Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Resonance frequencies of honeybee (Apis mellifera) wings

Abstract

During flight, insect wings bend and twist under the influence of aerodynamic and inertial forces. We tested whether wing resonance of honeybees (Apis mellifera) matches the wingbeat frequency, against the 'stiff element' hypothesis that the wing's first longitudinal mode exceeds the wingbeat frequency. Six bees were immobilized with their right wing pair outspread, and stimulated with a shaker while the normal modes were recorded with a scanning Doppler laser vibrometer. The lowest normal mode of the wings was the first longitudinal bending mode and, at 602±145 Hz, was greater than the wingbeat frequency of 234±13.9 Hz. Higher-order normal modes of the wing tended to incorporate nodal lines in the chordwise direction of the trailing edge, suggesting that their mode shape did not strongly resemble wing deformation during flapping flight. These results support the stiff element hypothesis for Apis mellifera.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View