Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Assortative mating at loci under recent natural selection in humans

Abstract

Genetic correlation between mates at specific loci can greatly alter the evolutionary trajectory of a species. Genetic assortative mating has been documented in humans, but its existence beyond population stratification (shared ancestry) has been a matter of controversy. Here, we develop a method to measure assortative mating across the genome at 1,044,854 single-nucleotide polymorphisms (SNPs), controlling for population stratification and cohort-specific cryptic relatedness. Using data on 1683 human couples from two data sources, we find evidence for both assortative and disassortative mating at specific, discernible loci throughout the entire genome. Then, using the composite of multiple signals (CMS) score, we also show that the group of SNPs exhibiting the most assortativity has been under stronger recent positive selection. Simulations using realistic inputs confirm that assortative mating might indeed affect changes in allele frequency over time. These results suggest that genetic assortative mating may be speeding up evolution in humans.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View