A fast high-order method to calculate wakefield forces in an electron beam
Skip to main content
eScholarship
Open Access Publications from the University of California

A fast high-order method to calculate wakefield forces in an electron beam

Abstract

In this paper we report on a high-order fast method to numerically calculate wakefield forces in an electron beam given a wake function model. This method is based on a Newton-Cotes quadrature rule for integral approximation and an FFT method for discrete summation that results in an O(Nlog(N)) computational cost, where N is the number of grid points. Using the Simpson quadrature rule with an accuracy of O(h4), where h is the grid size, we present numerical calculation of the wakefields from a resonator wake function model and from a one-dimensional coherent synchrotron radiation (CSR) wake model. Besides the fast speed and high numerical accuracy, the calculation using the direct line density instead of the first derivative of the line density avoids numerical filtering of the electron density function for computing the CSR wakefield force. I. INTRODUCTION

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View