalities, it is. In the latter case, we study
the contracting outcome under the assumption that all agents coordinate
on & coalition-proof equilibrium. We find that agents’ coordination reduces
contracting distortions, but does not eliminate them completely.

Before proceeding, we need to take care of the following technical problem.
Suppose that we want to constrain the principal to makes offers such that
in the 2nd stage, “all accept” is a unigue Nash equilibrium, or that it is a
coalition-proof Nash equilibrium. In either case, it is easy to see that the set
S of offer profiles {(mz,tz)}fil which have this property may not be closed.
Hence, the principal’s profit-maximizing point in S may not exist.

We sidestep the problem by introducing the following concept. We will
say that an offer profile (z,%) € X; x ... X Xy x RY is nearly in S (belongs
to “near S”) if for any € > O there exists ' € RY such that ||t —#]| < ¢ and
(z,t") € S. When the sets X; are finite, “near S” is the closure of S, and
standard assumptions ensure that a profit-maximizing point within the set
exists.®® One way to approach this point is by restricting the principal to
offer payments in the multiples of a small § > 0, which corresponds to the
feasible set S5 = {{z,t) € S : t, = 6, with z; € Z, for all i}. Since the set
S is closed, it is easy to ensure that a profit-maximizing point within this set
exists. Using Berge’s “maximum theorem” (see e.g. Walker {1979]), we can
see that if the set “near S” is closed and the principal’s objective function is

50The problem does not arise when the equilibrium concept is Nash, since under standard
continuity assumptions, Berge’s “maximum theorem” implies that the graph of the Nash
equilibrium correspondence (the parameters in our case being (z,t)) is closed (see e.g.
Walker [1979}). The theorem cannot be applied to unique Nash equilibrium and coalition-
preof equilibrivm correspondences.

®1For general compact sets X;, the sets “near S” corresponding to unique Nash equilib-
tium and coalition-proof Nash equilibrium can also be shown to be closed, provided that
the functions u;{-,-) are continuous.
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continuous, as § — 0, any limit of a sequence of profit-maximizing points from
S; will maximize profit within “near S”. This argument offers a justification
for using “near S” as the principal’s feasible set.

B.1 Decreasing Externalities

With decreasing externalities, an agent finds it more profitable to accept
his offer when fewer other agents accept. Therefore, whenever it is a Nash
equilibrium for all agents to accept, accepting must be a (weakly) domi-
nant strategy. Thus, multiplicity of equilibria does not constitute a serious
problem: by slightly reducing agents’ payments, the principal can make ac-
ceptance a strictly dominant strategy, thus ensuring that “all accept” is the
unique equilibrium:

Proposition 22 With decreasing externalities, whenever “all accept” is a
Nash equilibrium of the continuation game following {(:c,:,tz-)}?;l, it s nearly
a unique Nash equilibrium.

Proof. Using participation constraints (4) and the property of decreasing
externalities, for any € > 0, for any agent i € N and for any set A C N\i,
we have

Ui( T4, 24, 0) ~ ue(0,24,0) — & + 2 2> wizi,2—;) — w0, 2_5) —t;+2 > > 0.

This establishes that for an offer profile {(z;,#; — £)}/, with an arbitrarily
small ¢ > (0, acceptance is a strictly dominant strategy, and therefore “all
accept” is a unique Nash equilibrium. This implies the statement. B

B.2 Increasing Externalities

With increasing externalities, an agent is finds it less profitable to accept his
offer when he expects fewer other agents to accept, and the multiple equi-
librivin problem is more serious. For example, since all agents’ participation
constraints bind at a solution to the principal’s profit-maximization program,
“all reject” will also be a2 2nd stage Nash equilibrium for this offer profile.
With positive externalities, Proposition 4 implies that the “all accept” equi-
librium is preferred by all the agents. In this case, it may be reasonable
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for the principal to expect the agents to coordinate on their preferred Nash
equilibrium, as Katz-Shapiro [1986b] assume in the context of Network Exter-
nalities (Application 10). With negative externalities, however, Proposition
4 implies that the “all reject” Nash equilibrium will be Pareto preferred by
the agents to the “all accept” equilibrium!

Katz-Shapiro [1986a] and Segal-Whinston [forth.] encountered this prob-
lem in the context of Applications 2 (Vertical Contracting with a Substitute)
and 3 (Exclusive Dealing) respectively. While Katz-Shapiro assume that the
principal is able to induce the agents to play a Pareto inferior equilibrium,
Segal-Whinston instead assume that the agents always choose a coalition-
proof equilibrium. Here we will make the same assumption, and analyze the
principal’s problem in the case of increasing negative externalities.

Our analysis is greatly simplified by observing that under the natural
strategy ordering “accept” > “reject”, the property of increasing externali-
ties implies that the 2nd stage acceptance game is supermodular (as defined
in Milgrom-Roberts [1990]), and the property of negative externalities im-
plies that each player’s payoff is non-increasing in other players’ strategies.
Milgrom-Roberts [1996] demonstrate that in such games, a large class of coali-
tional equilibrium refinements produces the same prediction. Specifically,
they define the concept of a coalition-proof equilibrium (CPE) with commu-
nication structure X, which, for different choices of “admissible” communi-
cation structures, spans a large number of coalitional refinements, including
the concepts of “coalition-proof Nash equilibria” (Bernheim-Peleg-Whinston
[1987]) and “semistrong” equilibria (Kaplan [1992]). For this equilibrium
concept, we obtain the following result:

Proposition 23 Choose any admissible communication structure . With
wncreasing negative externalities, “All accept” is nearly o CPE with of the
continuation game following an offer profile {(a:z,tz)}fi 1 if and only if

DCIRJTA:I;%I;IEBB( {ur(zr, 23D, 0) — te — wr (0, 231, 0) } > 0, (21)
Proof. Since the acceptance game is a supermodular game with each player’s
payoff non-decreasing in others’ strategies, Theorem 2(3)} of Milgrom-Roberts
[1996] establishes that, for any admissible communication structure ¥, the
unique CPE of the game is the lowest Nash equilibrium (which always exists).
Therefore, “all accept” is the unique CPE if and only if it is the unique Nash
equilibrium of the game.
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When the inequality holds, by offering {(z;,¢; — £) }f__l with an arbitrarily
small £ > 0, the principal can ensure that no acceptance play N\D # N is a
Nash equilibrium, hence “all accept” is the unique CPE by Milgrom-Roberts
[1996].

Conversely, when the inequality is violated, it is also violated for any offer
profile {(z,t') with #’ close enough to ¢. Then for any such profile there will
exist a play N\D # N in which all rejecting agents strictly prefer to reject.
While this play is not necessarily a Nash equilibrium itself, we could then
find a Nash equilibrium play A C N\D # N. Hence, “all accept” is not the
lowest Nash equilibrium of the game, and by Milgrom-Roberts [1996], it is
not a CPE. B

Intuitively, the constraint {21) requires that for every deviating coalition
D # §, there exists a “defector” k € D who (weakly) prefers to accept. (Ob-
serve that if we restrict attention to {D| = 1, we obtain the Nash equilibrium
participation constraints (4).) Now we can study the principal’s problem
of maximizing profit subject to (21). Since a general analysis of this pro-
gram seems quite difficult, we restrict attention to cases satisfying Condition
S. For this case, define the set of “trading” agents Ny = {{ e N : z; = 1}.
Since agents are symmetric, without loss of generality we can assume that
Ny ={1,..., X}, where X is the total trade.

Since an agent ¢ who is offered z; = 0 will accept if and only if ¢; > 0
regardless of what he expects other agents to do, the principal will optimally
set t; = 0 for such agents. The constraint (21) will then be automatically
satisfied for all D which contain some agents with z; = 0. Therefore, in
verifying the constraint, we can restrict attention to D C N;.

Let us start with D = N;. The constraint (21) says that there exists
an agent k € D who weakly prefers to accept in this situation. In the
symmetric case, we can assume without loss of generality that k = 1, i.e.,
U(1,1) —t, > U{(0,0). But since we have increasing externalities, this agent
will also want to accept for any D C N;. Thus, we can now restrict attention
to deviating coalitions D C N;\{1}. In particular, for D = N;\{1}, we must
have an agent k£ € D who weakly prefers to accept in this situation. In the
symmetric case, we can assume without loss of generality that k = 2, i.e.,
U(L,2) — 12 > U(0,1). But since we have increasing externalities, agent 2
will then also want to accept for any D C N;\{1}. Thus, we can now restrict
attention to deviating coalitions D C N1\{1,2}. Corntinuing this argument,
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we see that up to a renumbering of agents, the constraint in program (21)
reduces to

e
U(lLk)—t

0 for all £ € N\ NV,

<
> U©,k—1)forall ke N,

At the principal’s profit-maximizing point, all these constraints will be bind-
ing. Expressing t; from the binding constraints and adding up over all &, we

obtain
Dote=> t=> [U@k) -U@0k-1).

keN ke, k=1

Therefore, the principal’s program can be written as
maxF )+ Z U0,k — 1)]

Let MSF denote the set of solutions of this program.

To compare this set to the set M* of first-best total trades and the set M
of trades that occur in the principal’s preferred NE, consider the following
intuition. Start with a 2nd stage CPE in which the constraint (21) binds,
and the set of trading agents is Ny C N, with [N;| = X — 1. Suppose that
the principal contemplates deviating to a CPE with total trade X. It is easy
to see that the principal will optimally do making a new agent i ¢ N; an
offer at a price of t; = U'(1, X) —~ U(0, X — 1), and holding her offers to other
agents fixed. Indeed, this will insure that all other agents accept even if
they expect the new agent to reject, hence “all accept” remains a CPE. This
deviation will impose externalities on agents other than i, both those who
trade and those who do not trade. Therefore, when externalities are globally
negative, the principal will have a socially excessive incentive to increase X.
At the same time, when externalities are increasing, the principal will have a
smaller incentive to do it than he would have in program (5), in which only
externalities on non-signers matter. Formalizing this intuition using Topkis’
Monotoenicity Theorem, we obtain the following result:

Proposition 24 When Condition S holds and we have increasing and glob-
ally negative externalities, M* < M? < M in the strong set order.
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Thus, with increasing and globally negative externalities, coordination
among agents reduces contracting distortions, but does not fully eliminate
them. This generalizes the finding of Segal-Whinston [forth.] that in the set-
ting of Exclusive Dealing (Application 3), inefficient exclusion always occurs
when the buyers can be induced to play the incumbent firm’s preferred equi-
librium, but occurs only for some parameters when the buyers coordinate on
a coalition-proof equilibrium.

With private offers, we could also allow agents to coordinate on a coalition-
proof equilibrium. As should be clear from the above analysis, with decreas-
ing externalities this would not affect the equilibrium set. With increasing
externalities, on the other hand, an equilibrium is unlikely to exist, for the
same reasons as outlined in Appendix C.

C Existence of Equilibria with Private Offers

A set of sufficient conditions for existence of equilibrium with private offers
is provided by the following proposition:

Proposition 25 When X, is an inferval for all i, and the function
9(z,Z) = f(z) + Zuz‘(%f—z‘)

is continuous in (z,T) and quasi-concave in z, we have E # 0.

Proof. A trade profile 7 satisfies the equilibrium condition (8) if and only
if ¥ € B(Z) = argmaXeex,x..xxy 9(%,Z). Under the assumptions, the cor-
respondence B(z) satisfies the conditions of Kakutani’s fixed-point theorem,
therefore a solution 7 exists. B

A sufficient condition for quasi-concavity of g(z,Z) in z is for f(x) to be
concave and for u;{x;,Z_;) to be concave in z; for all ¢ and all z_;. In the
context of Vertical Contracting (Example 1), this means that the supplier’s
cost function is convex and the revenue functions are quasiconcave, which
generalizes the setting analyzed by Hart-Tirole [1990] and Rey-Tirole [1996].

69




In an asymptotic setting with a large N, supposing that the second deriv-
atives of F'(-), a(-), B(-) exist and are bounded on X, we can write

g I

j#

62gN(:c,':f) o ' T 1
—_E%— = F Zﬁ:a’,‘z + 2 $¢+ZE,; +O(]—V_'),

J#
2 -——"
a—a%%f) — P (Zm) for k # L.

Thus, having F(-) concave and o/(X) < 0 for all X is sufficient to satisfy the
conditions of Proposition 25 for N large enough. On the other hand, when
a/(X) > 0 for all X, the conditions of Proposition 25 are violated when N is
large enough. To see this, observe that in this case the 3x3 leading principal
minor of the bordered Hessian of gn(-, %) at the point z; = #; = X /N for all
i equals to

—4 [F'(X) + @]2 cof (X) + O(%) > 0 for N large enough.

Therefore, in this case the function gx(-,Z) is not quasiconcave.

Since o/(-) < 0 is the asymptotic version of decreasing externalities, this
suggests that the existence of equilibrium is intimately tied to decreasing
externalities. While we do not have a general result to this effect, we have a
result for a special case:

Proposition 26 Suppose that Condition S holds. Then

(i) When we have decreasing externalities and F(-) concave, we have E # §.

(i) When U(1,X +1) — U(0,X) is strictly increasing in X (i.e., we have
strictly increasing externalities), any equilibrium T € E must have T; =
...=TZn.
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Proof. Define

FX+1)+U1,X+1)]-[F(X)+U(0,X)} when X € {0,...,N—1},
A(X)={£}vfrhenX<OorX>I\)f]—1[. )

Note that A{X) can be interpreted in two ways:

e As the principal’s gain from trading with one more agent when she is
expected to trade with X agents, and agents hold passive beliefs.

e As the principal’s loss from trading with one fewer agent when she is
expected to trade with X + 1 agents, and agents hold passive beliefs.

It is now clear that X € {0,..., N} is a “pairwise equilibrium” (as defined
in Subsection 5.1) if and only if A(X) < 0 and A(X — 1) > 0. It is easy
to see that the point X = min{X € {0,...,N}: A(X) < 0} satisfies this
condition, and exists (indeed, the set always includes N, and is therefore
non-empty, and it is finite). Therefore, a pairwise equilibrium X must exist.

To see that X must be a true equilibrium, consider the general multi-
agent deviation, in which the principal trades with k¥ new agents and gives
up trade with [ old agents. The principal’s gain from this deviation can be
written as

F(X+k—1)—F(X)+k [U(z,)’f +1) - U(e,)?)] - [U(l,)?) —U(0,X - 1)] .
When k > I, this gain can be rewritten as
FX+k-0)—FX) + (k-1 [U(l,)? +1)— U(o,)?)] +
+#{(va, X+ -v0E,%) - (Ve R -, -1)].

When F(-) is concave, the first term can be bounded from above by
(k— 1) A(X) < 0. When we have decreasing externalities, the second term
must also be non-positive. 'Thus, the deviation is unprofitable. Since a similar
argument works when k < [, X must be a true equilibrium, which establishes
(i).

To see (ii), suppose in negation that we have T € E with Z;, = 1 and
Zy = 0. Consider the principal’s deviation in which she trades with one new
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agent and gives up trade with one old agent. Letting X = 3% =0, the
principal’s gain can be written as

[U(l, X+1)-U(o, )?)] - [U(z, X)-U(0,X - 1)] .

With strictly increasing externalities, the principal’s gain must be strictly
positive, which contradicts the hypothesis that T ¢ E. B

While this result does not rule out the possibility that private-offers equi-
libria exist with increasing externalities, it does reinforce our intuition that
such existence is, in some sense, less likely than with decreasing externali-
ties. One way to ensure existence is to allow the agents to hold arbitrary,
and not just passive, beliefs. Segal-Whinston [forth] examine the set of such
equilibria in the context of Application 3 (Exclusive Dealing), which exhibits
increasing externalities.
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Settings: Conds.” Cond. S | Extern. on | Global | Increase in | o (Asympt.
ALD non-signers | Extern. | Externality | Increase)

1. Vertical Contracting | sometimes | no 0 - - -

2. V. C. with a Subst. | yes yes - - +/- +/-

3. Exclusive Dealing yes yes - - + +

4. Nuclear Weapons no 1o +/-

5. Common Insurance | yes no 0 - - -

6. Common Agency yes no + + +/- -

7. Takeovers ves sometimes | + + - -

8. Debt Workouts yes sometimes | + + - -

9. Merger for Monopoly | yes yes + + - -

10. Network Extern. yes yes 0 + + +

11. Bargaining Extern. | yes yes + + - -

12. Pure Public Goods | yes sometimes | + + +/- 0

13. Pure Public Bads yes sometimes | - - +/- 0

* In these two columns, “yes” means that the respective condition(s) are
always satisfied in the literature, “sometimes” means that they are satisfied
only in some models in the literature, and “no” means that they are not

Table 1: Applications

satisfied and they are not reasonable in the specific context.
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