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ABSTRACT

We explore the extension of James-Stein type estimators in a direction that enables them to

preserve their superiority when the sample size goes to infinity.  Instead of shrinking a base

estimator towards a fixed point, we shrink it towards a data-dependent point, which makes it

possible that the “prior” becomes more accurate as the sample size grows.  We provide an

analytic expression for the asymptotic risk of James-Stein type estimators shrunk towards a data-

dependent point and prove that they have smaller asymptotic risk than the base estimator.

Shrinking an estimator toward a data-dependent point turns out to be equivalent to combining

two random variables using the James-Stein rule.  We propose a general combination scheme

which includes random combination (the James-Stein combination) and the usual nonrandom

combination as special cases.  As an example, we apply our method to combine the Least

Absolute Deviations estimator and the Least Squares estimator.  Our simulation study indicates

that the resulting combination estimators have desirable finite sample properties when errors are

drawn from symmetric distributions.  Finally, using stock return data we present some empirical

evidence that the combination estimators have the potential to improve out-of-sample prediction

in terms of both mean square error and mean absolute error.

KEY WORDS:  Shrinkage; Asymptotic risk; Combination estimator
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1.  INTRODUCTION

     Shrinkage techniques for the linear regression model have been studied extensively since the

seminal works by Stein (1955) and James and Stein (1960), who proved that the usual estimator

for the mean of multivariate normal distribution is inadmissible and there exists an improved

estimator with smaller risk when the dimension of the multivariate normal vector is greater than

two.

     Even though this discovery was surprising, its usage has been restricted to small sample

situations because the advantage of smaller risk tends to disappear as the sample size grows

(Saleh and Sen 1985; Sen and Saleh 1987).  Schmoyer and Arnold (1989) proposed a  James-

Stein type estimator that can achieve risk improvement in large samples, at a cost of imposing a

very restrictive assumption on the prior information: the mean of the prior distribution is assumed

to converge to the parameter of interest at the rate ).( 2/1−nO   We follow an approach taken by

Green and Strawderman (1991) for fixed n  to shrink a given base estimator towards a data-

dependent point; here, however, unlike Green and Strawderman, our data dependent point can be

either asymptotically biased or correlated with the base estimator, and we consider what happens

as ∞→n .  The resulting shrinkage estimator in its general form asymptotically dominates both

the base estimator and the data-dependent point in terms of quadratic loss.  The data-dependent

point can be another estimator under some mild restrictions.

     To illustrate our results we choose the Least Absolute Deviations estimator as the base

estimator and the Least Squares estimator as the data-dependent point.  Our estimator in this case

is an optimal mix of the information contained in the two estimators.  This example can be viewed
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as a multivariate extension of what Laplace (1818) did when he combined the sample median and

the sample mean by minimizing the asymptotic variance.

2.  ASYMPTOTIC RISK IMPROVEMENT

     Suppose data are generated according to ttt Xy εβ +′= 0   nt ...,,2,1= , where 0β ∈ kR  and tε

is assumed to be identically distributed and independent.  Let nb  be an estimator for 0β .  The

quadratic loss is ),( 0βnbL  ≡  )()( 00 ββ −′− nnn bQb  where nQ  is a symmetric and positive

definite matrix.  The expectation of the loss function )),(( 0βnbLE  is called the risk and denoted

by ).,( 0βnbR   Let }{ nb  be a sequence of estimators of 0β  and let )},({ 0βnbL  be a sequence of

loss values.   Suppose ),( 0βnbL  converges in distribution to an integrable random variable .Ψ

The asymptotic risk of  }{ nb  for )},({ 0βnbL  is then defined to be ).()},({ 0 Ψ≡ EbAR n β   We

denote by ng  the mean of the prior distribution towards which a base estimator is shrunk.

Classical James-Stein type estimators are obtained by setting ng  to a fixed number.  In this paper,

we allow ng  to be data-dependent.  We now provide formal conditions for our analysis.

Assumption 1.  nQn 1−  p →  Q  where Q  is a nonstochastic symmetric and  positive definite

matrix.



3
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nonstochastic and finite, and A  and B are symmetric and positive definite matrices.

Assumption 3.  0][ == nn gbP  for all n  and .0][ 21 == UUP

     Applying the approach of Green and Strawderman (1991), the natural James-Stein type

shrinkage is

nnnnnnnn
JS
c ggbgbcgb +−−−≡ )}(||||/1{),( 2

11
δ                                  (1)

where 1c  is a constant and ).()(|||| 2
nnnnnnnn gbQgbgb −′−≡−   When the sample size is fixed and

the prior is independent of the base estimator, this is identical to the estimator in Green and

Strawderman (1991).  We are mainly interested in what will happen as the sample size grows.

The following lemma describes the limiting distribution and the asymptotic risk.

Lemma 1.  Suppose that Assumptions 1, 2 and 3 hold.  Then

     (i)   )),(( 02/1
1

βδ −nn
JS
c gbn  d →  ).,( 211

UUJS
cδ

     (ii) )0),,(())},,(({ 21
0

11
UURgbAR JS

cnn
JS
c δβδ = , provided the expectation exists.
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In writing the limiting random variable ),( 211
UUJS

cδ  we abuse notation somewhat to have

),( 211
UUJS

cδ  ≡  22121211 ))}(()/(1{ UUUUUQUUc +−−′−− .  We use the notation similarly in

writing ),( 212
UUNR

cδ  and ),( 21 UUOW
λδ  in what follows.  The limiting random variable is not the

usual normal but a nonlinear function of (correlated) normal random variables.  The asymptotic

risk is the risk of the limiting random variable with the parameter of interest being zero.  We now

provide conditions ensuring that the shrinkage estimator (1) dominates the base estimator and

specify the optimal value for .1c

Theorem 1.  Suppose that Assumptions 1, 2 and 3 hold.  Then

     (i)    ))},,(({ 0
1

βδ nn
JS
c gbAR  is strictly convex in .1c

     (ii)    Let *
1c  ∈  argmin ))},,(({ 0

1
βδ nn

JS
c gbAR .  Then *

1c ων /=  where

             )]()/()([ 2121211 UUQUUUUQUE −′−−′≡ν  and )]()/(1[ 2121 UUQUUE −′−≡ω .

     (iii)  ))},,(({ 0
*
1

βδ nn
JS
c

gbAR = κων +− /2  where κ ≡ ][ 11QUUE ′ .

     (iv)  ))},,(({ 0
*
1

βδ nn
JS
c

gbAR  ≤  )},({ 0βnbAR  where the equality holds only when ν  = 0.

     (v)   ))},,(({ 0
1

βδ nn
JS
c gbAR  ≤ )},({ 0βnbAR  if 1c ∈ [min{0, ων /2 },max{0, ων /2 }]

              where the equality holds only when ν  = 0.

     We call the shrinkage estimator (1) with the optimal *
1c  the James-Stein Mix (JSM).  As long

as ν ≠  0, which we call the Relative Efficiency Condition (REC), we can achieve an asymptotic

risk improvement with respect to the base estimator.  The relative efficiency condition does not



5

allow us to choose an asymptotically efficient estimator as the base estimator nb   unless either we

select a super-efficient estimator as our “prior” ng  or the “prior” has an asymptotic bias.

Suppose we choose an asymptotically efficient estimator as the base estimator.  Then any data-

dependent point which is not super-efficient and has no bias can be expressed as the sum of the

asymptotically efficient estimator and a random noise, which is asymptotically uncorrelated with

the asymptotically efficient estimator and converges to zero as the sample size goes to infinity.  It

follows that 0),( 211 =− UUUCov  which, because of normality, is equivalent to 1U  being

independent of 21 UU − .  This implies that ν  = 0.

     While the sign of ω  is positive by Assumption 3, the sign of ν  is not determined.  Therefore

the sign of *
1c  depends on the sign of ν .   It is interesting to note that the ratio ων /  is equal to

2)2( σ−k  when 1U  and 2U  are independent; i.e. ∆  = 0.  In this case, the optimal combination

weight is exactly the James-Stein optimal weight.  The deviation of the ratio ων /  from 2)2( σ−k

depends on the degree of the asymptotic correlation between the base estimator and the data-

dependent point.  To illustrate the James-Stein Mix, we give some simple examples.  For

comparison, note that for all of our examples )},({ 0βnbAR  =  2σk .

Example 1.  Suppose that ,2 IA σ=  ,2 IB τ=  ,0=∆  ,IQ = 0≠θ  and .3≥k  Then

(i) .)2( 2*
1 σ−= kc

(ii) [ ])22/(1)/()2())},,(({ 224220
*
1

PkEkkgbAR nn
JS
c

+−+−−= τσσσβδ

where P  has a Poisson distribution with mean )(2/ 22 τσθθ +′ .



6

Example 2.  Suppose that ,2 IA σ=  ,2 IB τ=  ,0=∆  ,IQ =  0=θ  and  .3≥k  Then

     (i)         .)2( 2*
1 σ−= kc

(ii) )./()2())},,(({ 22420
*
1

τσσσβδ +−−= kkgbAR nn
JS
c

     While the James-Stein Mix is a combination of two random variables using a random weight,

conventional combination estimators use a nonrandom weight.  This nonrandom combination has

been studied mainly for independent estimators.  See Cohen (1976) and Green and Strawderman

(1991).  Laplace (1818) combined the sample median and the sample mean by minimizing

asymptotic variance.  Here we consider combining multi-dimensional correlated estimators by

minimizing asymptotic risk.  The usual combination gives

nnnnn
NR
c ggbcgb +−−≡ )}(1{),( 22

δ                                            (2)

where 2c  is a constant.  Using the same arguments as in Lemma 1 and Theorem 1, we obtain the

following results.

Lemma 2.  Suppose that Assumptions 1, 2 and 3 hold.  Then

     (i)   )),(( 02/1
2

βδ −nn
NR
c gbn  d →  ).,( 212

UUNR
cδ

     (ii) )0),,(())},,(({ 21
0

22
UURgbAR NR

cnn
NR
c δβδ = , provided the expectation exists.

Theorem 2.  Suppose that Assumptions 1, 2 and 3 hold.  Then
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     (i)   ))},,(({ 0
2

βδ nn
NR
c gbAR  is strictly convex in .2c

     (ii)   Let *
2c  ∈  argmin ))},,(({ 0

2
βδ nn

NR
c gbAR .  Then *

2c αρ /=  where

            )]()[( 2121 UUQUUE −′−≡α  and )].([ 211 UUQUE −′≡ρ

     (iii) ))},,(({ 0
*
2

βδ nn
NR
c

gbAR = καρ +− /2 .

     (iv) ))},,(({ 0
*
2

βδ nn
NR
c

gbAR ≤ )},({ 0βnbAR  where the equality holds only when ρ  = 0.

     (v)  ))},,(({ 0
2

βδ nn
NR
c gbAR ≤ )},({ 0βnbAR  if 2c ∈ [min{0, αρ /2 },max{0, αρ /2 }]

            where the equality holds only when ρ  = 0.

     (vi) ))},,(({ 0
*
2

βδ nn
NR
c

gbAR ≤ )},({ 0βngAR  where the equality holds only when

             γ = 0 with γ = ].)[( 221 QUUUE ′−

     We call the combination in (2) with the optimal *
2c  the Nonrandom Mix (NRM).  If both ρ  ≠

0 and γ ≠  0, the analog of the relative efficiency condition in the present context, then the

asymptotic risk of the Nonrandom Mix is strictly smaller than that of both the base estimator and

the data-dependent point. We give some examples for illustration. As before, )},({ 0βnbAR = 2σk .

Example 3.  Suppose that ,2 IA σ=  ,2 IB τ=  0=∆  and .IQ =   Then

     (i)         )}.(/{ 222*
2 τσθθσ ++′= kkc

(ii) ))},,(({ 0
*
2

βδ nn
NR
c

gbAR =  )}.(/{ 22422 τσθθσσ ++′− kkk

Example 4.  Suppose that ,2 IA σ=  ,2 IB τ=  ,0=∆  IQ =  and .0=θ   Then

     (i)         )./( 222*
2 τσσ +=c
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(ii) ))},,(({ 0
*
2

βδ nn
NR
c

gbAR = )/( 2242 τσσσ +− kk .

Comparing Examples 2 and 4, we see that here the James-Stein Mix is dominated by the

Nonrandom  Mix when there is no asymptotic bias in the prior.  The following example provides a

condition under which the opposite is true in the presence of a bias.

Example 5.  Suppose that ,2 IA σ=  ,2 IB τ=  ,0=∆  ,IQ =  0≠θ  and 3≥k .  Then

     ))},,(({ 0
*
1

βδ nn
JS
c

gbAR < ))},,(({ 0
*
2

βδ nn
NR
c

gbAR

                 ⇔   .
)]([)2(

)(
22

1
222

222

τσθθ
τσ

++′−
+>





+− kk
k

Pk
E

     So far, we have investigated the James-Stein Mix and the Nonrandom Mix separately.  A

general combination scheme is

nnnnnnnn
OW ggbgbgb +−−−−≡ )}(||||/1{),( 2

21 λλδλ                             (3)

where ),( 21 ′= λλλ  is a constant vector.   The limiting distribution and the asymptotic risk are as

follows.

Lemma 3.  Suppose that Assumptions 1, 2 and 3 hold.  Then

     (i)   )),(( 02/1 βδλ −nn
OW gbn  d →  ).,( 21 UUOW

λδ

     (ii) ),0),,(())},,(({ 21
0 UURgbAR OW

nn
OW

λλ δβδ =  provided the expectation exists.
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In order to study the domination and optimality properties of this general mix, we add the

following assumption.

Assumption 4. )()( 2121 UUQUU −′−  is nondegenerate.

Theorem 3.  Suppose that Assumptions 1, 2, 3, and 4 hold.  Then

     (i)   ))},,(({ 0βδλ nn
OW gbAR  is strictly convex in .λ

     (ii)   Let *λ  ∈  argmin ))},,(({ 0βδλ nn
OW gbAR .  Then

             )()1( 1*
1 νρωαωλ −−= −  and )()1( 1*

2 ραναωλ −−= − .

     (iii)  ))},,(({ 0
* βδλ nn

OW gbAR

              = .)}2()2({)1( 2222222 κρνανωρνααρνωαραω +−++−−−− −

     (iv)  ))},,(({ 0
* βδλ nn

OW gbAR  ≤ )},({ 0βnbAR  where the equality holds only when

             ρ  = 0 and ν  = 0.

We call the general mix in (3) with the optimal weight *λ  the Optimal Weighting Mix (OWM)

and ),,,( ′ωνρα  the Combination Control Parameters (CCP).

     We now discuss some properties of the optimal weight and combination control parameters.

First, note that the denominator in the optimal weight 1−αω  is positive, which can be shown

using Assumption 4 and the strong form of Jensen’s Inequality.  This observation leads us to the

necessary and sufficient condition for determining the sign of the optimal weight:
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           ||]}||/1),([{}{ 21211
*
1 UUUUQUCovSignSign −−′=λ                                   (4)

            ||]},||/)(||,[||{}{ 2121121
*
2 UUUUQUUUCovSignSign −−′−=λ                    (5)

where ).()(|||| 2121
2

21 UUQUUUU −−≡−   We again see that the relative efficiency condition

governs the optimal weights.  We now prove that the Optimal Weighting Mix asymptotically

dominates both the James-Stein Mix and the Nonrandom Mix.

Corollary 1.  Suppose that Assumptions 1, 2, 3, and 4 hold. Then

     (i)  ))},,(({ 0
* βδλ nn

OW gbAR  ≤ ))},,(({ 0
*
1

βδ nn
JS
c

gbAR  where the strict inequality holds

            if *
1λ  is not equal to zero.

     (ii) ))},,(({ 0
* βδλ nn

OW gbAR  ≤ ))},,(({ 0
*
2

βδ nn
NR
c

gbAR where the strict inequality holds

            if *
2λ  is not equal to zero.

The optimal weights *
1λ , *

2λ  can be viewed as the contribution of the nonrandom mix and the

random mix respectively.  In the special case where ,2 IA σ=  ,2 IB τ=  ,0=∆  ,IQ =  3≥k  and

,0=θ  we can show that *
1λ  = )/( 222 τσσ +  and *

2λ  = 0.  The random mix makes no

contribution.  On the other hand, if ,2 IA σ=  ,2 IB τ=  ,0=∆  ,IQ =  ,0≠θ  and 3≥k , then

0*
2 ≠λ if and only if  )](/[)()]22/(1[)2( 2222 τσθθτσ ++′+≠+−− kkPkEk   where P  has a

Poisson distribution with mean )(2/ 22 τσθθ +′ .
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3.  ESTIMATION

     Even though the Optimal Weighting Mix has some nice properties, it contains the four

unknown parameters ),,,( ′ωνρα .  This is why we use the term “mix” instead of “estimator”.

We now discuss how to estimate the combination control parameters consistently.  For simplicity,

we consider only the case where there is no asymptotic bias.  Before we proceed, we define some

random variables used in our results.  Let .),( 211 ′−≡ UUUU   Then U  ∼  ),0( 2212 kkkN ×× Σ  where

Σ  ≡  





+∆′−∆−∆′−
∆−

BAA
AA

.  There exists a matrix P  such that Σ = PP ′.  Let .1UPZ −≡

Then Z  ∼  ),0( 2212 kkk IN ×× .  Define PNPM 11 ′≡  where 





≡

×

×

kk

kk

Q
Q

N
0

0
2/11  and NPPM ′≡

where 



≡

×

××

Q
N

kk

kkkk

0
00

.  It can be shown with some simple algebra that )( 211 UUQU −′  = ZMZ 1′

and )()( 2121 UUQUU −′−  = .MZZ′

     This transformation permits us to use Ullah (1990)’s results on moments of the ratio of

quadratic forms of normal random variables.  Suppose that nnnn QBA ˆ,ˆ,ˆ,ˆ ∆  are consistent

estimators for QBA ,,, ∆  respectively. We consider the following estimators for the combination

control parameters.

                                   ]ˆ)ˆˆˆˆ[(ˆ nnnnnn QBAtr +∆′−∆−≡α                                                      (6)

                                     ]ˆ)ˆˆ[(ˆ nnnn QAtr ∆′−≡ρ                                                                       (7)
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                                     ∫
∞

−≡
0

2/1
1 |ˆ|ˆ dtN ntnω                                                                           (8)

                                     [ ]dtNMtrN ntnntn ∫
∞

−−≡
0

1
01

2/1
0

ˆˆ|ˆ|ν̂                                                       (9)

where nnnt QtIN ˆˆ2ˆ
221 Σ+≡ , nnt MtIN ˆ20̂ +≡  and .ˆˆˆˆˆ

22 nnnnn BA +∆′−∆−≡Σ   Before we show the

consistency results, we first establish that the control parameters are finite.

Assumption 5. BA +∆′−∆−≡Σ 22  is positive definite.

Lemma 4.  Suppose that Assumptions 2 and 5 hold.  Then

     (i)    .|| ∞<α

     (ii)   .|| ∞<ρ

     (iii)  ∞<|| ω  if .2>k

     (iv)   ∞<||ν  if 2≠k  and .4≠k

We now prove that the estimators defined in (6) – (9) converge to the combination control

parameters in probability.

Theorem 4.  Suppose that Assumptions 1, 2, 3, 4, and 5 hold.  Suppose that 2>k  and .4≠k

Then

     (i)   $α αn
p → .
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     (ii)  $β βn
p → .

     (iii) $ω ωn
p → .

     (iv)  $ν νn
p → .

Once we obtain consistent estimators for the control parameters, a natural way to approximate the

Optimal Weighting Mix is given by

nnnnnnnnnn
OW ggbgbgb

n
+−−−−≡ )}(||||/ˆˆ1{),( 2

21ˆ λλδλ                            (10)

where )ˆˆˆ()1ˆˆ(ˆ 1
1 nnnnnn νωρωαλ −−≡ −  and )ˆˆˆ()1ˆˆ(ˆ 1

2 nnnnnn ρναωαλ −−≡ − .  We call the estimator

in (10) the Optimal Weighting Scheme (OWS) Estimator.  An interesting question is whether we

can still achieve optimality (minimum asymptotic risk) for this estimator.  The following corollary

answers this question.

Corollary 2.  Suppose that Assumptions 1, 2, 3, 4, and 5 hold. Suppose that 2>k  and .4≠k

Then

     (i)     $ *λ λ1 1n
p →  and $ *λ λ2 2n

p → .

     (ii)    )),(( 0
ˆ

2/1 βδλ −nn
OW gbn
n

 d →  ).,( 21* UUOW
λδ

     (iii)  ))},,(({ 0
ˆ βδλ nn
OW gbAR

n
 = ))},,(({ 0

* βδλ nn
OW gbAR .
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The Optimal Weighting Scheme estimator has the same limiting distribution as the Optimal

Weighting Mix, and therefore achieves the minimum bound.

Remark 1.  The same analysis as for the Optimal Weighting Scheme estimator applies to the

James-Stein Mix and the Nonrandom Mix.  We call the resulting estimators the James-Stein

Combination (JSC) Estimator and the Nonrandom Combination (NRC) Estimator respectively.

4.  APPLICATION

     In this section we discuss heuristically how our method can be utilized in combining two

possibly correlated estimators.  We choose the Least Absolute Deviations (LAD) estimator as the

base estimator and the Ordinary Least Squares (OLS) estimator as the data-dependent point.  The

resulting estimator is an optimal combination of the two estimators.  There has been some

interesting research on this issue.  As previously mentioned, Laplace (1818) combined the sample

median and the sample mean by minimizing the asymptotic variance.  Taylor (1974) suggested a

two step procedure; first apply the LAD estimator to identify outliers to be trimmed and then

apply the OLS estimator.  Arthanari and Dodge (1981)  combined the objective functions of the

LAD estimator and the LS estimator.

     As shown in Bates and White (1993), both the LAD estimator and the OLS estimator are

members of a RCASOI (Regular Consistent Asymptotically Second Order Indexed) class under

some regularity conditions.  For any member nb  in a RCASOI class, there is a score

representation )( 0
ns  and Hessian representation )( 0

nH  such that 0β−nb  = ).( 2/1010 −− + nosH pnn
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Accordingly, we have the following representation for the two estimators; =LS
ns 2 X t t

t

n

ε
=
∑

1

,

=LS
nH 2∑

=
′

n

t
tt XXE

1

)( , =LAD
ns ∑

=
≤ −−

n

t
t t

X
1

]0[ )2/11(2 ε  and =LAD
nH ∑

=
′

n

t
tt XXEf

1

)()0(2  where )0(f

is the value of the density of tε  at zero.  Given these representations it is not difficult to show the

joint asymptotic normality which, follows from

=










−
−

)(

)(
0

0
2/1

β
β

LS
n

LAD
n

b

b
n ).1(

0

0 2/1

1

1

1

pLS
n

LAD
n

LS
nkk

kk
LAD
n o

s

s
n

Hn

Hn
+














 −
−

−
×

×
−

                         (11)

The identical and independent distribution assumption is sufficient (though not necessary) to

deliver the desired result.  The asymptotic covariance between the two estimators is given by

1
21

11 )()()()}0(4{ −−− ′′′=∆ tttttt XXESSEXXEf where ≡tS1 )2/1]0[1(2 −≤− ttX ε  and ≡tS2

.2 ttX ε   We estimate the asymptotic covariance by the plug-in principle: n∆̂ ≡

1)}0(ˆ4{ −
nf

1

1

1 ][ −

=

− ∑ ′
n

t
tt XXn ∑

=

− ′
n

t
tt SSn

1
21

1 ˆˆ 1

1

1 ][ −

=

− ∑ ′
n

t
tt XXn  where )0(n̂f  is an estimate for the density

at zero and tt SS 21
ˆ,ˆ are estimates for tt SS 21 , using nttt bXy ′−≡ε̂ .  We study the behavior of

various combinations of LAD and OLS in the following sections.

5.  SIMULATION

     We conduct Monte Carlo experiments designed to investigate the finite sample properties of

James-Stein type estimators. For purposes of comparison, we also include stable estimators (the
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Ridge estimator, the Garrotte estimator and the Non-Negative Garrotte estimator).  Stable

estimators have been shown to have good prediction performance (Breiman 1995, 1996).  The

definitions for stable estimators considered here are given in Table 1.  In the simulation we

combine the LAD and the OLS estimators described in Section 4 to obtain examples of the NRC,

JSC and OWS estimators.

     The basic model for the simulation is ttt Xy εβ +′= 0  where  ,...,,2,1 nt =  0β ∈ kR , 500=n

and .5=k   We set 0β  = .)1,1,1,1,1( ′  The number of replications is 1,000.  We obtain the LAD

estimator using the efficient 1L  algorithm developed by Barrodale and Roberts (1974).  The

simulation was carried out on a 266MHz PC using MATLAB.  The random number generator

used in the simulation is that from the MATLAB Statistics Toolbox.

      Table 1.  Definition of Estimators

Estimator             Definition

Ridge )( Rb Rb  ∈  argmin 2|||| Xby −    s.t.  sbb <′

Garrotte )( Gb Gb  ∈  argmin 2|||| γZy −    s.t. LS
jijij bXZ =  and s<′γγ

Non-Negative Garrotte )( Nb Nb  ∈  argmin 2|||| γZy −    s.t. LS
jijij bXZ =  and

                                                  0, ≥<′ γιγ s

      NOTE: Values for s  are determined by k -fold cross-validation.

     We choose four symmetric distributions and two non-symmetric distribution for tε .

Symmetric distributions are the Uniform distribution within [-4,4], the standard normal

distribution, the student t-distribution with 3 degrees of freedom, and the Cauchy distribution with

interquartile range 1.  These represent moderate, heavy and very heavy tailed distributions.  For
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the non-symmetric distributions, we choose the shifted Chi-square distribution centered at zero

with 12 degrees of freedom and the shifted Rayleigh distribution centered at zero with parameter

4.  Independent variables are generated using the joint normal distribution ),0( ΣN  where the

covariances are set to 0.5 and the variances are one.  The first entry of tX  is one.  We estimate

the required density )0(n̂f  using a kernel method with Gaussian kernel.  For each replication we

compute the quadratic loss value for each estimator.  We approximate the risk by averaging the

loss values over all replications.  The results are collected in Table 2.

     Table 2.  Finite Sample Risk Comparison over Different Error Distributions )500( =n

Uniform   Normal   Student-t         Cauchy          2χ  Rayleigh

OLS 26.306 5.006 14.789 463971952.194 121.770 35.089

LAD 77.029 7.791 9.345 12.789 398.972 99.337

NRC 20.595 5.035 8.908 12.531 126.610 35.982

JSC 72.765 6.306 9.104 12.707 396.751 96.982

OWS 20.617 5.035 8.910 12.525 126.925 35.830

RIDGE 25.504 4.974 14.471 433311022.768 115.666 33.612

GAR 27.241 5.103 15.216 463971921.290 126.777 36.226

NNGAR 26.311 5.006 14.789 463970894.151 123.116 35.090

     It is known that the performance of the median is worse than the sample mean when the error

is distributed uniformly.  As expected, the risk of the LAD estimator (77.029) is greater than the

risk of the OLS estimator (26.306) for the Uniform distribution with [-4,4].  All combination

methods give negative weight to the LAD estimator.  As a result, both the OWS estimator and the

NRC estimator dominate the OLS estimator.  When the regression error is normal, the OLS
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estimator is asymptotically efficient.  The risk of the OLS estimator (5.006) is smaller than that of

the LAD estimator (7.791).  All combination methods again give negative weights to the LAD

estimator and have smaller risk than the LAD estimator, but greater risk than the OLS estimator.

However, the deterioration of the OWS estimator and the NRC estimator relative to the OLS

estimator is not large (-0.57 %).  The  Student-t distribution with 3 degrees of freedom has a

relatively fat tail.  As expected, the risk of the LAD estimator (9.345) is smaller than the risk of

the OLS estimator (14.789).  All combination estimators have smaller risk than both the LAD

estimator and the OLS estimator.  The improvement of the combination estimators over the LAD

estimator and the OLS estimator is about 2 - 5 % and 38 - 40 % respectively.  The Cauchy

distribution represents a very heavy tailed distribution.  The risk performance of the OLS

estimator is worse than that of the LAD estimator (463971952 and 12.789 respectively).

Nevertheless, combining the LAD estimator with the OLS estimator makes an improvement over

the LAD estimator. The improvements over the LAD estimator and the OLS estimator are about

0.6 - 2 % and 100 % respectively.

     The LAD estimator is out-performed by the OLS estimator in terms of risk (398.972 and

121.770) when the regression error is Chi-square distribution with 12 degrees of freedom.

However, the combination methods give positive weight to the LAD estimator.  For the OWS

estimator and the NRC estimator, the weight is very small (about 0.080 - 0.096).  On the other

hand, the JSC estimator gives a large positive weight to the LAD estimator (0.99), which clearly

shows the inferiority of the JSC estimator when the regression error is not symmetric.  The failure

can be explained by the bias in the constant coefficient, which makes the distance between two

estimators very large (384.778).  This in turn makes the JS weight too large.  All combination

estimators are better than the LAD estimator, but worse than the OLS estimator.  When the error
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has the Rayleigh distribution with parameter 4, the result is basically the same as for the Chi-

square distribution.  However, the skewness is smaller than for the Chi-square distribution, and as

a result, the bias in the constant term is much smaller.  The OWS estimator and the NRC

estimator now give a small negative weight to the LAD estimator.

     The performance of the stable estimators are shown in the same table.  The Ridge estimator

gives smaller risk than the OLS estimator over all error distributions considered in the simulation

including the normal distribution.  This is a well-known standard result based on the trade-off

between variance and bias.  On the other hand, the other stable estimators (the Garrotte estimator

and the Non-Negative Garrotte estimator) are not better than the OLS estimator, which might at

first seem surprising.  However, Breiman (1995, 1996) showed that the Garrotte estimator and

the Non-Negative Garrotte estimator give smaller prediction mean squared error than the OLS

estimator when irrelevant variables appear in the model.  Here none of our variables are irrelevant.

Despite this, the additional risk associated with the Garrotte and Non-Negative Garrotte is small.

6.  EMPIRICAL STUDY: OUT-OF-SAMPLE PREDICTION

     In this section we investigate the out-of-sample predictive ability of the combination estimators

using actual data.  Let y  be a 1×T  vector of out-of-sample actual values and let  e  be a 1×T

vector of the prediction errors where T is the number of out-of-sample observations.  In order to

evaluate forecasting performance, we use the following forecasting error measurements:

prediction mean squared error )(ePMSE Tee /′≡  and prediction mean absolute error

)(ePMAE ∑
=

−≡
T

t
teT

1

1 || .  We also use 2R  type prediction measures: )(/)(1 22 ySePMSER −≡



20

and )(/)(12 yMAEePMAERA −≡  where )(2 yS  is the sample variance of y  and )( yMAE  is the

mean absolute error of .y   The data set contains daily stock market returns for ADC TeleCom

Co. and HomeStake Co., stocks that have been randomly chosen from the DATASTREAM

database.  The sample period covers January 1, 1990 through March 31, 1996 which gives us

1630 observations.  We model daily excess returns, computed by subtracting the 3-month US T-

bill rate from daily returns.  Table 3 provides summary statistics.

    Table 3.  Summary Statistics for Daily Excess Stock Returns (in percent)

     Mean Median      Max       Min Std. Dev.   Skew. Excess
Kurtosis

ADC TelCom 0.15 -0.01 11.92 -22.13 2.94 -0.17 3.93

HomeStake 0.01 -0.02 11.25 -12.45 2.52 0.08 1.96

Our forecasting model for excess returns is

                             α=tr  + ∑
=

−

1

1

k

i
iti rβ  + ∑

=
−

2

1

k

i
itmirγ + tε                                               (12)

where mtr  is the daily excess returns on the S&P500 index and .121 == kk  The simple efficient

market hypothesis requires that 0=== γβα , so that the best predictor is zero.  We call this the

Random Walk predictor and we include this in our comparison study.  We use a fixed rolling

window method to estimate the coefficients, and set the size of estimation window to be 520,

which is about a two year sample period.  We repeat the entire exercise identically  for each of the

8 estimators and for each of the target variables.
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     The outcomes are summarized Figures 1 and 2.  We can represent an estimator as a point in

PMAE-PMSE space.

  Figure 1.  Out-of-Sample Prediction Performance for ADC TeleCom.

In this diagram, we prefer estimators located closer to the origin because the PMAE and the

PMSE can be treated as “bad” commodities.  We represent combination and stable estimators by

their first initial in PMAE-PMSE space except the NRC estimator denoted by “c” and the

Random Walk predictor denoted by “w”.  For example, "r" stands for the Ridge estimator, “g” for

the Garrotte estimator, and so on.  In the case of ADC TeleCom (Figure 1), all combination

estimators outperform both the LAD and the OLS estimators in terms of PMSE, but the

improvement over the LAD estimator is very small.  The performance of the NRC and OWS are

almost identical.  They also achieve better performance than the stable estimators.  Interestingly
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all our estimators beat the Random Walk predictor in terms of PMSE, but the Random Walk

predictor beats all estimators in terms of PMAE.

     Figure 2.  Out-of-Sample Prediction Performance for HomeStake.

     The out-of-sample prediction result for HomeStake stock is given in Figure 2.  The Non-

negative Garrotte, Garrotte, Ridge and JSC estimators outperform all other estimators in terms of

both PMSE and PMAE.  The behavior of Random Walk predictor is similar to the results seen for

ADC TeleCom stock.  The combinations estimators generally achieve better performance than the

LAD and OLS estimators but the magnitude of improvement is very small.

     Prediction performance measured by prediction 2R  is summarized in Table 4.  The prediction

2R  is not necessarily positive because out-of-sample predictions are not guaranteed to be

orthogonal to out-of-sample residuals.  The prediction 2R  compares the performance of a
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predictor to the imaginary situation where we know in advance the sample mean of the target

variable over the entire out-of-sample period and use it as our predictor.  Therefore,  a positive

prediction 2R  indicates that the predictor is better in terms of PMSE than the sample mean

assumed known in advance.  According to the summary statistics in Table 4, the return on ADC

TeleCom Co. is more difficult to predict than that for HomeStake Co..  Nevertheless, all

combination estimators and the LAD estimator give positive prediction 2R ’s.

     Table 4.  Out-of-Sample Prediction Performance

        ADC TeleCom Co.

            2R              2
AR

           HomeStake Co.

            2R               2
AR

OLS -0.001410 0.000879 0.005622 -0.00955

LAD 0.001613 0.003402 0.004698 -0.00674

NRC 0.001871 0.002967 0.006569 -0.00878

JSC 0.001782 0.003366 0.006987 -0.00663

OWS 0.001858 0.002964 0.006606 -0.00875

RIDGE -0.000540 0.003894 0.006282 -0.00561

GAR -0.001280 0.002069 0.007043 -0.00616

NNGAR -0.000320 0.002136 0.010452 -0.00405

Random Walk -0.001999 0.004883 -0.000147 -0.00149
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7.  CONCLUSION

     We have proposed an extension of James-Stein type estimators in a direction that preserves

their risk improvement when the sample size goes to infinity.  This extension supports use of

James-Stein type estimators when one has a moderate or large number of observations.  This is

important because large data sets are becoming more and more easily available.  We permit the

data-dependent point towards which we shrink our base estimator to be asymptotically biased or

asymptotically correlated with the base estimator, in contrast to previous work.  Our results thus

suggest that many other interesting estimators are potential candidates for use as a data-dependent

point.
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APPENDIX

Proof of Lemma 1.   First note that )(2/1
nn gbn − = )()( 02/102/1 ββ −−− nn gnbn d →

21 UU − by Assumption 2.  One can also show that 2|||| nnn gb −  d →  2
21 |||| UU −  by

Assumption 2 where ).()(|||| 2121
2

21 UUQUUUU −−≡−   Combining these observations, we have

)),(( 02/1
1

βδ −nn
JS
c gbn  = )()(}||||/1{ 02/12/12

1 β−+−−− nnnnnn gngbngbc  d →

221
2

211 )}(||||/1{ UUUUUc +−−−  which is ).,( 211
UUJS

cδ   The loss function for ),(
1 nn
JS
c gbδ is

given by )),,(( 0
1

βδ nn
JS
c gbL  = 20 ||),(||

1 nnn
JS
c gb βδ −  which converges to 2

21 ||0),(||
1

−UUJS
cδ .

Therefore, ))},,(({ 0
1

βδ nn
JS
c gbAR  = }||0),({|| 2

211
−UUE JS

cδ  = )0),,(( 211
UUR JS

cδ .  U

Proof of Theorem 1.  By Lemma 1 ))},,(({ 0
1

βδ nn
JS
c gbAR  =  κνω +− 1

2
1 2 cc .  The first and

second derivatives of the asymptotic risk with respect to 1c  are )(2 1 νω −c  and ω2 .  Since ω  >

0 by Assumption 3, ))},,(({ 0
1

βδ nn
JS
c gbAR  is strictly convex in .1c   By setting the first derivative

to zero and solving for ,1c  we have *
1c ./ων=   Plugging *

1c  into the asymptotic risk, we have

the minimum asymptotic risk ))},,(({ 0
*
1

βδ nn
JS
c

gbAR = κων +− /2 .  Since ≡κ )},({ 0βnbAR ,

))},,(({ 0
*
1

βδ nn
JS
c

gbAR  ≤  )},({ 0βnbAR , where the equality holds only when ν  = 0.  The last

result follows from the strict convexity of the asymptotic risk.  U
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Remark A.1.  Proofs of Lemma 2 and Lemma 3 follow the same arguments in the proof of Lemma

1.  Also, Theorem 2 can be proved in an analogous way as in Theorem 1.  We therefore omit

these proofs.

Proof of Theorem 3.  It follows from Lemma 3 that ))},,(({ 0βδλ nn
OW gbAR  = −2

1αλ 12ρλ+

+212 λλ −2
2ωλ κνλ +22 . The Hessian is given by 





ω
α

20
02

, which is positive definite.  Hence,

))},,(({ 0βδλ nn
OW gbAR  is strictly convex in .λ   By setting the first derivative to zero and solving

for ,λ  we have )()1( 1*
1 νρωαωλ −−= −  and )()1( 1*

2 ραναωλ −−= − .  Plugging *λ  into the

asymptotic risk, we have the minimum asymptotic risk ))},,(({ 0
* βδλ nn

OW gbAR  =

.)}2()2({)1( 2222222 κρνανωρνααρνωαραω +−++−−−− −   For the last result, we define

≡)(ωh )}2()2({ 222222 ρνανωρνααρνωαρ −++−−−− .  We want to show )(ωh  ≥ 0 for all

ω , which delivers the desired result.  (Case 1) 0=ρ  and .0=ν   Then )(ωh  = 0.  (Case 2)

0=ρ  and .0≠ν   Then )(ωh  = 0)1(2 >−αωαν  because ,0>α  0≠ν  and .1>αω   (Case 3)

0≠ρ  and .0=ν   Then )(ωh  =  0)1(2 >−αωωρ  because 0,0 ≠> ρω  and .1>αω   (Case 4)

0≠ρ  and .0≠ν    Define }.0)(|{* =∈ ωωω h   Suppose that .0=− ραν  Then

=*ω 222( ρνα −− 22/)2 αραρν− .  It can be shown that *ωω > , because 1>αω  and .0≠ρ

This implies that )(ωh  ≥ 0 for all ω .  Now consider the case that .0≠− ραν   Define ≡−
*ω

2/)2( ραρν −  and ≡+
*ω  α/1 .  It follows that **

+− < ωω  and ωω <+
*  because 1>αω .   This

implies that )(ωh  ≥ 0 for all ω .  U
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Proof of Corollary 1.  Because of strict convexity, ))},,(({ 0
* βδλ nn

OW gbAR  ≤

))},,(({ 0βδλ nn
OW gbAR  for any λ.  Choose .),0( *

2 ′= λλ   It can be shown with some algebra that

))},,(({ 0βδλ nn
OW gbAR  = κων +− /2 , which is ))},,(({ 0

*
1

βδ nn
JS
c

gbAR .  Since *λ  is the unique

and global solution, the strict inequality holds if *
1λ  is not equal to zero.  For the second claim,

choose .)0,( *
1 ′= λλ  Then, ))},,(({ 0βδλ nn

OW gbAR  = καρ +− /2 , which is equal to

))},,(({ 0
*
2

βδ nn
NR
c

gbAR .  The same argument applies to the strict inequality.  U

Proof of Lemma 4.  It is trivial to show that ∞<||α  and ∞<|| ρ because these are obtained by

adding variances and covariances of normal random variables.  In order to show that ∞<|| ω ,

we define ,21 UUV −≡  QPPR ′≡  where P  is a square root matrix of .22Σ   Note that
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EQVUE  by the Cauchy-Schwarz inequality.  Since 1U  and
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Proof of Theorem 4.  Some elementary linear algebra gives that =α ].)[( QBAtr +∆′−∆−   Since

trace is a continuous function, ]ˆ)ˆˆˆˆ[(ˆ nnnnnn QBAtr +∆′−∆−≡α  is consistent.  By the same

reasoning, ]ˆ)ˆˆ[(ˆ nnnn QAtr ∆′−≡ρ  is consistent.  The argument for nω̂ and nν̂ is more involved.

We define .)2det(),( 2/1
2222

−Σ+≡Σ QtItQg   We want to show that there exists a dominating

function )(td  such that (i) | g Q t( , )Σ 22 | ≤ )(td  for all 22Σ  and Q  in a compact parameter space

and (ii) d t dt( )
0

∞

∫ < ∞ .  Using the relationship between determinant and eigenvalues of a matrix, we

can express )(⋅g  in terms of eigenvalues; g Q t( , )Σ 22  = λi
i

k

=
∏




1

1 2/

where iλ  is an eigenvalue of

the inverse matrix of .2 22QtI Σ+   Using some linear algebra, we can obtain an upper bound given

by g Q t( , )Σ 22
2  ≤ 

1
2 1| |κ t

k

+








where κ  is the minimum (in absolute value) eigenvalue of .22QΣ

Hence the natural candidate for the dominating function is d t
t

k

( )
| |

.
/

= +








1
2 1

2

κ   As long as

2>k  which is assumed in the corollary, the dominating function )(td  will satisfy the second

condition, d t dt( )
0

∞

∫ < ∞ .  Hence we have the desired result.  The proof for the consistency of

nν̂ is more complicated, but the key step is again to find a dominating function.  Since the

argument is similar, we just give the dominating function:
1

1||2
1||2)(

+









+
=

k

t
ktD

κ
ξ where κ
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is the minimum eigenvalue (in absolute value) of M  and ξ  is the maximum (in absolute value)

eigenvalue of .2
1M   U

Proof of Corollary 2.  Both n1̂λ  and n2̂λ are continuous function of the consistent estimators.

Since the limit of continuous function of consistent estimators is the value of function evaluated at

the limit  of the consistent estimators, we have the desired results: $ *λ λ1 1n
p →  and $ *λ λ2 2n

p → .

The consistency of the estimated weights together with the Slutsky Theorem delivers

)),(( 0
ˆ

2/1 βδλ −nn
OW gbn
n

 d →  ),( 21* UUOW
λδ  which in turn implies that ))},,(({ 0

ˆ βδλ nn
OW gbAR

n
 =

))},,(({ 0
* βδλ nn

OW gbAR .  U
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