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NoVaS Transformations:

Flexible Inference for Volatility Forecasting

April 8, 2008

Abstract

In this paper we present several new findings on the NoVaS transformation approach for

volatility forecasting introduced by Politis (2003a,b, 2007). In particular: (a) we present

a new method for accurate volatility forecasting using NoVaS ; (b) we introduce a “time-

varying” version of NoVaS and show that the NoVaS methodology is applicable in situations

where (global) stationarity for returns fails such as the cases of local stationarity and/or

structural breaks and/or model uncertainty; (c) we conduct an extensive simulation study

on the forecasting ability of the NoVaS approach under a variety of realistic data generating

processes (DGP); and (d) we illustrate the forecasting ability of NoVaS on a number of real

datasets and compare it to realized and range-based volatility measures. Our empirical results

show that the NoVaS -based forecasts lead to a much ‘tighter’ distribution of the forecasting

performance measure. Perhaps our most remarkable finding is the robustness of the NoVaS

forecasts in the context of structural breaks and/or other non-stationarities of the underlying

data. Also striking is that forecasts based on NoVaS invariably outperform those based on

the benchmark GARCH(1,1) even when the true DGP is GARCH(1,1) when the sample size

is moderately large, e.g. 350 daily observations.

Keywords: ARCH, forecasting, GARCH, local stationarity, robustness, structural breaks,

volatility.
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1 Introduction

Accurate forecasts of the volatility of financial returns is an important part of empirical finan-

cial research. In this paper we present a number of new findings on the NoVaS transformation

approach to volatility prediction. The NoVaS methodology was introduced by Politis (2003a,b,

2007) and further expanded in Politis and Thomakos (2007). The name of the method is an

acronym for ‘Normalizing and Variance Stabilizing’ transformation. NoVaS is based on ex-

ploratory data analysis ideas, it is model-free, data-adaptive and—as the paper at hand hopes

to demonstrate—especially relevant when making forecasts in the context of underlying data

generating processes (DGPs) that exhibit non-stationarities (e.g. locally stationary time series,

series with parameter breaks or regime switching etc.). In general, NoVaS allows for a flexible

approach to inference, and is also well suited for application to short time series.

The original development of the NoVaS approach was made in Politis (2003a,b, 2007) having

as its ‘spring board’ the popular ARCH model with normal innovations. In these papers, the

main application was forecasting squared returns (as a proxy for forecasting volatility), and the

evaluation of forecasting performance was addressed via the L1-norm (instead of the usual MSE)

since the case was made that financial returns might not have finite 4th moment.

In the paper at hand we further investigate the applicability of NoVaS in a forecasting con-

text. First, we present a method for bona fide volatility forecasting, extending the original NoVaS

notion of forecasting squared returns. Second, we conduct a very comprehensive simulation study

about the relative forecasting performance of NoVaS: we consider a wide variety of volatility mod-

els as data generating processes (DGPs), and we compare the forecasting performance of NoVaS

with that of a benchmark GARCH(1,1) model. We introduce the notion of a “time-varying”

NoVaS approach and show that is especially relevant in these cases where the assumption of

global stationarity fails. The results of our simulations show that NoVaS forecasts lead to a

much ‘tighter’ distribution of the forecasting performance measure (mean absolute deviation of

the forecast errors), when compared to the benchmark model, for all DGPs we consider. This

finding is especially relevant in the context of volatility forecasting for risk management. We

further illustrate the use of NoVaS for a number of real datasets and compare the forecasting per-

formance of NoVaS-based volatility forecasts with realized and range-based volatility measures,

which are frequently used in assessing the performance of volatility forecasts.

The literature on volatility modeling, forecasting and the evaluation of volatility forecasts is

very large and appears to be continuously expanding. Possibly related to the paper at hand is the

work by Hansen (2006) in which the problem of forming predictive intervals is addressed using

a semiparametric, transformation-based approach. Hansen works with a set of (standardized)
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residuals from a parametric model, and then uses the empirical distribution function of these

residuals to compute conditional quantiles that can be used in forming prediction intervals. The

main similarity between Hansen’s work and NoVaS is that both approaches use a transformation

of the original data and the empirical distribution to make forecasts. The main difference,

however, is that Hansen works in the context of a (possibly misspecified) model whereas NoVaS

is totally model-free.

We can only selectively mention here some recent literature related to the forecasting prob-

lems we address: Mikosch and Starica (2000) for change in structure in time series and GARCH

modeling; Meddahi (2001) for an eigenfunction volatility modeling approach; Peng and Yao

(2003) for robust LAD estimation of GARCH models; Poon and Granger (2003) for assessing

the forecasting performance of various volatility models; Hansen, Lunde and Nason (2003) on

selecting volatility models; Andersen, Bollerslev and Meddahi (2004) on analytic evaluation of

volatility forecasts; Ghysels and Forsberg (2007) on the use and predictive power of absolute

returns; Francq and Zaköıan (2005) on switching regime GARCH models; Hillebrand (2005) on

GARCH models with structural breaks; Hansen and Lunde (2005, 2006) for comparing fore-

casts of volatility models against the standard GARCH(1,1) model and for consistent ranking of

volatility models and the use of an appropriate series as the ‘true’ volatility; and Ghysels, Santa

Clara and Valkanov (2006) for predicting volatility by mixing data at different frequencies. The

whole line of work of Andersen, Bollerslev, Diebold and their various co-authors on realized

volatility and volatility forecasting is nicely summarized in their review article “Volatility and

Correlation Forecasting”, forthcoming in the Handbook of Economic Forecasting, see Andersen

et al. (2006). Fryzlewicz, Sapatinas and Subba-Rao (2006, 2007) and Dahlhaus and Subba-Rao

(2006, 2007) all work in the context of local stationarity and a new class of ARCH processes

with slowly varying parameters. Of course this list is by no means complete.

The rest of the paper is organized as follows: in Section 2 we briefly review the general de-

velopment of the NoVaS approach; in Section 3 we present the design of our simulation study

and discuss the simulation results on forecasting performance; in Section 4 we present empiri-

cal applications of NoVaS using real-world data; finally, in Section 5 we offer some concluding

remarks.

2 Review of the NoVaS Methodology

In this section we present a brief overview of the NoVaS transformation, the implied NoVaS

distribution, the methods for distributional matching and NoVaS forecasting. For a more com-

prehensive review of the NoVaS methodology see Politis and Thomakos (2007).
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2.1 NoVaS transformation and implied distribution

Let us consider a zero mean, strictly stationary time series {Xt}t∈Z corresponding to the returns

of a financial asset. We assume that the basic properties of Xt correspond to the ‘stylized facts’1

of financial returns:

1. Xt has a non-Gaussian, approximately symmetric distribution that exhibits excess kurtosis.

2. Xt has time-varying conditional variance (volatility), denoted by h2
t

def= E
[
X2

t |Ft−1

]
that

exhibits strong dependence, where Ft−1
def= σ(Xt−1, Xt−2, . . . ).

3. Xt is dependent although it possibly exhibits low or no autocorrelation which suggests

possible nonlinearity.

These well-established properties affect the way one models and forecasts financial returns and

their volatility and form the starting point of the NoVaS methodology.

The first step in the NoVaS transformation is variance stabilization to address the time-

varying conditional variance property of the returns. We construct an empirical measure of the

time-localized variance of Xt based on the information set Ft|t−p
def= {Xt, Xt−1, . . . , Xt−p}

γt
def= G(Ft|t−p;α,a) , γt > 0 ∀t (1)

where α is a scalar control parameter, a
def= (a0, a1, . . . , ap)> is a (p + 1) × 1 vector of control

parameters and G(·; α, a) is to be specified.2 The function G(·;α,a) can be expressed in a variety

of ways, using a parametric or a semiparametric specification. To keep things simple we assume

that G(·;α,a) is additive and takes the following form:

G(Ft|t−p; α, a) def= αst−1 +
p∑

j=0

ajg(Xt−j)

st−1 = (t− 1)−1
∑t−1

j=1 g(Xj)

(2)

with the implied restrictions (to maintain positivity for γt) that α ≥ 0, ai ≥ 0, g(·) > 0 and

ap 6= 0 for identifiability. Although other choices are possible, the natural choices for g(z) are

g(z) = z2 or g(z) = |z|. With these designations, our empirical measure of the time-localized

variance becomes a combination of an unweighted, recursive estimator st−1 of the unconditional

variance of the returns σ2 = E
[
X2

1

]
, or of the mean absolute deviation of the returns δ = E|X1|,

and a weighted average of the current3 and the past p values of the squared or absolute returns.

1Departures from the assumption of these ‘stylized facts’ have been discussed in Politis and Thomakos (2007);

in this paper, we are mostly concerned about departures/breaks in stationarity—see Section 2.4 in what follows.
2See the discussion about the calibration of α and a in the next section.
3The necessity and advantages of including the current value is elaborated upon by Politis (2003a,b,2004,2007).
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Using g(z) = z2 results in a measure that is reminiscent of an ARCH(p) model which was

employed in Politis (2003a,b, 2007). The use of absolute returns, i.e. g(z) = |z| has also been

advocated for volatility modeling; see e.g. Ghysels and Forsberg (2007) and the references therein.

Robustness in the presence of outliers in an obvious advantage of absolute vs. squared returns.

In addition, note that the mean absolute deviation is proportional to the standard deviation for

the symmetric distributions that will be of current interest.

The second step in the NoVaS transformation is to use γt in constructing a studentized

version of the returns, akin to the standardized innovations in the context of a parametric (e.g.

GARCH-type) model. Consider the series Wt defined as:

Wt ≡ Wt(α, a) def=
Xt

φ(γt)
(3)

where φ(z) is the time-localized standard deviation that is defined relative to our choice of g(z),

for example φ(z) =
√

z if g(z) = z2 or φ(z) = z if g(z) = |z|. The aim now is to choose the NoVaS

parameters in such a way as to make Wt follow as closely as possible a chosen target distribution

that is easier to work with. The natural choice for such a distribution is the normal—hence the

‘normalization’ in the NoVaS acronym; other choices (such as the uniform) are also possible in

applications, although perhaps not as intuitive—see e.g. Politis and Thomakos (2007).

Remark 1. The above distributional matching should not only focus on the first marginal distri-

bution of the transformed series Wt. Rather, the joint distributions of Wt should be normalized

as well; this can be accomplished by attempting to normalize linear combinations of the form

Wt+λWt−k for different values of the lag k and the weight parameter λ; see e.g. Politis (2003a,b,

2007). For practical applications it appears that the distributional matching of the first marginal

distribution is quite sufficient.

A related idea is the notion of an implied model that is associated with the NoVaS transfor-

mation that was put forth by Politis (2004). For example, solving for Xt in eq. (3), and using

the fact that γt depends on Xt, it follows that:

Xt = UtAt−1 (4)

where (corresponding to using either squared or absolute returns) the two terms on the right-hand

side above are given by

Ut
def=





Wt/
√

1− a0W 2
t if φ(z) =

√
z

Wt/(1− a0|Wt|) if φ(z) = z



 (5)

and

At−1
def=





√
αst−1 +

∑p
j=1 ajX2

t−j if g(z) = z2

αst−1 +
∑p

j=1 aj |Xt−j | if g(z) = |z|



 (6)
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If one postulates that the Ut are i.i.d. according to some desired distribution, then eq. (4)

becomes a bona fide model.4 If the distribution of Ut is the one implied by eq. (4) with Wt

having a (truncated5) normal distribution, then eq. (4) is the model that is ‘associated’ with

NoVaS. With the normal target distribution and our two options for computing γt, the implied

distribution of Ut can be derived using calculus and given below:

f1(u, a0) = c1(a0)× (1 + a0u
2)−1.5 exp

[−0.5u2/(1 + a0u
2)

]
when g(z) = z2

f2(u, a0) = c2(a0)× (1 + a0|u|)−2 exp
[−0.5u2/(1 + a0|u|)2

]
when g(z) = |z|

(7)

The constants ci(a0), for i = 1, 2, ensure that the densities are proper and integrate to one.

Note that the fi(u, a0) distributions lack moments of high orders. In particular, f1(u, a0) has

finite moments of order a if a < 2, whereas f2(u, a0) has finite moments of order a if a < 1.

In the terminology of Politis (2004), f1(u, a0) has ‘almost finite’6 second moment but moments

higher than two are infinite; similarly, f2(u, a0) has ‘almost’ finite first moment but moments

higher than one are infinite.7

Politis (2003b, 2004, 2007) makes the case that financial returns seem to have finite second

moment but infinite 4th moments. In that case, the normal target does not seem to be compatible

with the choice of absolute returns—and the same is true of the uniform target—as it seems that

the case g(z) = |z| might be better suited for data that do not have a finite second moment.

Nevertheless, there is always the possibility of encountering such extremely heavy-tailed data,

e.g. in emerging markets, for which the absolute returns might be helpful.8

Remark 2. The set-up of potentially infinite 4th moments has been considered by Hall and Yao

(2003) and Berkes and Horvath (2004) among others, and has important implications on an issue

crucial in forecasting, namely the choice of loss function for evaluating forecast performance. The

most popular criterion for measuring forecasting performance is the mean-squared error (MSE)

which, however, is inapplicable in forecasting squared returns (and volatility) when the 4th

4In particular, when g(z) = z2, then (4) is tantamount to an ARCH(p) model.
5To elaborate, recall that the range of Wt is bounded. Using eq. (3) it is straightforward to show that

|Wt| ≤ 1/
√

a0, when g(z) = z2, whereas |Wt| ≤ 1/a0, when g(z) = |z|. This, however, creates no practical

problems. With a judicious choice for a0 the boundedness assumption is effectively not noticeable. Take, for

example, the case where the target distribution for Wt is the standard normal and g(z) = z2. A simple restriction

would then be a0 ≤ 1/9, which would make Wt to take values within ±3 that cover 99.7% of the mass of the

standard normal distribution. Similarly, when g(z) = |z| then a0 can be chosen as a0 ≤ 1/3.
6It would have exactly finite second moment with a more judicious (but cumbersome) choice of the truncation

parameter.
7Similar expressions and implied distribution behavior applies when one uses a different target distribution for

distributional matching, e.g. the uniform. For further details see Politis and Thomakos (2007).
8This might well be the case of the EFG dataset of Section 4 in what follows.
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moment is infinite. In contrast, the mean absolute deviation (MAD) is as intuitive as the MSE

but does not suffer from this deficiency, and can thus be used in evaluating the forecasts of either

squared or absolute returns and volatility; this L1 loss criterion will be our preferred choice in

this paper.9

2.2 NoVaS distributional matching

2.2.1 Calibration

We next turn to the issue of optimal selection—calibration—of the NoVaS parameters. The

objective is to achieve the desired distributional matching with as few parameters as possible

(parsimony). The free parameters are p (the NoVaS order), and (α, a). The parameters α and

a are constrained to be nonnegative to ensure the same for the variance. In addition, motivated

by unbiasedness considerations, Politis (2003a,b, 2007) suggested the convexity condition α +
∑p

j=0 aj = 1. Finally, thinking of the coefficients ai as local smoothing weights, it is intuitive to

assume ai ≥ aj for i > j.

We now discuss in detail the case when α = 0; see Remark 3 for the case of nonzero α. The

simplest scheme that satisfies the above conditions is equal weighting, that is aj = 1/(p + 1) for

all j = 0, 1, . . . , p. These are the ‘simple’ NoVaS weights proposed in Politis (2003a,b, 2007).

An alternative allowing for greater weight to be placed on earlier lags is to consider exponential

weights of the form:

aj =





1/
∑p

j=0 exp(−bj) for j = 0

a0 exp(−bj) for j = 1, 2, . . . , p



 (8)

where b is the rate; these are the ‘exponential’ NoVaS weights proposed in Politis (2003a,b, 2007).

Both the ‘simple’ and ‘exponential’ NoVaS require the calibration of two parameters: a0

and p for ‘simple’, and a0 and b for ‘exponential’.10 Nevertheless, the exponential weighting

scheme allows for greater flexibility, and will be our preferred method. In this connection, let

θ
def= (p, b) 7→ (α, a), and denote the studentized series as Wt ≡ Wt(θ) rather than Wt ≡ Wt(α, a).

For any given value of the parameter vector θ we need to evaluate the ‘closeness’ of the marginal

distribution of Wt with the target distribution. To do this, an appropriately defined objective

function is needed, and discussed in the next subsection.

9See also the recent paper by Hansen and Lunde (2006) about the relevance of MSE in evaluating volatility

forecasts.
10Note that now p in the exponential NoVaS could, in theory, be set to infinity; it takes a finite (but large) value

only for practical considerations.
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2.2.2 Objective functions for optimization

To evaluate whether the objective of distributional matching has been achieved, many different

objective functions could be used. For example, one could use moment-based matching (e.g.

kurtosis matching as originally proposed by Politis [2003a,b, 2007]), or complete distributional

matching via any goodness-of-fit statistic like the Kolmogorov-Smirnov statistic, the quantile-

quantile correlation coefficient (Shapiro-Wilks statistic for testing normality) and others. All

these measures are essentially distance-based and the optimization will attempt to minimize the

distance between empirical (sample) and target values.11

Let us consider the simplest case first, i.e., moment matching. Assuming that the data are

approximately symmetrically distributed and only have excess kurtosis, one first computes the

sample excess kurtosis of the studentized returns as:

Kn(θ) def=
∑n

t=1(Wt − W̄n)4

ns4
n

− κ∗ (9)

where W̄n
def= (1/n)

n∑

t=1

Wt denotes the the sample mean, s2
n

def= (1/n)
n∑

t=1

(Wt − W̄n)2 denotes the

sample variance of the Wt(θ) series, and κ∗ denotes the theoretical kurtosis coefficient of the

target distribution. For the normal distribution κ∗ = 3.

The objective function for this case can be taken to be the absolute value, i.e., Dn(θ) def=

|Kn(θ)|, and one would adjust the values of θ so as to minimize Dn(θ). As noted by Poli-

tis (2003a,b, 2007) such an optimization procedure will always have a solution in view of the

intermediate value theorem. To see this, note that when p = 0, a0 must equal 1, and thus

Wt = sign(Xt) that corresponds to Kn(θ) < 0 for any choice of the target distribution. On the

other hand, for large values of p we expect that Kn(θ) > 0, since it is assumed that the data

have large excess kurtosis. Therefore, there must be a value of θ that will make the sample

excess kurtosis approximately equal to zero. This observation motivates the following algorithm

for exponential NoVaS (Politis [2003a, 2007]):

• Let p take a very high starting value, e.g., let pmax ≈ n/4.

• Let α = 0 and consider a discrete grid of b values, say B
def= (b(1), b(2), . . . , b(M)), M > 0.

Find the optimal value of b, say b∗, that minimizes Dn(θ) over b ∈ B, and compute the

optimal parameter vector a∗ using eq. (8).

11This part of the NoVaS application appears similar at the outset to the Minimum Distance Method (MDM)

of Wolfowitz (1957). Nevertheless, their objectives are quite different since the latter is typically employed for

parameter estimation and testing whereas in NoVaS there is little interest in parameters—the focus lying on

effective forecasting.
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• Trim the value of p by removing (i.e., setting to zero) the aj parameters that do not exceed

a pre-specified threshold, and re-normalize the remaining parameters so that their sum

equals one.

While kurtosis matching has been found to work well with financial returns data, it is straightfor-

ward to extend the above algorithm to a variety of different objective functions. For example, one

can opt for a combination of skewness and kurtosis matching12, or for goodness-of-fit statistics

such as the Shapiro-Wilks or the Kolmogorov-Smirnov statistic. One performs the same steps

but simply evaluates a different objective function. Note that for any choice of the objective

function Dn(θ) ≥ 0 and, as noted in the algorithm above, the optimal values of the parameters

are clearly determined by the condition:

θ∗n
def= argmin

θ
Dn(θ) (10)

Remark 3. The discussion so far was under the assumption that the parameter α, that controls

the weight given to the recursive estimator of the unconditional variance, is zero. If desired one

can select a non-zero value by doing a direct search over a discrete grid of possible values while

obeying the summability condition α+
∑p

j=0 aj = 1. For example, one can choose the value of α

that optimizes out-of-sample predictive performance; see Politis (2003a,b, 2007) for more details.

2.3 NoVaS Forecasting

Once the NoVaS parameters are calibrated one can compute volatility forecasts. In fact, as Politis

(2003a,b, 2007) has shown, one can compute forecasts for different functions of the returns,

including higher powers (with absolute value or not). The choice of an appropriate forecasting

loss function, both for producing and for evaluating the forecasts, is crucial for maximizing

forecasting performance.

Per our Remark 2, we now focus on the L1 loss function for producing the forecasts and

the mean absolute deviation (MAD) of the forecast errors for assessing forecasting performance.

After optimization of the NoVaS parameters we now have both the optimal transformed series

W ∗
t = Wt(θ∗n) but also the series U∗

t that is defined as a function of W ∗
t via eq. (5).

Let Πk [X|Z ] denote the kth (regular or absolute) conditional power operator of the argument

X given the argument Z. For example, Π1 [XZ|Z ] = XZ, Π2 [XZ|Z ] = (X2|Z) ·Z2 etc. Applying

the power operator in the definition of the implied model of eq. (4) at time n + 1 we obtain:

Πk [Xn+1|Fn] = Πk

[
U∗

n+1|Fn

]
Πk [A∗n] (11)

12When the target distribution is the standard normal the objective function could be similar to the well known

Jarque-Bera test for assessing normality.
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Depending on our choice of k, and on whether we take regular or absolute powers, we can now

forecast returns (k = 1), absolute returns (k = 1 with absolute value), squared returns (k = 2),

etc., and the task is simplified in forecasting the corresponding power of the U∗
n+1 series. To see

this note that, in the context of the L1 forecasting loss function, the conditional median is the

optimal predictor, so we have:

Med [Πk [Xn+1|Fn]] = Med
[
Πk

[
U∗

n+1|Fn

]]
Πk [A∗n] (12)

where Med [x] stands for the median of x. Therefore, what we are after is an estimate of the

conditional median of Πk

[
U∗

n+1|Fn

]
.

The rest of the procedure depends on the dependence properties of the studentized series

W ∗
n and the target distribution. From our experience, what has invariably been observed with

financial returns is that their corresponding W ∗
n series appears—for all practical purposes—to

be uncorrelated.13 If the target distribution is the normal then—by the approximate normality

of its joint distributions—the W ∗
n series would be independent as well. The series U∗

n would

inherit the W ∗
ns independence by eq. (5), and therefore the best estimate of the conditional

median Med
[
Πk

[
U∗

n+1|Fn

]]
is the unconditional sample median of the appropriate power of the

U∗
n series, namely M̂ed [Πk (U∗

n)].

Based on the above discussion we are now able to obtain volatility forecasts ĥ2
n+1 in a variety

of ways: (a) we can use the forecasts of absolute or squared returns; (b) we can use only the

component of the conditional variance A2
n for φ(z) =

√
z or An for φ(z) = z, akin to a GARCH

approach; (c) we can combine (a) and (b) and use the forecast of the empirical measure γ̂n+1.

Consider the use of squared returns first. The volatility forecast based on (a) above would

be:

ĥ2
n+1,1 ≡ X̂2

n+1
def= M̂ed [Π2 (U∗

n)] Π2 [A∗n] (13)

When using (b) the corresponding forecast would just be the power of the A∗n component, some-

thing very similar to an ARCH(∞) forecast:

ĥ2
n+1,2

def= Π2 [A∗n] (14)

However, the most relevant and appropriate volatility forecast in the NoVaS context should be

based on (c), i.e. on a forecast of the estimate of the time-localized variance measure γ̂n+1, which

was originally used to initiate the NoVaS procedure in eq. (1). What is important to note is that

forecasting based on γ̂n+1 is neither forecasting of squared returns nor forecasting based on past

13This is an empirical finding; if, however, the W ∗
n series is not independent then a slightly different procedure

involving a (hopefully) linear predictor would be required—see Politis (2003a, 2007) and Politis and Thomakos

(2007) for details.
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information alone. It is, in fact, a linear combination of the two, thus incorporating elements

from essentially two approaches. Using eqs. (1), (2), (5) and (6) it is straightforward to show

that γ̂n+1 can be expressed as:

γ̂n+1 ≡ ĥ2
n+1,3

def=
{

a∗0M̂ed [Π2 (U∗
n)] + 1

}
Π2 [A∗n]

= a∗0ĥ
2
n+1,1 + ĥ2

n+1,2

(15)

Equation (15) is our new proposal for volatility forecasting using NoVaS. In his original work,

Politis (2003a) used eq. (13), and in effect conducted forecasting of the one-step-ahead squared

returns via NoVaS. By contrast, eq. (15) is a bona fide predictor of the one-step-ahead volatility,

i.e., the conditional variance. For this reason, eq. (15) will be the formula used in what follows,

our simulations and real data examples.

Forecasts using absolute returns are constructed in a similar fashion, the only difference being

that we will be forecasting directly standard deviations ĥn+1 and not variances. Using again eqs.

(1), (5) and (6) it is easy to show that the forecast based on (c) would be given by:

γ̂n+1 ≡ ĥn+1,3
def=

{
a∗0M̂ed [Π1 (U∗

n)] + 1
}

Π1 [A∗n]

= a∗0ĥn+1,1 + ĥn+1,2

(16)

with ĥn+1,1 and ĥn+1,2 being identical expressions to eqs. (13) and (14) which use the first order

absolute power transformation.

2.4 Departures from the assumption of stationarity: local stationarity and

structural breaks

Consider the case of a very long time series {X1, . . . , Xn}, e.g., a daily series of stock returns

spanning a decade. It may be unrealistic to assume that the stochastic structure of the series

has stayed invariant over such a long stretch of time. A more realistic model might assume a

slowly-changing stochastic structure, i.e., a locally stationary model as given by Dahlhaus (1997).

Recent research has tried to address this issue by fitting time-varying GARCH models to

the data but those techniques have not found global acceptance yet, in part due to their ex-

treme computational cost. Fryzlewicz, Sapatinas and Subba-Rao (2006, 2007) and Dahlhaus

and Subba-Rao (2006, 2007b) all work in the context of local stationarity for a new class of

ARCH processes with slowly varying parameters.

Surprisingly, NoVaS is flexible enough to accommodate such smooth/slow changes in the sto-

chastic structure. All that is required is a time-varying NoVaS fitting, i.e., selecting/calibrating

the NoVaS parameters on the basis of a rolling window of data as opposed to using the entire

available past. Interestingly, as will be apparent in our simulations, the time-varying NoVaS
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method works well even in the presence of structural breaks that would typically cause a break-

down of traditional methods unless explicitly taken into account. The reason for this robustness

is the simplicity in the NoVaS estimate of local variance: it is just a linear combination of (present

and) past squared returns. Even if the coefficients of the linear combination are not optimally

selected (which may happen in the neighborhood of a break), the linear combination remains a

reasonable estimate of local variance.

By contrast, the presence of structural breaks can throw off the (typically nonlinear) fitting

of GARCH parameters. Therefore, a GARCH practitioner must always be on the look-out for

structural breaks, essentially conducting a hypothesis test before each application. While there

are several change point tests available in the literature, the risk of non-detection of a change

point can be a concern. Fortunately, the NoVaS practitioner does not have to worry about

structural breaks because of the aforementioned robustness of the NoVaS approach.

3 NoVaS Forecasting Performance: A Simulation Analysis

It is of obvious interest to compare the forecasting performance of NoVaS-based volatility fore-

casts with the standard benchmark model, the GARCH(1,1), under a variety of different under-

lying DGPs. Although there are numerous models for producing volatility forecasts, including

direct modeling of realized volatility series, it is not clear which of these models should be used

in any particular situation, and whether they can always offer substantial improvements over the

GARCH benchmark. In the context of a simulation, we will be able to better see the relative

performance of NoVaS -based volatility forecasts versus GARCH-based forecasts and, in addi-

tion, we will have available the true volatility measure for forecast evaluation. This latter point,

the availability of an appropriate series of true volatility, is important since in practice we do not

have such a series of true volatility. The proxies range from realized volatility—generally agreed

to be one of the best (if not the best) such measure—, to range-based measures, and to squared

returns. We use such proxies in the empirical examples of the next section.

3.1 Simulation Design

We consider a variety of models as possible DGPs. Each model j = 1, 2, . . . , M(= 7) is simulated

over the index i = 1, 2, . . . , N(= 500) with time indices t = 1, 2, . . . , T (= 1250). The sample size

T amounts to about 5 years of daily data. The parameter values for the models are chosen so as

to reflect annualized volatilities between about 8% to 25%, depending on the model being used.

For each model we simulate a volatility series and the corresponding returns series based on the
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standard representation:

Xt,ij
def= µj + ht,ijZt,ij

h2
t,ij

def= hj(h2
t−1,ij , X

2
t−1,ij ,θtj)

(17)

where hj(·) changes depending on the model being simulated.

The seven models simulated are: a standard GARCH, a GARCH with discrete breaks

(B-GARCH), a GARCH with slowly varying parameters (TV-GARCH), a Markov switching

GARCH (MS-GARCH), a smooth transition GARCH (ST-GARCH), a GARCH with an added

deterministic function (D-GARCH) and a stochastic volatility model (SV-GARCH). Note that

the parameter vector θt will be time-varying for the Markov switching model, the smooth transi-

tion model, the time-varying parameters model and the discrete breaks model. For the simulation

we set Zt ∼ t(3), standardized to have unit variance.14

We next present the volatility eqs. of the above models. For ease of notation we drop the i and

j subscripts when presenting the models. The first model we simulate is a standard GARCH(1,1)

with volatility equation given by:

h2
t = ω + αh2

t−1 + β(Xt−1 − µ)2 (18)

The parameter values were set to α = 0.9, β = 0.07 and ω = 1.2e − 5, corresponding to an

annualized volatility of 10%. The mean return was set to µ = 2e−4 (same for all models, except

the MS-GARCH) and the volatility series was initialized with the unconditional variance.

The second model we simulate is a GARCH(1,1) with discrete changes (breaks) in the variance

parameters. These breaks depend on changes in the annualized unconditional variance, ranging

from about 8% to about 22% and we assume two equidistant changes per year for a total of

B = 10 breaks. The model form is identical to the GARCH(1,1) above:

h2
t = ωb + αbh

2
t−1 + βb(Xt−1 − µ)2 , b = 1, 2, . . . , B (19)

The αb parameters were drawn from a uniform distribution in the interval [0.8, 0.99] and the βb

parameters were computed as βb = 1−αb− c, for c either 0.015 or 0.02. The ωb parameters were

computed as ωb = σ2
b (1− αb − βb)/250, where σ2

b is the annualized variance.

The third model we simulate is a GARCH(1,1) with slowly varying variance parameters, of

a nature very similar to the time-varying ARCH models recently considered by Dahlhaus and

Subba-Rao (2006, 2007). The model is given by:

h2
t = ω(t) + α(t)h2

t−1 + β(t)(Xt−1 − µ)2 (20)

14We fix the degrees of freedom to their true value of 3 during estimation and forecasting, thus giving GARCH

a relative advantage in estimation.
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where the parameters satisfy the finite unconditional variance assumption α(t)+β(t) < 1 for all t.

The parameters functions α(t) and β(t) are sums of sinusoidal functions of different frequencies

νk of the form c(t) =
∑K

k=1 sin(2πνkt), for c(t) = α(t) or β(t). For α(t) we set K = 4 and

νk = {1/700, 1/500, 1/250, 1/125} and for β(t) we set K = 2 and νk = {1/500, 1/250}. That

is, we set the persistence parameter function α(t) to exhibit more variation than the parameter

function β(t) that controls the effect of squared returns.

The fourth model we simulate is a two-state Markov Switching GARCH(1,1) model, after

Francq and Zakoian (2005). The form of the model is given by:

h2
t =

2∑

s=1

1 {P(St = s)} [
ωs + αsh

2
t−1 + βs(Xt−1 − µs)2

]
(21)

In the first regime (high persistence and high volatility state) we set α1 = 0.9, β1 = 0.07 and

ω1 = 2.4e− 5, corresponding to an annualized volatility of 20%, and µ1 = 2e− 4. In the second

regime (low persistence and low volatility state) we set α2 = 0.7, β2 = 0.22 and ω2 = 1.2e − 4

corresponding to an annualized volatility of 10%, and µ2 = 0. The transition probabilities for

the first regime are p11 = 0.9 and p12 = 0.1 while for the second regime we try to alternative

specifications p21 = {0.3, 0.1} and p22 = {0.7, 0.9}.
The fifth model we simulate is a (logistic) smooth transition GARCH(1,1); see Taylor (2004)

and references therein for a discussion on the use of such models. The form the model takes is

given by:

h2
t =

2∑

s=1

Qs(Xt−1)
[
ωs + αsh

2
t−1 + βs(Xt−1 − µs)2

]
(22)

where Q1(·) + Q2(·) = 1 and Qs =
[
1 + exp(−γ1X

γ2
t−1)

]−1 is the logistic transition function. The

parameters αs, βs, ωs and µs are set to the same values as in the previous MS-GARCH model.

The parameters of the transition function are set to γ1 = 12.3 and γ2 = 1.

The sixth model we simulate is a GARCH(1,1) model with an added smooth deterministic

function yielding a locally stationary model as a result. For the convenient case of a linear

function we have that the volatility equation is the same as in the standard GARCH(1,1) model

in eq. (18) while the return equation takes the following form:

Xt = µ + [a− b(t/T )]htZt (23)

To ensure positivity of the resulting variance we require that (a/b) > (t/T ). Since (t/T ) ∈ (0, 1]

we set a = α + β = 0.97 and b = (β/α) ≈ 0.078 so that the positivity condition is satisfied for

all t.

Finally, the last model we simulate is a stochastic volatility model with the volatility equation

expressed in logarithmic terms and taking the form of an autoregression with normal innovations.
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The model now takes the form:

log h2
t = ω + α log h2

t−1 + wt , wt ∼ N (0, σ2
w) (24)

and we set the parameter values to α = 0.95, ω ≈ −0.4 and σw = 0.2.

For each simulation run i and for each model j we split the sample into two parts T = T0+T1,

where T0 is the estimation sample and T1 is the forecast sample. We consider two values for

T0, namely 250 or 900, which correspond respectively to about a year and three and a half

years of daily data. We roll the estimation sample T1 times and thus generate T1 out-of-sample

forecasts. In estimation the parameters are re-estimated (for GARCH) or updated (for NoVaS)

every 20 observations (about one month for daily data). We always forecast the volatility of the

corresponding return series we simulate (eqs. (17) and (18)) and evaluate it with the known,

one-step ahead simulated volatility. NoVaS forecasts are produced for using a normal target

distribution and both squared and absolute returns. The nomenclature used in the tables is as

follows:

1. SQNT, NoVaS forecasts made using squared returns and normal target.

2. ABNT, NoVaS forecasts made using absolute returns and normal target.

3. GARCH, L2-based GARCH forecasts.

4. M-GARCH, L1-based GARCH forecasts.

The näıve forecast benchmark is the sample variance of the rolling estimation sample. Therefore,

for each model j being simulated we produce a total of F = 4 forecasts; the forecasts are numbered

f = 0, 1, 2, . . . , F with f = 0 denoting the näıve forecast. We then have to analyze T1 forecast

errors et,ijf
def= h2

t+1,ij − ĥ2
t+1,ijf . Using these forecast errors we compute the mean absolute

deviation for each model, each forecast method and each simulation run as:

mijf = MADijf
def=

1
T1

T1∑

t=T0+1

|et,ijf | (25)

The values {mijf}i=1,...,N ;j=1,...,M ;f=0,...,F now become our data for meta-analysis. We com-

pute various descriptive statistics about their distribution (across i, the independent simulation

runs and for each f the different forecasting methods) like mean (x̄f in the tables), std. devia-

tion (σ̂f in the tables), min, the 10%, 25%, 50%, 75%, 90% quantiles and max (Qp in the tables,

p = 0, 0.1, 0.25, 0.5, 0.75, 0.9, 1). For example, we have that:

x̄jf
def=

1
N

N∑

i=1

mijf (26)
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We also compute the percentage of times that the relative (to the benchmark) MAD’s of

the NoVaS forecasts are better than the GARCH forecasts. Define mij,N
def= mijf/mij0, f = 1, 2

to be the ratio of the MAD of any of the NoVaS forecasts relative to the benchmark and

mij,G
def= mijf/mij0, f = 3, 4 to be the ratio of the MAD of the two GARCH forecasts relative

to the benchmark. That is, for each model j and forecasting method f we compute (dropping

the j model subscript):

P̂f
def=

1
N

N∑

i=1

1 (mij,N ≤ mij,G) (27)

Then, we consider the total number of times that any NoVaS forecasting method had a smaller

relative MAD compared to the relative MAD of the GARCH forecasts and compute also P̂
def=

∪f P̂f as the union across. So P̂f , for f = 1, 2 corresponds to the aforementioned methods NoVaS

methods SQNT and ABNT respectively and P̂ corresponds to their union.

3.2 Detailed discussion of Simulation Results

The simulation helps compare the NoVaS forecasts to the usual GARCH forecasts, i.e., L2-based

GARCH forecasts, and also to the M-GARCH forecasts, i.e., L1-based GARCH forecasts, the

latter being recommended by Politis (2003a, 2004, 2007). We break the discussion according to

the seven DGP models:

• GARCH (Tables 1 and 8): In this situation, where the true DGP is GARCH, it would

seem intuitive that GARCH forecasts would have an advantage. Thus, Table 2 may come

as a surpise: any of the NoVaS methods (SQNT, ABNT) is seen to outperform both

GARCH and M-GARCH in all measured areas: mean of the MAD distribution (x̄f , mean

error), tightness of MAD distribution (σ̂f and the related quantiles), and finally the % of

times NoVaS MAD was better. Actually, in this setting, the GARCH forecasts are vastly

underperforming as compared to the Naive benchmark. The best NoVaS method here is

the SQNT that achieves a mean error x̄f almost half of that of the benchmark, and with

a much tighter MAD distribution.

Table 9 sheds more light in this situation: it appears that a training sample of size 250

(Table 2) is too small for GARCH to work well; with a training sample of size 900 (Table

9) the performance of GARCH is greatly improved, and GARCH manages to beat the

benchmark in terms of mean error (but not variance). SQNT NoVaS however is still the

best method in terms of mean error and variance; it beats M-GARCH in terms of the P̂1

percentage, and narrowly underperforms as compared to GARCH in this criterion.

All in all, SQNT NoVaS volatility forecasting appears to beat GARCH forecasts when the
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DGP is GARCH—a remarkable finding. Furthermore, GARCH apparently requires a very

large training sample in order to work well; but with a sample spanning 3-4 years questions

of non-stationarity may arise that will be addressed in what follows.

• GARCH with discrete breaks (B-GARCH) (Tables 2 and 9): It is apparent here that

ignoring possible structural breaks when fitting a GARCH model can be disastrous. The

GARCH forecasts vastly underperform compared to the Naive benchmark with either small

(Table 3) or big training sample (Table 10). Interestingly, both NoVaS methods are better

than the benchmark with SQNT seemingly the best again. The SQNT method is better

than either GARCH method 99% of the time (Table 3) and at least 86% of the time (Table

10). It should be stressed here that NoVaS does not attempt to estimate any breaks; it

applies totally automatically, and is seemingly unperturbed by structural breaks.

• GARCH with slowly varying parameters (TV-GARCH) (Tables 3 and 10): This situation

is very similar to the previous one except that the performance of GARCH is a little better

as compared to the benchmark—but only when given a big training sample (Table 11).

However, still both NoVaS methods are better than either GARCH method. The best is

again SQNT. Either of those beats either GARCH method 98% of the time (Table 4) and

at least 88% of the time (Table 11).

• Markov switching GARCH (MS-GARCH)(Tables 4 and 11): We note again that ignoring

possible intricacies—such as the Markov switching property—when fitting a GARCH model

can be disastrous. GARCH forecasts vastly underperform the Naive benchmark with either

small (Table 5) or big training sample (Table 12). Again all NoVaS methods are better

than the benchmark with SQNT being the best.

• Smooth transition GARCH (ST-GARCH)(Tables 5 and 12): This situation is more like

the first one (where the DGP is GARCH); with a large enough training sample, GARCH

forecasts are able to beat the benchmark, and be competitive with NoVaS. Still, however,

SQNT NoVaS is best, not only because of smallest mean error but also in terms of tightness

of MAD distribution.

• GARCH with deterministic function (D-GARCH)(Tables 6 and 13): This is similar to the

above ST-GARCH; when given a large training sample, GARCH forecasts are able to beat

the benchmark, and be competitive with NoVaS . Again, SQNT NoVaS is best, not only

because of smallest mean error but also in terms of tightness of MAD distribution.

• Stochastic volatility model (SV-GARCH) (Tables 7 and 14): Again, similar behavior to the

17



above. Although (with a big training sample) GARCH does well in terms of mean error,

note the large spread of the MAD distribution.

3.3 Summary of Findings from the Simulation

The results from the simulations are very interesting and can be summarized as follows:

• GARCH forecasts are extremely off-the-mark when the training sample is not large (of the

order of 2-3 years of daily data). Note that large training sample sizes are prone to be

problematic if the stochastic structure of the returns changes over time.

• Even given a large training sample, NoVaS forecasts are best; this holds even when the true

DGP is actually GARCH!

• Ignoring possible breaks (B-GARCH), slowly varying parameters (TV-GARCH), or a Markov

switching feature (MS-GARCH) when fitting a GARCH model can be disastrous in terms of

forecasts. In contrast, NoVaS forecasts seem unperturbed by such gross non-stationarities.

• Ignoring the presence of a smooth transition GARCH (ST-GARCH), a GARCH with an

added deterministic function (D-GARCH), or a stochastic volatility model (SV-GARCH)

does not seem as crucial at least when the the implied nonstationarity features are small

and/or slowly varying.

• Overall, it seems that SQNT NoVaS is the volatility forecasting method of choice since it is

the best in all examples except TV-GARCH (in which case it is a close second to NoVaS).

4 Empirical Application

In this section we provide an empirical illustration of the application and potential of the NoVaS

approach using four real datasets. In judging the forecasting performance for NoVaS we consider

different measures of ‘true’ volatility, including realized and range-based volatility.

4.1 Data and Summary Statistics

Our first dataset consists of monthly returns and associated realized volatility for the S&P500

index, with the sample extending from February 1970 to May 2007 for a total of n = 448

observations. The second dataset consists of monthly returns and associated realized, range-

based volatility for the stock of Microsoft (MSFT). The sample period is from April 1986 to

August 2007 for a total of n = 257 observations. For both these datasets the associated realized
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volatility was constructed by summing daily squared returns (for the S&P500 data) or daily

range-based volatility (for the MSFT data). Specifically, if we denote by rt,i the ith daily return

for month t then the monthly realized volatility is defined as σ2
t

def=
m∑

i=1

r2
t,i, where m is the

number of days. For the calculation of the realized range-based volatility denote by Ht,i and

Lt,i the daily high and low prices for the ith day of month t. The daily range-based volatility is

defined as in Parkinson (1980) as σ2
t,i

def= [ln(Ht,i)− ln(Lt,i)]
2 / [4 ln(2)]; then, the corresponding

monthly realized measure would be defined as σ2
t

def=
m∑

i=1

σ2
t,i. Our third dataset consists of daily

returns and realized volatility for the US dollar/Japanese Yen exchange rate for a sample period

between 1997 and 2005 for a total of n = 2236 observations. The realized volatility measure

was constructed as above using intraday returns. The final dataset we examine is the stock of a

major private bank in the Athens Stock Exchange, EFG Eurobank. The sample period is from

1999 to 2004 for a total of n = 1403 observations. For lack of intraday returns we use the daily

range-based volatility estimator as defined before.

Descriptive statistics of the returns for all four of our datasets are given in Table 15. We are

mainly interested in the kurtosis of the returns, as we will be using kurtosis-based matching in

performing NoVaS . All series have unconditional means that are not statistically different from

zero and no significant serial correlation, with the exception of the last series (EFG) that has

a significant first order serial correlation estimate. Also, all four series have negative skewness

which is, however, statistically insignificant except for the monthly S&P500 and MSFT series

where it is significant at the 5% level. Finally, all series are characterized by heavy tails with

kurtosis coefficients ranging from 5.04 (monthly S&P500) to 24.32 (EFG). The hypothesis of

normality is strongly rejected for all series.

In Figures 1 to 8 we present graphs for the return series, the corresponding volatility and

log volatility, the quantile-quantile (QQ) plot for the returns and four recursive moments. The

computation of the recursive moments is useful for illustrating the potential unstable nature that

may be characterizing the series. Figures 1 and 2 are for the monthly S&P500 returns, Figures

3 and 4 are for monthly MSFT returns, Figures 5 and 6 are for the daily USD/Yen returns and

Figures 7 and 8 are for the daily EFG returns. Of interest are the figures that plot the estimated

recursive moments. In Figure 2 we see that the mean and standard deviation of the monthly

S&P500 returns are fairly stable while the skewness and kurtosis exhibit breaks. In fact, the kur-

tosis exhibits the tendency to rise in jolts/shocks and does not retreat to previous levels thereby

indicating that there might not be an finite fourth moment for this series. Similar observations

can be made for the other four series as far as recursive kurtosis goes. This is especially relevant

about our argument that NoVaS can handle such possible global non-stationarities.
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4.2 NoVaS Optimization and Forecasting Specifications

Our NoVaS in-sample analysis is performed for two possible combinations of target distribution

and variance measures, i.e. squared and absolute returns using a normal target, as in the

simulation analysis. We use the exponential NoVaS algorithm as discussed in section 2, with

α = 0.0, a trimming threshold of 0.01 and pmax = n/4. The objective function for optimization

is kurtosis-matching, i.e. Dn(θ) = |Kn(θ)|, as in eq. (9) — robustness to deviations from these

baseline specification is also discussed below. The results of our in-sample analysis are given in

Table 16. In the table we present the optimal values of the exponential constant b∗, the first

coefficient a∗0, the implied optimal lag length p∗, the value of the objective function Dn(θ∗) and

two measures of distributional fit. The first is the QQ correlation coefficient for the original series,

QQX , and the second is the QQ correlation coefficient for the transformed series Wt(θ∗) series,

QQW . These last two measures are used to gauge the ‘quality’ of the attempted distributional

matching before and after the application of the NoVaS transformation.

Our NoVaS out-of-sample analysis is reported in Tables 17, 18, 19 and 20. All forecasts

are based on a rolling sample whose length n0 differs according to the series examined: for the

monthly S&P500 series we use n0 = 300 observations; for the monthly MSFT series we use n0 =

157 observations; for EFG series we use n0 = 900 observations; for the daily USD/Yen series we

use n0 = 1250 observations. The corresponding evaluation samples are n1 = {148, 100, 986, 503}
for the four series respectively. Note that our examples cover a variety of different lengths, rang-

ing from 157 observations for the MSFT series to 1250 observations for the USD/Yen series. All

forecasts we make are ‘honest’ out-of-sample forecasts: they use only observations prior to the

time period to be forecasted. The NoVaS parameters are re-optimized as the window rolls over

the entire evaluation sample (every month for the monthly series and every 20 observations for

the daily series). We forecast volatility both by using absolute or squared returns (depending

on the specification), as described in the section on NoVaS forecasting, and by using the em-

pirical variance measure γ̂n+1 - see eqs. (15) and (16).15 To compare the performance of the

NoVaS approach we estimate and forecast using a standard GARCH(1, 1) model for each series,

assuming a t(ν) distribution with degrees of freedom estimated from the data. The parameters

of the model are re-estimated as the window rolls over, as described above. As noted in Politis

(2003a,b, 2007), the performance of GARCH forecasts is found to be improved under an L1

rather than L2 loss. We therefore report standard mean forecasts as well as median forecasts

from the GARCH models. We always evaluate our forecasts using the ‘true’ volatility measures

15All NoVaS forecasts were made without applying an explicit predictor as all Wt(θ
∗) series were found to be

uncorrelated.
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given in the previous section and report several measures of forecasting performance. This is

important as a single evaluation measure may not always provide an accurate description of the

performance of competing models.

We first calculate the mean absolute deviation (MAD) and root mean-squared (RMSE) of

the forecast errors et
def= σ2

t − σ̂2
t , given by:

MAD(e) def=
1
n1

n∑

t=n0+1

|et|, RMSE(e) def=

√√√√ 1
n1

n∑

t=n0+1

(et − ē)2 (28)

where σ̂2
t denotes the forecast for any of the methods/models we use. As a Naive benchmark

we use the (rolling) sample variance. We then calculate the Diebold and Mariano (1995) test

for comparing forecasting models. We use the absolute value function in computing the relevant

statistic and so we can formally compare the MAD rankings of the various models.

Finally, we calculate and report certain statistics based on the forecasting unbiasedness re-

gression (also known as ‘Mincer-Zarnowitz regression’). This regression can be expressed in

several ways and we use the following representation:

et = a + bσ̂2
t + ζt (29)

where ζt is the regression error. Under the hypothesis of forecast unbiasedness we expect to have

E [et|Ft−1] = 0 and therefore we expect a = b = 0 (and E [ζt|Ft−1] = 0 as well.) Furthermore, the

R2 from the above regression is an indication as to how much of the forecast error variability can

still be explained by the forecast. For any two competing forecasting models A and B we say

that model A is superior to model B if R2
A < R2

B, i.e. if we can make no further improvements

in our forecast.

Our forecasting results are summarized in Tables 17 and 18 for the MAD and RMSE rankings

and in Tables 19 and 20 for the Diebold-Mariano test and forecasting unbiasedness regressions.

Similar results were obtained when using a recursive sample and are available on request.

4.3 Discussion of Results

We begin our discussion with the in-sample results and, in particular, the degree of normalization

achieved by NoVaS . Looking at the value of the objective function in Table 16 we see that it is

zero to three decimals for practically all cases. Therefore, NoVaS is very successful in reducing

the excess kurtosis in the original return series. In addition, the quantile-quantile correlation

coefficient is very high (in excess of 0.99 in all cases examined, frequently being practically one).

One should compare the two QQ measures of before and after the NoVaS transformation to see

the difference that the transformation has on the data. The case of the EFG series is particularly
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worth mentioning as that series has the highest kurtosis: we can see from the table that we get

a QQ correlation coefficient in excess of 0.998; this is a very clear indication that the desired

distributional matching has been achieved for all practical purposes. A visual confirmation of

the differences in the distribution of returns before and after NoVaS transformations is given in

Figures 9 to 12. In these figures we have QQ plots for all the series and four combinations of return

distributions, including the uniform for visual comparison. It is apparent from these figures that

normalization has been achieved in all cases examined. Finally, a second noticeable in-sample

result is the optimal lag length chosen by the different NoVaS specifications. In particular, we see

from Table 16 that the optimal lag length is greater when using squared returns than when using

absolute returns. As expected, longer lag lengths are associated with a smaller a∗0 coefficient.

We now turn to the out-of-sample results on the forecasting performance of NoVaS , which

are summarized in Tables 17, 18, 19 and 20. The results are slightly different across the series

we examine but the overall impression is that the NoVaS-based forecasts are superior to the

GARCH forecasts, based on the combined performance of all evaluation measures. We discuss

these in turn.

If we look at the MAD results in Table 17 the NoVaS forecasts outperform both the Naive

benchmark and the GARCH-based forecasts. Note that the use of squared returns gives better

results in the two series with the smallest sample kurtosis (S&P500 and USD/Yen series) while

the use of absolute returns gives better results in the two series with the highest kurtosis (MSFT

and EFG series). Its also worthwhile to note that the most drastic performance improvement,

vis-a-vis the benchmark, can be seen for the MSFT series (smallest sample size) and the EFG

series (highest kurtosis).16 This is important since we expected NoVaS to perform well in both

these cases: the small sample size makes inference difficult while high kurtosis can be the result of

non-stationarities in the series. Finally, the results are similar if we consider the RMSE ranking

in Table 18. Based on these two descriptive evaluation measures the NoVaS forecasts outperform

the benchmark and GARCH models.

To examine whether there are statistically significant differences between the NoVaS and

GARCH forecasts and the benchmark, we next consider the results from the application of the

Diebold-Mariano (1995) test for comparing forecasting performance. Looking at Table 19 we

can see that there are statistically significant differences between the NoVaS forecasts and the

Naive benchmark for the S&P500 series and the MSFT series, with the NoVaS forecasts being

16Note also the performance improvement from the use of the median GARCH vs. the mean GARCH forecasts

for the MSFT series. Recall that our simulation results showed that the performance of a GARCH model could

be way off the mark if the training sample was small; here we use only 157 observations for training the MSFT

series and the GARCH forecasts cannot outperform even the Naive benchmark.
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significantly better.17 For the other two series the test does not indicate a (statistically) superior

performance of any of the other models compared to the benchmark.

Our empirical results so far clearly indicate that the NoVaS forecasts offer improvements in

forecasting performance, both over the Naive benchmark and the GARCH models. We next

discuss the results from the forecasting unbiasedness regressions of eq. (29), where we try to see

whether the forecasts are correct ‘on average’ and whether they make any systematic mistakes.

We start by noting that the estimates from a regression like eq. (29) suffer from bias since the

regressor used σ̂2
t is estimated and not measured directly. Therefore we should be interpreting

our results with some caution and connect them with our previous discussion. Looking at Table

20 we can see that in many cases the constant term a is estimated to be (numerically close

to) zero, although it is statistically significant. The slope parameter b estimates show that

there is still bias in the direction of the forecasts, either positive or negative, but the NoVaS

estimates of b are in general much lower than those of the benchmark and the GARCH models,

with the exception of the MSFT series. Furthermore, for the S&P500 and the EFG series the

slope parameter is not statistically significant, at the 10% level, indicating a possibly unbiased

NoVaS forecast. The R2 values from these regressions are also supportive of the NoVaS forecasts

(remember that low values are preferred over high values): the corresponding R2 values from the

NoVaS forecasts are lower than both the benchmark and the GARCH values by at least 30%.

Note that for the S&P500 series where the value of the R2 of the benchmark is lower than the

corresponding NoVaS value, we also have a (numerically) large value for the slope parameter b for

the benchmark compared to NoVaS . The only real problem with the R2 from these regressions

is for the MSFT series which we discuss below in Remark 4. All in all the results from Table 20

support the superior performance of NoVaS against its competitors and show that is a much less

biased forecasting procedure.

Remark 4. Can we obtain further improvements using the NoVaS methodology? In particular,

how does changes in the value of the α parameter affect the forecasting performance? This is

an empirically interesting questions since our results can be affected both by the small sample

size and the degree of kurtosis in the data. The MSFT series exhibits both these problems

and is thus worthwhile to see whether we can improve our results by allowing the unconditional

estimator of the variance to enter the calculations.18 We repeated our analysis for the MSFT

series using α = 0.5 and our results improved dramatically. The MAD and RMSE values from

the ABNT NoVaS method dropped from 0.551 to 0.360 and from 0.951 to 0.524 respectively,

17For the MSFT series the benchmark forecasts are also significantly better than the GARCH forecasts.
18Changing the value of α did not result in improvements in the other three series.
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with the Diebold-Mariano test still indicating a statistically significant performance over the

Naive benchmark. In addition, the results from the forecasting unbiasedness regression are now

better than the benchmark for the ABNT NoVaS method: the estimate of the slope parameter

b is -0.145 and not statistically significant while the R2 value is 0.010 compared to 0.012 for the

benchmark.

In summary, our results are especially encouraging because they reflect on the very idea

of the NoVaS transformation: a model-free approach that can account for different types of

potential DGPs, that include breaks, switching regimes and lack of higher moments. NoVaS is

successful in overcoming the parametrization and estimation problems that one would encounter

in models that have variability and uncertainty not only in their parameters but also in their

functional form. Of course our results are specific to the datasets examined and, it is true, we

made no attempt to consider other types of parametric volatility models. But this is one of the

problems that NoVaS attempts to solve: we have no a priori guidance as to which parametric

volatility model to choose, be it simple GARCH, exponential GARCH, asymmetric GARCH and

so on. With NoVaS we face no such problem as the very concept of a model does not enter into

consideration.

5 Concluding Remarks

In this paper we have presented several findings on the NoVaS transformation approach for

volatility forecasting introduced by Politis (2003a,b, 2007) and extended in Politis and Thomakos

(2007). It was shown that NoVaS can be a flexible method for forecasting volatility of financial

returns that is simple to implement, and robust against non-stationarities.

In particular, we focused on a new method for volatility forecasting using NoVaS and con-

ducted an extensive simulation to study its forecasting performance under different DGPs. It was

shown that the NoVaS methodology remains successful in situations where (global) stationarity

fails such as the cases of local stationarity and/or structural breaks, and invariably outperforms

the GARCH benchmark for all non-GARCH DGPs. Remarkably, the NoVaS methodology was

found to outperform the GARCH forecasts even when the underlying DGP is itself a (station-

ary) GARCH as long as the sample size is only moderately large. It was also found that NoVaS

forecasts lead to a much ‘tighter’ distribution of the forecasting performance measure used (the

MAD) for all DGPs considered. Our empirical illustrations using four real datasets are also very

supportive of the excellent forecasting performance of NoVaS compared to the standard GARCH

forecasts.
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Extensions of the current work include, among others, the use of the NoVaS approach on

empirical calculations of value at risk (VaR), the generalization to more than one assets and the

calculation of NoVaS correlations, and further extensive testing on the out-of-sample forecasting

performance of the proposed method. Some of the above are pursued by the authors.
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Tables

Table 1. Simulation Results for GARCH, T1 = 1, 000

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.24 0.33 0.06 0.09 0.11 0.15 0.24 0.45 4.80

SQNT 0.14 0.08 0.08 0.09 0.10 0.11 0.14 0.19 1.08

ABNT 0.21 0.09 0.15 0.16 0.17 0.19 0.22 0.28 1.28

GARCH 2.64 13.43 0.07 0.10 0.16 0.34 1.00 3.53 169.78

M-GARCH 1.56 7.39 0.13 0.16 0.18 0.29 0.66 2.04 93.41

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂

GARCH 0.93 0.66 0.93

M-GARCH 1.00 0.74 1.00

Notes:

1. The model being simulated is a standard GARCH(1,1) h2
t = ω + αh2

t−1 + β(Xt−1 − µ)2.

2. T1 = 1, 000 denotes the number of forecasts generated for computing the mean absolute deviation

(MAD) in each replication.

3. The first table presents distributional statistics of the MAD of the forecast errors over 500 replica-

tions (all entries are ×1, 000.) The second table presents the proportion of times that the NoVaS

MAD relative to the näıve benchmark was smaller than the GARCH MAD relative to the same

benchmark, see eq. (27) in the main text.

4. x̄f denotes the sample mean, σ̂f denotes the sample std. deviation and Qp denotes the pth sample

quantile of the MAD distribution over 500 replications.

5. Näıve denotes forecasts based on the rolling sample variance, SQNT (ABNT) denotes NoVaS fore-

casts based on a normal target distribution and squared (absolute) returns, GARCH and M-GARCH

denote L2 and L1 based forecasts from a standard GARCH model.
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Table 2. Simulation Results for B-GARCH, T1 = 1, 000

Distributional Statistics for MAD
x̄ σ̂ Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.43 0.96 0.09 0.13 0.16 0.22 0.33 0.71 14.74

SQNT 0.17 0.47 0.09 0.10 0.11 0.12 0.15 0.21 9.27

ABNT 0.28 0.47 0.14 0.17 0.18 0.20 0.25 0.36 8.02

GARCH 29.10 385.48 0.09 0.15 0.21 0.50 1.54 4.19 7236.79

M-GARCH 16.15 212.13 0.13 0.18 0.23 0.40 0.97 2.51 3981.49

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂

GARCH 0.98 0.76 0.98

M-GARCH 0.99 0.87 0.99

Notes:

1. The model being simulated is a standard GARCH(1,1) with parameter breaks h2
t = ωb + αbh

2
t−1 +

βb(Xt−1 − µ)2 , b = 1, 2, . . . , B.

2. See other notes in Table 1.
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Table 3. Simulation Results for TV-GARCH, T1 = 1, 000

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.31 0.53 0.10 0.12 0.15 0.19 0.27 0.51 5.95

SQNT 0.14 0.23 0.05 0.06 0.07 0.09 0.12 0.19 2.38

ABNT 0.15 0.16 0.08 0.09 0.10 0.11 0.14 0.20 1.67

GARCH 1.70 14.11 0.07 0.10 0.12 0.20 0.47 1.51 224.31

M-GARCH 1.02 7.78 0.08 0.11 0.12 0.17 0.36 0.91 123.71

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂

GARCH 0.98 0.85 1.00

M-GARCH 0.99 0.98 1.00

Notes:

1. The model being simulated is a GARCH(1,1) with slowly varying varying parameters h2
t = ω(t) +

α(t)h2
t−1 + β(t)(Xt−1 − µ)2.

2. See other notes in Table 1.
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Table 4a. Simulation Results for MS-GARCH, T1 = 1, 000

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.36 0.42 0.11 0.15 0.18 0.24 0.40 0.61 4.97

SQNT 0.20 0.12 0.13 0.14 0.15 0.17 0.20 0.26 2.30

ABNT 0.30 0.14 0.21 0.23 0.25 0.27 0.31 0.37 1.95

GARCH 1.33 3.04 0.11 0.17 0.22 0.41 1.07 2.88 34.44

M-GARCH 0.88 1.68 0.20 0.24 0.26 0.37 0.73 1.79 19.03

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂

GARCH 0.94 0.62 0.94

M-GARCH 1.00 0.73 1.00

Notes:

1. The model being simulated is a two-state Markov switching GARCH(1,1)

h2
t =

∑2
s=1 1 {P(St = s)} [

ωs + αsh
2
t−1 + βs(Xt−1 − µs)2

]
.

2. The transition probabilities are p11 = 0.9, p12 = 0.1, p21 = 0.3, p22 = 0.7.

3. See other notes in Table 1.

32



Table 4b. Simulation Results for MS-GARCH, T1 = 1, 000

Descriptive Statistics - all MAD’s

x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.48 2.34 0.10 0.13 0.16 0.23 0.37 0.62 51.10

SQNT 0.18 0.15 0.11 0.12 0.13 0.15 0.18 0.24 1.90

ABNT 0.26 0.15 0.17 0.19 0.20 0.23 0.26 0.33 1.95

GARCH 3.21 23.07 0.09 0.13 0.18 0.31 0.81 2.83 426.85

M-GARCH 1.91 12.71 0.16 0.19 0.22 0.30 0.60 1.69 235.17

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂

GARCH 0.90 0.60 0.90

M-GARCH 1.00 0.75 1.00

Notes:

1. The model being simulated is a two-state Markov switching GARCH(1,1)

h2
t =

∑2
s=1 1 {P(St = s)} [

ωs + αsh
2
t−1 + βs(Xt−1 − µs)2

]
.

2. The transition probabilities are p11 = 0.9, p12 = 0.1, p21 = 0.1, p22 = 0.9.

3. See other notes in Table 1.
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Table 5. Simulation Results for ST-GARCH, T1 = 1, 000

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.32 0.34 0.09 0.12 0.15 0.21 0.33 0.62 3.32

SQNT 0.15 0.07 0.10 0.11 0.11 0.13 0.15 0.20 0.80

ABNT 0.24 0.10 0.17 0.19 0.20 0.22 0.25 0.32 0.98

GARCH 2.05 10.15 0.08 0.12 0.16 0.26 0.88 2.53 119.51

M-GARCH 1.25 5.60 0.15 0.18 0.21 0.26 0.62 1.53 66.29

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂

GARCH 0.91 0.55 0.91

M-GARCH 1.00 0.67 1.00

Notes:

1. The model being simulated is a smooth transition GARCH(1,1)

h2
t =

∑2
s=1 Qs(Xt−1)

[
ωs + αsh

2
t−1 + βs(Xt−1 − µs)2

]
.

2. The transition function is Q1(·) + Q2(·) = 1 and Qs =
[
1 + exp(−γ1X

γ2
t−1)

]−1.

3. See other notes in Table 1.
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Table 6. Simulation Results for D-GARCH, T1 = 1, 000

Descriptive Statistics - all MAD’s

x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.16 0.17 0.07 0.08 0.09 0.10 0.15 0.28 1.69

SQNT 0.12 0.04 0.09 0.10 0.10 0.10 0.12 0.15 0.44

ABNT 0.18 0.05 0.14 0.15 0.16 0.16 0.18 0.22 0.62

GARCH 1.62 9.01 0.06 0.09 0.11 0.21 0.67 1.78 112.29

M-GARCH 0.98 4.96 0.12 0.14 0.15 0.20 0.46 1.13 61.85

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂

GARCH 0.76 0.55 0.76

M-GARCH 1.00 0.61 1.00

Notes:

1. The model being simulated is a GARCH(1,1) with an added deterministic function with a returns’

equation given by Xt = µ + [a− b(t/T )] htZt and with a standard GARCH volatility function.

2. See other notes in Table 1.
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Table 7. Simulation Results for SV-GARCH, T1 = 1, 000

Descriptive Statistics - all MAD’s

x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.26 0.16 0.14 0.17 0.20 0.23 0.27 0.32 3.05

SQNT 0.21 0.13 0.12 0.15 0.17 0.19 0.23 0.26 2.64

ABNT 0.23 0.11 0.13 0.18 0.20 0.22 0.25 0.28 2.29

GARCH 1.50 8.74 0.13 0.18 0.22 0.33 0.91 2.71 189.82

M-GARCH 0.95 4.81 0.17 0.22 0.25 0.32 0.64 1.62 104.58

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂

GARCH 0.90 0.70 0.91

M-GARCH 0.97 0.99 1.00

Notes:

1. The model being simulated is a stochastic volatility model

log h2
t = ω + α log h2

t−1 + wt , wt ∼ N (0, σ2
w).

2. See other notes in Table 1.
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Table 8. Simulation Results for GARCH, T1 = 350

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.26 0.39 0.03 0.07 0.09 0.14 0.24 0.48 3.90

SQNT 0.14 0.13 0.08 0.09 0.10 0.11 0.13 0.20 1.67

ABNT 0.21 0.13 0.14 0.15 0.16 0.18 0.21 0.29 1.42

GARCH 0.22 0.75 0.01 0.04 0.06 0.10 0.16 0.35 13.01

M-GARCH 0.24 0.49 0.02 0.09 0.13 0.17 0.22 0.33 8.52

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂

GARCH 0.43 0.13 0.43

M-GARCH 0.86 0.35 0.86

Notes:

1. The model being simulated is a standard GARCH(1,1) h2
t = ω + αh2

t−1 + β(Xt−1 − µ)2.

2. T1 = 350 denotes the number of forecasts generated for computing the mean absolute deviation

(MAD) in each replication.

3. See other notes in Table 1.

37



Table 9. Simulation Results for B-GARCH, T1 = 350

Distributional Statistics for MAD
x̄ σ̂ Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.39 0.87 0.08 0.12 0.15 0.21 0.34 0.56 9.95

SQNT 0.10 0.09 0.07 0.07 0.08 0.08 0.10 0.13 0.95

ABNT 0.22 0.32 0.10 0.12 0.13 0.15 0.21 0.28 3.69

GARCH 0.65 4.99 0.05 0.07 0.10 0.13 0.23 0.37 61.51

M-GARCH 0.47 2.75 0.06 0.09 0.11 0.15 0.23 0.34 33.78

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂

GARCH 0.86 0.35 0.86

M-GARCH 0.96 0.42 0.96

Notes:

1. The model being simulated is a standard GARCH(1,1) with parameter breaks h2
t = ωb + αbh

2
t−1 +

βb(Xt−1 − µ)2 , b = 1, 2, . . . , B.

2. See other notes in Table 8.
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Table 10. Simulation Results for TV-GARCH, T1 = 350

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.31 0.58 0.10 0.13 0.15 0.19 0.27 0.49 10.13

SQNT 0.13 0.30 0.05 0.06 0.07 0.08 0.11 0.19 5.87

ABNT 0.15 0.19 0.08 0.09 0.10 0.11 0.14 0.20 3.36

GARCH 0.20 0.37 0.06 0.08 0.09 0.12 0.17 0.28 5.97

M-GARCH 0.20 0.38 0.08 0.10 0.11 0.13 0.17 0.29 7.20

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂

GARCH 0.89 0.52 0.98

M-GARCH 0.96 0.91 0.99

Notes:

1. The model being simulated is a GARCH(1,1) with slowly varying varying parameters h2
t = ω(t) +

α(t)h2
t−1 + β(t)(Xt−1 − µ)2.

2. See other notes in Table 8.
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Table 11a. Simulation Results for MS-GARCH, T1 = 350

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.37 0.70 0.06 0.11 0.16 0.22 0.35 0.64 9.53

SQNT 0.20 0.16 0.11 0.13 0.14 0.16 0.19 0.27 2.42

ABNT 0.32 0.33 0.18 0.21 0.23 0.25 0.30 0.40 5.09

GARCH 2.70 42.77 0.04 0.08 0.11 0.15 0.24 0.45 918.41

M-GARCH 1.65 23.68 0.07 0.14 0.18 0.23 0.31 0.47 508.48

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂

GARCH 0.42 0.14 0.42

M-GARCH 0.85 0.30 0.86

Notes:

1. The model being simulated is a two-state Markov switching GARCH(1,1)

h2
t =

∑2
s=1 1 {P(St = s)} [

ωs + αsh
2
t−1 + βs(Xt−1 − µs)2

]
.

2. The transition probabilities are p11 = 0.9, p12 = 0.1, p21 = 0.3, p22 = 0.7.

3. See other notes in Table 8.
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Table 11b. Simulation Results for MS-GARCH, T1 = 350

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.47 1.95 0.06 0.11 0.14 0.20 0.35 0.67 40.34

SQNT 0.20 0.30 0.10 0.11 0.12 0.14 0.17 0.27 4.85

ABNT 0.27 0.26 0.16 0.18 0.19 0.21 0.25 0.37 4.27

GARCH 5.56 84.17 0.05 0.07 0.10 0.13 0.22 0.42 1591.98

M-GARCH 3.21 46.39 0.06 0.12 0.15 0.19 0.27 0.46 877.21

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂

GARCH 0.45 0.18 0.46

M-GARCH 0.87 0.36 0.89

Notes:

1. The model being simulated is a two-state Markov switching GARCH(1,1)

h2
t =

∑2
s=1 1 {P(St = s)} [

ωs + αsh
2
t−1 + βs(Xt−1 − µs)2

]
.

2. The transition probabilities are p11 = 0.9, p12 = 0.1, p21 = 0.1, p22 = 0.9.

3. See other notes in Table 8.
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Table 12. Simulation Results for ST-GARCH, T1 = 350

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.31 0.42 0.04 0.10 0.13 0.20 0.32 0.56 4.11

SQNT 0.15 0.12 0.09 0.10 0.11 0.12 0.14 0.21 1.67

ABNT 0.25 0.17 0.16 0.17 0.19 0.21 0.24 0.30 1.84

GARCH 0.19 0.31 0.03 0.06 0.08 0.12 0.19 0.34 4.26

M-GARCH 0.24 0.27 0.04 0.12 0.15 0.19 0.25 0.34 2.73

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂

GARCH 0.47 0.14 0.47

M-GARCH 0.91 0.31 0.92

Notes:

1. The model being simulated is a smooth transition GARCH(1,1)

h2
t =

∑2
s=1 Qs(Xt−1)

[
ωs + αsh

2
t−1 + βs(Xt−1 − µs)2

]
.

2. The transition function is Q1(·) + Q2(·) = 1 and Qs =
[
1 + exp(−γ1X

γ2
t−1)

]−1.

3. See other notes in Table 8.
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Table 13. Simulation Results for D-GARCH, T1 = 350

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.13 0.19 0.02 0.04 0.06 0.08 0.13 0.24 2.29

SQNT 0.11 0.05 0.09 0.10 0.10 0.10 0.11 0.13 0.62

ABNT 0.17 0.06 0.13 0.14 0.14 0.15 0.17 0.20 0.81

GARCH 0.12 0.22 0.02 0.04 0.05 0.07 0.10 0.18 3.06

M-GARCH 0.15 0.14 0.03 0.08 0.11 0.13 0.16 0.20 1.85

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂

GARCH 0.24 0.09 0.24

M-GARCH 0.77 0.19 0.77

Notes:

1. The model being simulated is a GARCH(1,1) with an added deterministic function with a returns’

equation given by Xt = µ + [a− b(t/T )] htZt and with a standard GARCH volatility function.

2. See other notes in Table 8.
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Table 14. Simulation Results for SV-GARCH, T1 = 350

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.26 0.33 0.11 0.16 0.19 0.22 0.27 0.34 7.10

SQNT 0.22 0.36 0.08 0.13 0.15 0.19 0.23 0.28 7.98

ABNT 0.24 0.28 0.10 0.16 0.18 0.21 0.25 0.30 6.04

GARCH 0.24 0.98 0.09 0.13 0.15 0.18 0.22 0.26 22.10

M-GARCH 0.27 0.58 0.09 0.16 0.18 0.23 0.29 0.34 13.02

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂

GARCH 0.36 0.17 0.40

M-GARCH 0.84 0.73 0.91

Notes:

1. The model being simulated is a stochastic volatility model

log h2
t = ω + α log h2

t−1 + wt , wt ∼ N (0, σ2
w).

2. See other notes in Table 8.
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Table 15. Descriptive Statistics for Empirical Series

Series n x̄ σ̂ S K N r̂(1)

S&P500, monthly 448 1.01% 4.35% -0.37 5.04 0.00 0.00

MSFT, monthly 257 0.00% 1.53% -1.75 9.00 0.00 -0.10

USD/Yen, daily 2236 -0.00% 0.72% -0.70 8.52 0.00 0.00

EFG, daily 1403 -0.07% 2.11% -1.24 24.32 0.00 0.14

Notes:

1. n denotes the number of observations, x̄ denotes the sample mean, σ̂ denotes the sample standard

deviation, S denotes the sample skewness, K denotes the sample kurtosis.

2. N is the p-value of the Cramer-Von Misses test for normality of the underlying series.

3. r̂(1) denotes the estimate of the first order serial correlation coefficient.
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Table 16. Full-sample NoVaS Summary Measures

Type b∗ Dn(θ∗) a∗0 p∗ QQX QQW

S&P500 monthly

SQNT 0.039 0.000 0.052 34 0.989 0.996

ABNT 0.070 0.000 0.078 27 0.989 0.996

MSFT monthly

SQNT 0.175 0.000 0.171 15 0.916 0.988

ABNT 0.251 0.000 0.231 12 0.916 0.986

USD/Yen daily

SQNT 0.062 0.000 0.071 29 0.978 0.999

ABNT 0.121 0.000 0.124 20 0.978 0.999

EFG daily

SQNT 0.089 0.007 0.096 24 0.943 0.999

ABNT 0.171 0.000 0.166 16 0.943 0.999

Notes:

1. SQNT, ABNT denote NoVaS made forecasts based on square and absolute returns and a normal

target distribution.

2. b∗, a∗0 and p∗ denote the optimal exponential constant, first coefficient and implied lag length.

3. Dn(θ∗) is the value of the objective function based on kurtosis matching.

4. QQX and QQW denote the QQ correlation coefficient of the original series and the transformed

series respectively.
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Table 17. Mean Absolute Deviation (MAD)of Forecast Errors

Series Näıve SQNT ABNT Mean Median

GARCH GARCH

S&P500, monthly 0.152 0.118 0.134 0.139 0.157

MSFT, monthly 1.883 1.030 0.551 43.28 23.67

USD/Yen, daily 0.026 0.016 0.018 0.022 0.016

EFG, daily 0.251 0.143 0.120 0.225 0.141

Table 18. Root Mean-Squared (RMSE)of Forecast Errors

Series Näıve SQNT ABNT Mean Median

GARCH GARCH

S&P500, monthly 0.243 0.206 0.206 0.224 0.232

MSFT, monthly 0.530 1.552 0.951 162.0 89.17

USD/Yen, daily 0.031 0.028 0.028 0.030 0.029

EFG, daily 0.227 0.208 0.194 0.211 0.212

Notes:

1. All forecasts computed using a rolling evaluation sample.

2. The evaluation sample used for computing the entries of the tables is as follows: 148 observations

for the monthly S&P500 series, 100 observations for the monthly MSFT series, 986 observations for

the daily USD/Yen series and 503 observations for the daily EFG series.

3. Table entries are the values of the evaluation measure (MAD for Table 18 and RMSE for Table

19) multiplied by 100 (S&P500 and MSFT monthly series) and by 1000 (USD/Yen and EFG daily

series) respectively.

4. SQNT, ABNT denote NoVaS made forecasts based on square and absolute returns and normal

target distribution.

5. Mean and median GARCH forecasts denote forecasts made with a GARCH model and an underlying

t error distribution with degrees of freedom estimated from the data.

6. The Naive forecast is based on the rolling sample variance.
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Table 19. Diebold-Mariano Test for Difference in Forecasting Performance

NoVaS and GARCH against the Naive benchmark

Series SQNT ABNT Mean Median

GARCH GARCH

S&P500, monthly

Test value 3.369 1.762 1.282 -0.414

p-value 0.000 0.078 0.200 0.679

MSFT, monthly

Test value 2.931 7.022 -2.671 -2.559

p-value 0.003 0.000 0.007 0.010

USD/Yen, daily

Test value 0.101 0.083 0.037 0.096

p-value 0.919 0.933 0.971 0.924

EFG, daily

Test value 1.077 1.301 0.259 1.095

p-value 0.281 0.190 0.795 0.274

Notes:

1. See Tables 17 and 18 for column nomenclature.

2. The entries of Table 19 are the test and p-values for the Diebold-Mariano (1995) test for comparing

forecasting accuracy. The tests use the absolute value function for the calculation of the statistic

and are expressed relative to the Naive benchmark.

3. Positive values indicate that the competing model is superior, negative values that the Naive bench-

mark is superior.
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Table 20. Forecast Unbiasedness Regressions
Series Näıve SQNT ABNT Mean Median

GARCH GARCH

S&P500, monthly

Estimates (-0.003,1.824) (0.000,0.317) (0.000,0.879) (-0.002,1.685) (-0.002,3.879)

p-values (0.597,0.540) (0.527,0.055) (0.344,0.000) (0.000,0.000) (0.000,0.000)

R2 0.003 0.025 0.111 0.118 0.177

MSFT, monthly

Estimates (-0.025,0.242) (0.004,-0.859) (0.004,-0.729) (0.007,-1.000) (0.007,-1.000)

p-values (0.000,0.276) (0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000)

R2 0.012 0.871 0.689 1.000 1.000

USD/Yen, daily

Estimates (0.000,-1.099) (0.000,-0.476) (0.000,0.355) (0.000,-0.803) (0.000,0.642)

p-values (0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000)

R2 0.188 0.055 0.017 0.136 0.029

EFG, daily

Estimates (0.000,-0.767) (0.000,-0.378) (0.000,0.058) (0.000,0.138) (0.000,0.567)

p-values (0.017,0.000) (0.000,0.000) (0.000,0.518) (0.038,0.318) (0.038,0.025)

R2 0.072 0.062 0.001 0.002 0.002

Notes:

1. See Tables 17 and 18 for column nomenclature.

2. The entries of Table 20 are the coefficient estimates (â, b̂) (first line), corresponding p-values (second

line) and R2 (third line) from the forecast unbiasedness regression et = a + bσ̂2
t + ζt.

3. Under the hypothesis of forecast unbiasedness we must have a = b = 0 and R2 → 0. For any two

competing models A and B for which we have that R2
A < R2

B we say that model A is superior to

model B.
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Figure 1: Return, volatility and QQ plots for the monthly S&P500 series
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Figure 2: Recursive moments for the monthly S&P500 series
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Figure 3: Return, volatility and QQ plots for the monthly MSFT series
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Figure 4: Recursive moments for the monthly MSFT series
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Figure 5: Return, volatility and QQ plots for the daily USD/Yen series
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Figure 6: Recursive moments for the daily USD/Yen series
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Figure 7: Return, volatility and QQ plots for the daily EFG series
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Figure 8: Recursive moments for the daily EFG series
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Figure 9: QQ plots of the NoVaS -transformed W series for the monthly S&P500 series
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Figure 10: QQ plots of the NoVaS -transformed W series for the monthly MSFT series
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Figure 11: QQ plots of the NoVaS -transformed W series for the daily USD/Yen series
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Figure 12: QQ plots of the NoVaS -transformed W series for the daily EFG series
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