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Abstract

We characterize the open-loop and the Markov perfect Stackelberg equilibria for a differential game

in which a cartel and a fringe extract a nonrenewable resource. Both agents have stock dependent

costs. The comparison of initial market shares, across different equilibria, depends on which firm has

the cost advantage. The cartel's steady state market share is largest in the open loop eqnilibrium and

smallest in the competitive equilibrium. The initial price may be larger in the Markov equilibria, so a

decrease in market power may make the equilibrium appear less competitive. The benefit to

cartelization increases with market share.

*Department of Agricultural and Resource Economics, University of Califoruia, Berkeley.

**Academy of Finland.



1

1. Introduction

Exhaustible resources are amongst the most important traded commodities of world trade

over the past decade. Sustained, and at times successful attempts by exporters to exercise market

power have increased the economic and political significance of these commodities. The effect of

OPEC is still felt, and there have also been cartels in the mercury, uranium, diamond, copper and

bauxite markets. Existing models do not give a plausible description of resource cartel-fringe

markets because they typically assume that agents have constant production costs, and they use

open-loop equilibria. The first assumption implies that the cartel and fringe do not extract

simultaneously, which appears untrue, and the second assumption gives an equilibrium that is not

subgame perfect.

We extend the literature by using stock-dependent extraction costs, and more importantly we

solve both the open-loop and the Markov Perfect (subgame perfect) equilibria. We derive testable

hypotheses concerning the effect of cartelization on the initial price and on the short- and long-run

market shares. Comparison of the Open-Loop Stackelberg Equilibrium (OLSE) and the Markov

Perfect Stackelberg Equilibrium (MPSE) also helps develop our intuition for how these models work.

The MPSE allows the cartel to exercise less market power, so we might expect it to lie "between" the

competitive equilibria and the OLSE. Tills intuition can be misleading. For example, after the cartel

is formed the price level can be Illgher in the MPSE than in the OLSE.

Important early papers on the cartel-fringe model include Salant (1976), Gilbert (1978), Ulph

and Folie (1980) and Newbery (1981).1 These papers use OLSE and assume constant extraction costs,

so the equilibria consist of different regimes in which only one firm produces. Ulph and Folie and

Newbery emphasized that tills equilibrium is time-inconsistent: the cartel at time t>O would

1Pindyck (1978) simulates oil, bauxite and copper markets using competitive and monopoly
equilibria without introducing rational expectations for the fringe. Eswaran and Lewis (1985) offer
numerical comparison for the open-loop and feedback Nash-Cournot equilibria. The open loop
case is also studied by Loury (1986) and Polansky (1992). Griffin (1985) tests various theories on
OPEC behaviour and finds support for viewing oil markets in cartel-eompetitive fringe
framework. For a more detailed review, see Karp and Newbery, (1993).
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(typically) like to deviate from the path that it announced at time 0, even if there had been no

deviation in the past. Groot et al. (1989) show that price can be discontinuous between different

regimes.

Introducing stock-dependent costs considerably changes the OLSE. The firms extract

simultaneously during an infinite period of time, and price discontinuities no longer occur. The

equilibrium is still time-inconsistent, but we obtain a useful characterization of the cartel's incentive

to deviate. If the cartel begins with a cost disadvantage and produces little or nothing at the

beginning of the OLSE, it would like the fringe to extract rapidly at the beginning. The cartel benefits

in the future when it faces a rival with higher costs (lower stocks), and the current low price does not

harm it, since it is (nearly) inactive. In order to induce the fringe to begin with rapid extraction, the

cartel uses threats of high sales in the future. However, once the fringe's cost advantage has eroded,

the cartel would like to sell less than it had threatened. If the cartel begins with a cost advantage,

and therefore wants to sell early in the program, it would like to discourage fringe sales. To do this,

it promises to extract slowly in the future. The resulting high future price trajectory induces the

fringe to conserve its stock. The cartel wants to deviate from either type of plan, while the fringe

wants to hold the cartel to a promise, but release it from having to carry out a threat. Since the

cartel's relative cost advantage can change over time, an OLSE may change from being a threat to a

promise, or it may remain a promise forever. This characterization of the OLSE is useful for

understanding how the incentives differ in the MPSE.

The cartel's long run stationary market share is higher in the MPSE than in competitive

equilibrium. The initial market share can be higher or lower, depending on whether the cartel begins

with a cost advantage. Thus, we see that the exercise of market power can result in a higher market

share in both the short run and the long run, which is contrary to what we expect from static cartel

models. Of, course given the resource constraint, there must be some interval when the cartel's

market share is lower. We also find that benefits to cartelization (in a MPSE) are large when the

dominant firm has a cost advantage. The benefits decrease or increase over time, depending on
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whether the cartel's market share is decreasing or increasing.

Newbery (1992) constructed a MPSE for the special case in which the resource is worthless

after an exogenous time, extraction costs are stock independent, and the cartel's resource constraint

is never binding. These three assumptions imply that the game has only one state variable, the

fringe's stock. We drop all of these assumptions, so our model has two state variables. Consequently,

we cannot use the techniques described by Tsutsui and Mino (1990) for differential games with one

state variable. Instead we use a linear-quadratic structure, which enables us to obtain closed-form

solutions. Our model is more complex than Reynolds' (1987) linear-quadratic two--state variable

model because we have asymmetric agents. In addition, for some initial states the non-negativity

constraints are binding. Reynolds finessed this problem by restricting analysis to interior solutions.

We consider the general case, and provide a simple characterization of the MPSE and a comparison

with the OLSE. Hansen et al. (1985) construct a timHonsistent equilibrium for a similar problem.

However, that equilibrium is not subgame perfect: the decision-maker in the cartel today does not

recognize that she is able to affect the incentives of future cartel decision-makers. Their paper also

ignores non-negativity constraints on production.

The next section outlines the model and the competitive equilibrium. Section 3 analyzes the

OLSE, and Section 4 presents the MPSE and a comparison of the two. Section 5 concludes the paper.

2 The model and competitive equilibria

The model consists of two agents, the cartel (c) and a representative resource owner (f) from

the competitive fringe. Resource stocks evolve according to Xi=-qi, where i=c,f and Xi and qi are

the resource stocks and extraction levels respectively. We drop the time variable where convenient.

Demand is linear: p=p-qc-qf, where p is the choke price. The costs are decreasing and linear with

remaining stocks, and short run uuit costs are constant, i.e. costs for agent i are qi(COi-eiXi), i=c,f.
. .

We assume that COi~P, implying that agent i will not leave less than Xi units in the ground, where Xi
A • •

solves COi-{;iXi=P; i.e., Xi=(COi-p)/Ci. Define agent i's economically viable stock as Xi=Xi-Xi, and
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write i's unit costs as p-e;x;, and the state equations as x;=-q;. The states are now the economically

viable stocks, rather than the physical stocks. Assume finally that 8 is the rate of discount for both

agents. The description of our model requires only three parameters, 8, Cr, and cc.

In the competitive equilibrium, agent i maximizes l"'[pq;-q;(p-e;x;))e-8tdt, S.t. x;=-q;,
o

x;(O)=x;o, ~~!J,l x;~O, and q;~O. This equilibrium can be solved as a social planner's problem. If the

uuit extraction costs are not equal (CfxroFccxc), the agent with the lowest cost is the only producer.

During an interval when both supply, crxr=ccxc, in which case qr=ccqc!cr. We refer to the solution

xr=ccXe/cr as the "socially optimal stationary path" and denote it by r1(xc). When crxr>ccxc the

solution approaches r 1 along a vertical line, and when crxr<ccxc the solution approaches the

stationary path along a horizontal line (Fig. 1). Thus r 1is stable in the sense that if the state is off

this path it approaches it. At the moment the solution hits r 1 there is a downward jump in the

supply of the agent that had previously been extracting, and an upward jump in the supply of the

other agent. However, the total supply and price are continuous.

The slope of any trajectory in xr,Xc state space equals qr!qc. The fringe market share is

qr!(qr+qc)E[O,l], which is an increasing function of cc!cr. Along rl, the fringe's market share equals

cc!(cc+cr). A permanent decrease in the fringe costs caused by an increase in Cr, would lead to a

reduction in its steady state market share. This is because along r 1 uuit extraction costs are

constant, so the increase in Cr must lead to a decrease in the fringe's steady state share of resources.

In the steady state, market shares equal the share of resources.

3 The Open Loop Cartel-Fringe Equilibrium

We now assume that the cartel, at time 0, is able to announce an extraction trajectory. The

competitive fringe behaves as a price-taker with rational expectations (perfect foresight). Its

Hamiltonian is Hr=(p-p+crxr-A)qr, where A is the fringe'S rent. The necessary conditions include

{
=O o}qr> O} \ 8'-qr-qc+crXr-A <0 o}qr~O' 1\= I\-erqr·

To obtain equation (3.1a) we used p=p-qf-<lc. The cartel chooses an extraction path to maximize
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the present discounted value of its profits, J'"e-t5t[p-(p--ccxc)qc]dt, subject to (3.1a,b), and the
o

resource constraints. Thus the cartel regards the follower'S rent as a state variable with a free initial

condition. The complementary slackness relations in (3.1a) comprise three constraints. We could

form the Lagrangian using these constraints. However, this leads to a control problem for which the

constraint qualification (Seierstad and Sydsreter 1987, p. 278) does not hold at all admissible

solutions, and the standard necessary conditions cannot be applied directly.

To avoid this problem we study the necessary conditions in the three possible regimes: (a)

qf>O, qc=O; (b) qf>O, qc>O; and (c) qf=O, qc>O. When needed we denote these regimes by the

superscripts a,b or c respectively. We first study regime (b), and obtain an explicit solution using

standard methods. Next we consider the strategy that switches from regime (a) to (b) and stays in

(b) forever. We can again use standard methods, since qf>O along the entire solution. Next, we

formulate a control problem which determines regime (c) and an optimal switch from (c) to (b). Our

procedure allows jumps in the costates and resource price at the entrance to regime (b). However,

they turn out to be continuous. Finally, we show that depending on the initial resource levels, all

other regime switches can be ruled out, and one of the above strategies constitute the equilibrium.

3A. Regime (b)

In Regime (b) qf=CfXf-A-qc by (3.1a), which after defining the switching function

(j:XcCc--CfXf+crP+A+1]f-'l/c implies that the cartel's Hamiltonian2is

(3.2)

The costates 1]c, 1Jf, and p are associated with the states xc, Xf, and A, respectively. In regime (b), the

leader chooses the rate of extraction to maintain (j=0. In addition, necessary conditions include

(3.3a--c)

The equation .7=0, (3.2a--c), and Xl=-ql, imply that A=1]c-1Jf. Substituting this into (j=0 yields

2We will denote this Hamiltouian by Hab because it has the same form in regime (a).
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(3.4)

(3.6a)

(3.6b)

Because p(O)=O is necessary for optimality, we obtain:

Remark 3.1. The open loop equilibrium begins in regime (b) only if the initial state is on the

socially optimal stationary are, i.e., XCO=XfOCr!Cc.

In order to obtain an expression for qc, we differentiate (3.4) with respect to time, use (3.3c)

and the relation A='f/c-7Jf to obtain qc=')'(ccXc-'f/c); r=cf/(2cf+ccl. Equations (3.3a) and xc=-qc,

where qc is given above, comprise a pair of linear differential equations, which can be solved once we

have boundary conditions. Because in regime (b) the Maximized Hamiltonian is linear in (Xc,Xf,A), a

solution that remains in regime (b) forever satisfies sufficient conditions for optimality. Thus there

cannot exist solutions yielding higher profit for the carteL Solving the system for Xc and ~c yields two

roots with opposite sign. To find the solution that maintains qc>O and Xc>O for YtE [T,ro), we choose
1

the stable root, which equals r=t[S-(t52+4-yOcc)'] <0. By T we denote the moment when the

trajectory enters regime (b). The stable path can be written in terms of the (unknown) values of Xc

Xf at the moment system enters regime (b), which we denote as x<>p and XfT respectively. This yields

r(t-T) ( / ) r(t-T) r(t-T)xc=xcTe , 'f/c= r -y+cc xCTe , qc=-rXcTe . (3.5a-c)

Next (3.1a,b), Xf=-qf and (3.5c) form a system in A, Xf and t. The solution which maintains qf>O

and Xf>O, is

Xf=(Xf
T

- XCTcc!2Cf)ev(t-T) +XCTccer(t-T)/ 2Cf,

A=Xf+xCTcfr2(2cf+Cc)l(t-T) /2Cf2t5.

where v=t[S-(t52+4t5cf)!] <0. In regime (b) qc declines monotonically toward zero (3.5c). Fringe

extraction decreases monotonically toward zero if XfT>XcT(v2-r2)cc!v22cf (note that v<r<O). This

implies that fringe extraction is initially increasing only if the switch to regime (b) occurs when xf/Xc

is "low"; e.g. qf is monotonically decreasing if the initial state in regime (b) is on or above fl'

Using (3.5a) gives (t-T)=ln(xc!xcT)/r. Next we can eliminate (t-T) from (3.6a) and write Xf

as a function xc:
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(3.7)

Equation (3.7) specifies regime (b) in the Xc-Xf phase plane (Fig.l, path 1, and the nonlinear

segments of paths 2-5).3 The properties of the path depend crucially on whether XfT-xCTCc/2Cf~0.

When XfT=X<;Tcc!2cf the path is linear. We denote the linear trajectory by r 2• Because v<r<O,

XfT>X<;Tcc!2cf «) implies that the path is convex (concave). Because Oxr/ Oxcl xc=0=cc!2cf, the

paths converge toward the linear path independently of xCT and XfT. If fringe extraction is increasing

in the beginning of regime (b), fringe market share is increasing implying that the path in Xc-Xf state

space is concave. This case cannot be ruled out by studying regime (b) alone because XfT and xCT are

determined by the switch to regime (b) from some other regime. However, using numerical

simulations we have found that the switch to regime (b) always occur above r 3 which means that

cartel's market share is always decreasing in regime (b).

Along the linear trajectory qr/qc=Cc!2Cf, i.e the market shares of the cartel and the fringe are

constant. Because the market share in all other trajectories converge toward this market share, the

linear trajectory can be designated an open-loop Stackelberg turnpike. Recall that along r 1 the

fringe market share equals cc!(Cc+Cf), while along r 2 it is less and equals cc!(Cc+2Cf).

Given that the initial state lies on the socially optimal stationary path, there exist an

equilibrium candidate in regime (b) for VtE [0,(0) (Remark 3.1). Along such a path, the equilibrium Xf

is a convex function of Xc (see Fig. 2, path 1) and by (3.4) p<O for VtE(O,oo). The market share of the

cartel is first below but later above the socially optimal steady state market share. Because the OLSE

path lies below r 1 it follows that given any level of Xf the cartel resource stock is higher in the OLSE

than on the socially optimal stationary path.

The fact that piO for Vt>O shows that this solution is time inconsistent. The costate variable

p can be interpreted as the cartel's shadow price for the fringe's rent. The fact that p is negative

below r 1 shows that the cartel would increase its profits if it were able to alter its supply trajectory

3Fig. 1 and all other figures except when stated otherwise, are computed assuming 0=1/20,
cc=cf=I/2.
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in a way which decreases the fringe rent. Such a change requires the cartel to tilt its supply toward

the present, i.e. to behave less conservatively. Thus, along regime (b) the cartel promises to follow a

conservative supply policy in the future, in order to induce the fringe to save its resources. As a

consequence, the fringe is more conservative in the beginning and the initial price is higher. In this

sense, the cartel induces the fringe to "cooperate" with current supply restriction.

Above we have presented an explicit solution candidate to the cartel's open loop problem for

litE [0,,,,) given the initial state lies on the socially optimal singular path. After specifying the

necessary conditions for regimes (a) and (c) we show that this is in fact the only equilibrium

candidate with these initial states. We next consider cases where the initial state lies above the

socially optimal stationary path.

3B: Regime (a) and the switch (a)...(b)

We postulate that when the initial state is above rl> i.e., when the fringe has a cost advantage over

the cartel, the cartel will not supply in the beginning. In regime (a) qc=O and the fringe supply

equals qr=Cfxr-).>O, implying that restrictions (3.1a,b) are met along a strategy (a)...(b).4 The

necessary conditions constitute a set of equations which can be solved together with the boundary

conditions as second order ordinary differential equations (Appendix 3.1).

Equations (3.1a,b) and qc=O imply that (I.f=-o)., i.e., in regime (a) the fringe supply

decreases. In both regimes total supply is crx,). by (3.1a). By the continuity of xr and), this implies

that total extraction and price are continuous when the solution switches from regime (a) to (b).

However, when the cartel starts to supply, the fringe supply must jump downwards. Fig. 2 shows two

such paths (2 and 3) in xc-xr space. The kink at the switching state shows that there is a

discontinuous decrease in the fringe'S market share. Note that because the switches occur above r I>

there is a set of states above r I where market power increases cartel's market share. This is in

contrast to static models, where market power decreases the dominant firms market share.

4Note that along this strategy the restriction (-qr-qc+crxr-). )qr=O is always satisfied. Thus we
have an ordinary control problem.
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In Fig. 3 the dotted lines demonstrate the switch in extraction and price time paths. As

shown analytically price path is monotonically increasing and continuous. At the switching moment

(T~2.95) the decrease in fringe's supply just equals the upward jump in the cartel's supply.

The sign of p tells whether OLSE can be characterized as a threat or as a promise. When the

switch occur above r 1, as in Fig. 2, p>O and the cartel has an incentive to change its supply in a way

that would increase the fringe's resource rent. Such a change requires shifting supply to later dates,

i.e. behaving more conservatively. When announcing its strategy, the cartel threatens to start

extracting early, and rapidly. This induces the fringe to sell its stock more quickly along regime (a)

because it anticipates that the price will be rather low in the future. However, when the fringe has

sold part of its stock, the cartel would then like to be more conservative than originally announced.

This incentive changes when the cartel obtains a cost advance. Below r 1, p<O, so the cartel would

like to revise its original plan by extracting more quickly.

In regime (b) and (a) 0'=0 or qc=O and the maximized Hamiltonian is linear in the state

variables (see 3.2). This implies

Remark 3.2. (i) By Arrow's theorem (Seierstad and Sydsreter p. 236) the necessary conditions

are sufficient for a global maximum. (ii) The value function in regime (a) or (b), which we denote as

J~h(T,xc,Xf,..\), is differentiable, and its partial derivatives with respect to the states and T equal the

corresponding costate variables and the Hamiltonian H~h(O), respectively (Seierstad and Sydsreter

1987, theorem 9, p. 213).

We use Remark 3.2 when we study the entrance to regime (b) from (c).

3B. Regime (c) and the switch (c)-t(b)

We next specify the cartel's optimal strategy for cases where the initial state is below the socially

optimal stationary path. In these cases the cartel initially has a cost advantage over the fringe, and

we hypothesize that initially the cartel is the only supplier. Consider the following form of the

cartel's optimization problem:
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max Jg=r[(P-qf-qc)qc-qc(p-CcXc)] e-8tdt+J~b [T,xc(T),Xf(T),A(T)]
qf,qc,T,Xc(T) 0

s.t. xc=-qc, xc(O)=Xco, Xf=-qf, Xf(O)=XfO, A=8A-Crqf, cfx[-A-qc-qf50, qc~O, qf~O.

This problem does not include the constraint qf[crXf-A-qc-qr]=O. However, any solution with the

property qf=O satisfies this constraint, and must thus be an optimal solution for the full problem.

The necessary conditions lead to second and first order differential equations and their solutions and

the boundary conditions are given in Appendix 3.2. Using these conditions together with the

conditions for regimes (a) and (b) we can now prove the following:

Proposition 3.1. When xcoCc-XfOcr>O [<0] the cartel's optimal open loop strategy is (a)... (b)

[(c)...(b)] . IfXcOCc-XfOCf=O it is optimal to maintain regime (b) forever. Proof, Appendix 3.1.

The proof shows that aU strategies other than than those given by Proposition 3.1 contradict

necessary conditions for optimality. Among other things we have shown that both agents exhaust

their stocks. Newbery (1981) adopted this conclusion as a "Principle of Exhaustion" postulate. One

possible strategy for the leader is to announce that it will not exhaust its stock. This would cause

price to be higher in the future and discourage fringe production at present. However, by Proposition

3.1, such a pronrise is not optimal.

We can now study regime (c) knowing that the switch eventually occurs to (b). We define a

limit pricing strategy as one in which the cartel supplies just enough so that the fringe is indifferent

between producing and staying out of the market, Le. crXf-A=qc.

Proposition 3.2. During an interoal before the switch (c)... (b) the cartel applies a limit pricing

strategy. Proof, Appendix 3.2.

We next consider the case where the cartel applies limit pricing throughout regime (c). The

cartel's extraction equals qc=crxf-AOe"t, where Ao is the fringe's initial rent. Thus, the cartel's

extraction decreases exponentially, with q~<O. Note that in regime (b), total resource supply equals

CfXf-A, i.e., the cartel supply in regime (c). Thus, the total supply and the price are continuous, but
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the cartel supply jumps downwards at the switching moment.

Fig. 2 presents two examples of strategy (c)-l(b) in X,Xc state space [paths (4) and (5)].

Note that when the initial cartel stock xi\o lies on the open loop Stackelberg turnpike, r 2, the

equilibrium does not start in regime (b) (ref. remark 3.1), but instead in regime (c). However, it later

switches (path 5) to regime (b) and then converges toward the turnpike. Fig. 4 shows the resource

supply as a function of time (dotted lines). At the switching moment (T~7.1), cartel supply jumps

downwards but the total supply (not shown) and price are continuous.

Along the strategy (c)-l(b), the cartel's costate for the fringe rent is negative. Thus, the cartel

would like to increase its supply from the level originally announced. In regime (c) the cartel

promises to be conservative in the future. This gives the fringe an incentive to save its resources to

gain from the high future price and this allows the cartel to obtain high profits early in the program.

However, since the fringe begins to extract below r 1, where it still has a cost disadvantage, the

excertise of market power results in a decrease of cartel's market power early in the program. This is

what happens in static models.

Above we considered the case where the constraint CfXf-.\-qf-qc~O is binding throughout

regime (c), i.e. the cartel always applies limit pricing. When the solution is constructed under this

assumption, the requirement jt~O is violated for sufficiently large Xco. This implies that regime (c)

must start with a period where the constraint is slack and jt=P=O. This is the ouly time interval

during which the cartel's supply plan is time consistent. Along this subregime we have qc=t(Ccxc-1]c)

and CfXf-.\-qc~O. The other equations for determing this regime are xc=-qc, ~c=-qccc+81]c and

;"=8.\ (see Appendix 3.2). To piece this solution together with the regime where jt<O we need four
. . .

boundary conditions to determine the four unknowns, T, xc(T), 1]c(O) and .\(0), where T is the

moment the cartel begins to apply the limit price. These conditions are: xc(O)=xco, and continuity of
~ "" ""

xc, 1]c and .\. At t=T the constraint becomes binding, i.e., cfxf-.\(T)=qc(T)=Hccxc(T)-1]c(T)]

implying that cartel's supply and thus also the resource price must be continuous.

The implications of our model are quite different than those of Newbery (1981) and Groot et
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al. (1991) where extraction unit costs are constant. Their formulation implies that agents never

extract simultaneously. With increasing extraction costs, on the other hand, after the agent with the

cost advantage has extracted its most economical stocks, both supply simultaneously. Newbery shows

that if the cartel enjoys a substantial cost advance the equilibrium is time consistent. A similar

circumstance occurs in our model. Here, however, the cost advantage must eventually disappear.

Thus although a portion of the OLSE can be dynamically consistent, the cartel's supply plan must

eventually become dynamically inconsistent. A third substantial difference is that price is continuous

in our model, whereas discontinnities typically arise with constant costs. These discontinuities occur

when the there is a switch from a regime with the fringe supplying, to a regime with the cartel

supplying at the monopoly price (Groot et al. 1991). In our model this type of regime switch is ruled

out, and with it also price discontinnities.

4 Markov perfect Stackelberg equilibrium

We restrict attention to linear equilibria. Tsutsni and Mino (1990) show that there exists a

continuum of non-linear equilibria in linear-quadratic Nash games, and this is also true for

Stackelberg games (Karp 1995). However, that result is driven by an "incomplete transversality

condition", or the lack of a "natural boundary condition". In our model, the requirement that the

states approach 0 in equilibrium imposes a natural boundary condition. Therefore we know that

non-linear eqnilibria cannot arise for the reasons identified by Tsutni and Mino. There are likely to

be non-Markov (reputational) eqnilibria in this short of game (Thomas 1992).

Our procedure for analyzing MPSE parallels that of the previous section. We first characterize

the eqnilibrium in which both agents produce, and then consider the entrance to that regime.

4.1 Regime (b): qc>O, gf>O.

In regime (b) we construct equilibria where both players' supply is a linear function of the state

variables. Thus, we postulate qf=JL1Xf+JL2Xc. Using the conditions (3.1a,b) in the fringe'S problem,

differentiating (3.1a) with respect to time and eliminating), and '\, we obtain

(4.1)
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(4.2)
max
q c!O
s.t

To proceed we must determine the feedback control for the leader, Le. qc as function of Xc and Xf.

When the cartel takes the fringe resource consumption as a function of the states it solves:

V2=J: [(p-/11Xf-/12Xc-qc)qcQc(p-ccxc)] e-otdt

xc=-qc, xc(O)=xco, Xr=-/11xr-/12Xc, xr(O)=xro.

The task is to find a pair (/11> /12) such that the solution to problem (4.2) results in a control rule that

satisfies equation (4.1). Applying the Maximum Principle gives the Modified Hamiltonian Dynamic

System (MHDS):

~r=/11qc+11r(/11+0), where qc=t(CcXc-17c-/11Xr-/12XC) and 11c and 1'/f are the leaders costates for Xc and

xr respectively. The Jacobian matrix of the MHDS is:

t(/1:J-<:c) t/11 t 0

-/12 -/11 0 0

-t(/1:J-<:c)2 -t/11(/1:J-<:C) -t(/1:J-<:c)H /12

t(Cc-/12)/11 -t/112 -t/11 /11+ 0

According to theorem 1 by Dockner (1985), the four characteristic roots of this system equal

r1>2,a,4=to± [(to)Yfl±t(fl4tl)t] t, where tl=tcc0/11(0+/11) (the determinant of the MHDS) and

fl=-t[cco+o(2/11-/12)+2/11(/11-/12)].5 We search for a saddle point stable equilibrium, which requires

that two of the characteristic roots have positive and two have negative real parts. A sufficient

condition for this is that tl>O and (kO (Tahvonen 1989). To obtain the negative roots we choose

rl=t6-[(to)LtflH(fl4tl)t]t and r2=t6-[(to)2-tfl--t(fl2-4tl)t]t, implying that the real part of

rl is smaller than that of r2. If fl2-4tl!0 «0) the roots are real (complex). Without solving /11 and /12

explicitly, it is difficult to rule out the complex root case. However, because we have not been able to

find any numerical example leading to complex roots, we restrict the analysis to the real root case
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onlyo Along such a saddle point path the resource stocks and the leader'S control are given by:

Xe(t )=er1(t-T) [xcT(It1tLz+r1tLZ)+XfT(ltl+r l)(ltt+rZ)] / ItZ(rl-rZ)+

lz(t-T) [xcTItZ(ItI+rZ)+XfT(ItI+rt)(ItI+rZ)] /ltz(rrrl), (4.3)

Xf(t )=erl(t-T) [xcTltz+XfT(ItI+rz)] /(rZ-rl) + lz(t-T) [x"TItZ+XfT(ItI+rI)] /(rt-rz), (4.4)

(4.5)

We use (4.3)-(4.5) to write (4.1) as a linear equation in Xf and Xc. Equating coefficients of these

variables to zero gives:

Itz(Cf8+rlrZ)+(8-r t-rz)(lttLIt1tLZ+Jktrl+ltlrZ+rtrZ)=O,

(rl+rz-8)(ItI-ltz+rt+rz)-rlrZ=O.

(4.6)

(4.7)

Because rl and rz are solutions for a polynomial of degree four, it is difficult to obtain explicit

solutions for Itl and Itz. However, note that in Xf, Xc state space the equilibrium satisfies

Xf=-lttXr-ltzXc, Xc=Xf(ItI+rI)(ltt+rz)/Itz+xc(ltt+rt+rz). Using this, (4.6) and (4.7) we obtain:

Lema 4.1. Given that a linear equilibrium exists, both agents' supply is increasing in his own

stock levels and decreasing in the other agents' stock level, i.e., ItI>O, Itz<O, ItI+rt+rZ<O and

(Itt+rI)(ltt+rZ)<O. Proof, Appendix 4.l.

Lema 4.1, which is obtained without solving Itt and Itz explicitly, is intuitively appealing. The

lema implies the phase diagram in Fig. 5. Note that rt<O,rz<O, ItI>O and Itz<O imply that the slope

of xc=O is greater than the slope of Xf=O. The equilibrium paths define an interior equilibrium., given

initial states between the isoclines. The trajectories approach the origin asymptotically.

Proposition 4.1. Between the isoclines there exists a separatrix or MPSE turnpike, with the slope

-Itz/(ltt+rz). All paths with initial state off the turnpike converge toward it as t_. An initial state

above (below) the turnpike implies that the cartel market share is increasing (decreasing).

Proof: For a system of two linear differential equations there must exist a separatrix between

the isoclines along which the path in the state space is linear. This implies in (4.3) or (4.4) that

either the coefficent for erl(t-T) or erz(t-T) must be zero. The former implies Xf=-ItZXc/{ltt+rz),



15

and the latter xr=-/l2XC/(/ll+rl). By lema 4.1, (/l1+rd(/l1+r2)<O. Because rl<r2, the separatrix with

positive slope is f3(Xf)=-/l2xc!(/l1+r2). All paths off the turnpike converge toward it when t-;(l)

because rl<r2<O. The convergence implies that the slope of paths with initial state above (below) the

turnpike must decrease (increase). This implies that in the former case the cartel's market share

increases, while it decreases in the latter..

We next consider the time development of total extraction and price along regime (b).

Proposition 4.2. Along regime (b) in a MPSE, the total extraction is a (monotonically)

decreasing and resource price is a (monotonically) increasing function of time. When XCO/XfO is

sufficiently low [high], qc(t) [qf(t)] is initially increasing and has a unique maximum. Proof,

appendix 4.2.

Thus if the initial state is near the xc=O isocline the cartel's extraction is initially increasing

in regime (b). Recall that in regime (b) of the OLSE, cartel extraction monotonically decreases. This

case is demonstrated in Fig. 3 (solid lines). The case where fringe extraction is initially increasing is

shown in Fig. 4. We now turn to cases where the initial state of the game is not between the

isoclines, i.e., it is outside the region where the linear MPSE exists.

4.2 Regime (c) and the switch (cHb)

Consider initial states below the Xf=O isocline (XfO<-/12XCO//11)' We postulate that in these cases

there exists an equilibrium where in the beginning the cartel is the ouly producer. This equilibrium

must satisfy the necessary conditions for problem (4.2) when /11=iL2'=O. The necessary conditions

include: qc=t(ccxc--1]c), hc=-ccqc+61]c, and that the Hamiltonian is continuous. Denoting the

switching moment by T and taking into account that q~(T)=O, the continnity condition implies that

q8(T)2=qg(T)2, i.e., that cartel extraction must be continuous. This implies continuity of cartel

resource rent and the producer price as well. The other necessary conditions imply Qc=-0"lc!2<O, i.e.,

in regime (c) cartel extraction is a decreasing and producer price an increasing function of time.

Solving the MHDS of the cartel problem and using conditions xc(O)=xco, xc(T)=-/llXfO/ /l2 and the

continuity of "Ie, it is possible to compute the length of this regime.
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Tills equilibrium must satisfy the fringe's necessary conditions (3.1a,b) with qr=O. At the

xr=O isocline, O<=-<lr-qc+crxro->'=O. Because qc and qr are continuous functions of time, 0< must also

be continuous. We obtain a=....qr-<l~-6>.=t61]c-6>.....qrand a·=6(t61]c-6>.)-t6ccqc=a+qr-t6ccqc. For

qr=O before T, (3.1a,b) imply that ~O. Suppose that our candidate does not satisfy (3.1a,b). In tills

case we must have 0<>0 and a<O before T. Consider two cases: (i) where ais continuous at T and

(ii) where ais discontinuous at T. Case (i) and the hypothesis 0:>T for t<T imply that 0< is convex

before T. However, before T, a'=a+qr<O, *<= In case (ii) there must be an upward jump in aat T.

However, a(T-)=t61]t(T)-6>'(T»t61]c(T)~6>'(T)....qr(T+)=a(T+), *<=. Consequently, qr=O Vt<T

satisfies the fringe's necessary conditions as well.

4,3 Regime (a) and the switch (a)-{b)

We postulate that regime (a) is the first regime when the initial state lies above the xc=O isocline.

Tills equilibrium must satisfy the necessary conditions for problem (4.2) when qc=O, given that qr is

some function of the state variables. Denote this function by qr(xr,xc). For qc=O to be an optimal

solution for problem (4.2), it is then necessary that -<lr(xr,xc)+ccxc-1]c~O.

In addition, the equilibrium must satisfy simultaneously the fringe's necessary conditions

(3.1a,b) with qr>O. To piece this regime together with regime (b) and to determine the length of

regime (a) we have as the boundary conditions: xr(O)=xro, xr(T)=-XCO(JL1+rl+r2)JL2/(1L1+rl)(JL1+r2)

and the requirement that the fringe's rent must be continuous. The continuity of fringe's rent and

the fact that qc=O in the beginning of regime (b) (i.e., on the isocline xm=O) implies that the fringe's

extraction rate as well as the resource price must be continuous. The necessary conditions imply that

qr=-6>', i.e., the fringe's extraction is a decreasing function of time along regime (a). Using our

results from sections 4.1--4.2 we can describe the MPSE as follows:

Remark 4.2. In the MPSE both the cartel's and fringe's supply are continuous functions of time,

total extraction is a decreasing and price an increasing function of time.

The length of regime (a) and the fringe's feedback rule cannot be explicitly solved. As a

consequence it is not possible to evaluate analytically whether -<lr(xr,xc)+ccxc-'¢'m~O holds. However,
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Appendix 4.3 shows how to verify this condition numerically.

4.4 Comparisons of different equilibria

This section compares the OLSE and the MPSE and then discusses the benefits to cartelization.

Since the inability to commit reduces the cartel's power, the MPSE may be expected to lie "between"

the OLSE and competitive equilibrium. This intuition is correct if we are interested in long run

market share, but we show that, in general, it is misleading.

We showed that the three equilibria can be described using stationary paths, toward which all

solutions converge as t-l",. Moreover, r l'>r2', so the cartel's stationary market share in the OLSE is

higher than in the competitive equilibrium. Fig. 5 gives an example where r 1'>r 3'>r2', so the

cartel's MPSE stationary market share is indeed between the stationary market shares in the other

two equilibria, as intuition suggests. The generality of this result is seen from Fig.6, which plots the

stationary fringe market shares in the three equilibria as functions of relative costs. Only for the

MPSE does this function depend on the discount rate, but the two solid graphs (for 0=1/20 and 0=9)

show that the dependence is negligible, and does not alter the ranking.

The comparison of cartelization's immediate effect on price and market share is less

straightforward. The most interesting case is where the market was in a long-run competitive

equilibrium prior to cartelization, i.e., the state begins on rI. Figure 7 graphs the initial price as a

function of xc, for Xf=r IXC' If the initial stock is small, price is near the choke price under

competition, and cartelization has a negligible effect on the market. For large stocks, and low

competitive prices, cartelization leads to a large percentage increase in price, which is larger in the

MPSE than in the OLSE. Figures 3 and 4 suggest that this comparison also holds for states off r 1.

When the cartel begins with a cost disadvantage (Figure 3) the price is only slightly higher in the

MPSE than in the OLSE, but it is much higher when the cartel has a cost advantage (Figure 4).

The short-run market share effect of cartelization depends on the initial cost advantage. The

comparison of initial market shares, for states that begin on r 1> is the same for all values of Xc. This

is because in both cases the initial output levels are linear functions of the state (see equations
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3.5c and 3.6a). For our parameters Cc/Cf=1 and 6=1/20, we find that the cartel's initial market share

is highest in the competitive equilibrium and lowest in the OLSE.

The comparison of initial market shares is simpler for values of the state off r 1. We know that

there the cartel's initial market share is either 1 or 0, in both the competitive equilibrium and the

OLSE, depending on relative costs (Proposition 3.1). Provided that the initial condition is in the cone

formed by the isoclines, the cartel's initial market share in the MPSE is strictly between °and l.

Therefore, the initial MPSE market share is less than the share in the competitive eqnilibrium and

the OLSE when the cartel has a cost advantage, and is greater when it has a cost disadvantage

(Figures 3 and 4). Recall that our numerical example shows that the cartel's MPSE steady state

market share exceeds the competitive level (r1>ra). Thus, we see that if the cartel begins with a cost

disadvantage, cartelization increases market share in both the short and the long run (although not,

of course, during intervening periods). This contrasts to static models, in which the exercise of

market power typically decreases market share.

In order to explain why the comparison of market shares depends on the initial relative costs,

it helps to consider how the inability to commit erodes the cartel's power. In the MPSE the cartel's

only leverage comes via control over its own stock, since this affects fringe production. The cartel is

unable to use either threats or promises about future behavior to influence the fringe. The effect (on

market share) of it's loss of power depends on whether it would have used a threat or a promise in

the OLSE, and that, as we saw, depends on the relative costs.

Consider first the case where the cartel begins with a cost disadvantage, so in the OLSE it uses

threats of high sales in the future to induce the fringe to extract rapidly in the initial periods. The

cartel's inability to use threats (in the MPSE) increases the fringe's rent, causing their initial

extraction trajectory to be lower and price to be higher. The higher price makes it more attractive

for the cartel to enter the market, so its iuitial extraction trajectory is higher, increasing it's market

share in the MPSE. Now consider the case where the cartel begins with a cost advantage, so in the

OLSE it uses promises of a low sales path in the future in order to encourage conservation by the
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fringe. Its inability to use promises in the MPSE decreases the fringe's rent, increasing fringe supply

and lowering the price. This makes it less attractive for the cartel to supply in the current period,

causing its extraction path to falL In this circumstance (where the cartel would like to reduce fringe

supply) the cartel has an additional incentive to restrict its own supply. Fringe supply is decreased

by a large cartel stock, so the cartel has a strategic incentive to keep its stock relatively large.

The argument is slightly different if the initial condition is on r 1. There, neither firm has a

cost advantage, and since p(O)=O the OLSE is exactly balanced between being a threat or a promise.

However, we know that for these initial conditions the system moves immediately into the region of

state space where the OLSE is characterized as a promise. Therefore we can apply the intuition

described above, to explain why the initial cartel market share is lower in the MPSE, given initial

conditions on r 1.

These remarks also help to understand how the initial stock level affects the magnitude of the

difference in the initial price. We saw that regardless of initial relative costs, one agent decreases and

the other increases its initial sales, when we move from the OLSE to the MPSE. Our simulations

showed that the decrease in production more than offsets the increase, making initial price higher in

the MPSE. We also noted that the cartel has a strategic incentive to reduce sales when it has a cost

advantage, so in that situation we expect the price increase to be especially large. This is consistent

with the simulation results. When the cartel has a cost disadvantage, it would like the fringe to

accelerate sales, and this makes the maintenance of a large stock less attractive for the cartel.

Finally, Fig. 8 shows how the incentives for cartelization change, under the Markov

assumption. Each point represents the percentage increase in cartel profits when moving from the

competitive equilibrium to the MPSE. On path (1), along the Markov turnpike r 3, the gains are

approximately constant (1.3%). On path (2), where the cartel initially has a cost disadvantage, the

gains are very small, but they increase as cartel market share increases (and the cost disadvantage

decreases). On path (3), where the cartel initially has a cost advantage, the gains from cartelization

are larger, but they decrease as the market share decreases. The clear implication is that the gains



20

from cartelization, like the cartel market share, increase with the cartel's cost advantage.

5. Conclusions

We modeled a nonrenewable resource market with a cartel and fringe, using both an

open-loop and a Markov perfect equilibrium, under the assumption that costs are stock dependent.

In the competitive equilibrium only one firm extracts until their costs are equal. In the OLSE both

the fringe and the cartel begin to extract while they still have a cost disadvantage. The stationary

cartel market share exceeds the competitive level. In the MPSE, both the cartel and the fringe extract

in the first instant, unless the cost disadvantage of one is very large. The iuitial cartel market share

is higher in the MPSE, relative to either the competitive or the OLSE, if and only if the cartel has a

cost disadvantage. Cartelization increases the initial market price, but surprisingly this increase is

greater in the MPSE than in the OLSE. In this sense, a smaller degree of market power is associated

with what appears to be less competitive behavior, and may result in a larger loss to consumers.

The magnitude of the benefits to cartelization (in a MPSE) are directly related to the

maguitude of the cartel's cost advantage, and thus to its market share. This market share always

approaches a stationary value, so whether the benefits of cartelization increase or decrease over time

depend on whether the cartel's cost advantage - and market share - is increasing. Thus, we would

expect that if there is a cost to forming cartels, potential cartels with cost advantages would be more

likely to form. However, if there is a cost to maintaining cartels, our theory suggests that an initially

powerful cartel may eventually fall apart, whereas an initially weak cartel may become more

coherent.

Appendix 3.1. Time paths in regime (a) and the switch (a)....(b).

The cartel's Hamiltonian for regime (a) equals (3.2), and the hypothesis that qc=O requires O"~O. In

addition, necessary conditions include: Xf=-qxf+A, A=b"A-q2xf+CfA, nf=1/fCf+PCf2+DrJf, p=-fjf-qp,

nc=b"1/c and p(O)=O. This yields:

Xf=(XfO-AI)eWIt+A1ew2t, A=(Cf+WI)(XfO-AI)eWit+(Cf+w2)A1ew2t, (3.l.1a,b)
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(3.1.2a,b,c)

where wl=H 6-(02+4CfO)1)<O, W2=6-Wl>O and Ai is to be determined by the boundary conditions.

To find the optimal switch to regime (b) we need four conditions for the four unknowns Aa(o)

(or AI), !)?(O) (or A2), T and xr(T). Al is determined by the continuity of xr, i.e., by x?(T)=x~(T).

The continuity of the state and costate variables imply that u(T)=o-(T)=O. By equations (3.4) and

(3.1.2a) one has pa(T)= [crxr(T)-ccxco] Icr which determines A2. To find the optimal switching

moment and xr(T) we have two conditions, the continuity of 'TJf and A: !)a(T)='Ifc(T)-Ab(T) [by
r

<T(T)=o-(T)=O] and Aa(T)=Ab(T). The two last conditions determine two nonlinear equations for T

and xr(T).

Appendix 3.2. Regime (c) and the switch (c)...(b).

The Lagrangian equals: L=(P-qr-<!c)qc-<!c(p-ccxc)--'/)cqc--'/)Nr+p(OA-crqf)+/l(crXr-A-<!c-<!r). For

qf=O, qc>O to be optimal it is necessary that

-<!c--'/)f-pcr-/l~O,

CfXf-A-<!c~O, /l~O, (CfXf-A-<!c)/l=O,

iJr=-/lCf+ O!)f,

P=/l, p(O)=O,

!)g(T)=!)g(T), nrcT)=!)~(T), pC(T)=pb(T), Hg(T)=Hab(T),

(3.2.1 )

(3.2.2)

(3.2.3a-c)

(3.2.4)

(3.2.5)

(3.2.6)

(3.2.7a-d)

where Hg=(P-<!f-<!c)qc-<!c(p-ccxc)--r/cqc--'/)fqf+p( OA-cfqr).

Conditions (3.2.1), (3.2.4), and (3.2.6) yield Xc=-CrXfot+ AoeOt I 6+A3, !)c=A4eot+ccCfXfOI 0+

ccAoteOt and p=2AoeotI 6-2CfXfOt+cc(AoeOt I 02-cfxrot2 / 2+ V3t )-V4eOt I 6-(CfXfOcctl 6-ecAoe°tcot-l)

102)+V5· Note from (3.2.6) that along this solution p is decreasing and negative. Because in regime

(b) CcXe-CfXf+CfP=O, the switch must occur below r 1. To piece this solution together with regime

(b), we need six conditions to determine six unknowns, namely T,V1>V2,V3, AO, and xc(T). The

conditions are: XC(O)=XCO, x~(T)=xg(T), p(O)=O, !)~(T)=!)g(T), Aa(T)=AbeT) pa(T)= [CfXfO-
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ccxc(T)] fer, where we have used (3.2.7a,b), the continuity of the state variables and the fact that

0=0-=0 must hold in the beginning of regime (b). Because (3.2.7d) is equivalent to o-(XfCf-.\)=O, the

switch satisfies the Hamiltonian continuity requirement.

Appendix 3.3. The proof for Proposition 3.1

Before proving the Proposition we begin with the following

Lema A3.3: Along regime (c) o-~O.

Assume first that /k<0. By (3.2.1) and (3.2.3a-c) /k=2.\-2cfXf+ccXc-1]c. This yields by (3.2.2)

that CfXf+'l/c-A-1]f-per-CcXc~O,i.e. o-~O. Assume /k=0. Then qc=t(ccxc-nc)=ccxc-1]C....<k By (3.2.3a)

CcXc-CfXf+A-1]c-qc~O. Combining this with (3.2.2) implies that o-~O.•

For proving proposition 3.1 we consider cases A and B, where the initial state is below and above r l,

respectively. For each of these cases, we show that all strategies other than those described in the

Proposition violate a necessary condition for optimality. Let T denote the switching moment between

two regimes.

Case A: xcOCc-XfoCf~O.

Al (a)....(b): In regime (a) o-~O. If o-(O)=.\+'I/f-1]r>O then o-(O)=xcocc-xroer+.\+'l/f-1]c>O, ';¢.

Consequently o-(O)~O. In this case there must exist tl such that O~tl<T and O'(tl)<O, o-(tl)=O,

o-'(tl»O for a regime (a) with a nonzero length to be possible. Using the necessary conditions for

regime (a) this yields: o-(tl)=cCxCo-crxr+per<O, Cr(tl)='\+'l/r-'l/c=O and 0-·(t1)=b'cr(pcr+'I/f-qr»0.

cr(t1)<0 requires that p<O because ccxco-crxr(t1»0 (note that at tl the state must be below r 1). For

0-'(t1»0 to hold we must then have 'l/f(tl» -p(t1)cr+qr(tl»0. At T it must hold in regime (a) that,

o-(T)=o-(T)=O and o-'a(T)<O because 0- and 0- are continuous. Thus the term 'I/f+Cfp-qf must change

its sign from positive to negative along regime (a). Differentiation yields *+crp....<!f=b''l/r....qr. Recall

that <1r<O in regime (a). Thus 'l/r must switch from positive to negative. Above we showed that

'l/r(tl»O and 'l/r(tl)+p(t1)Cf>0, so ~r(td=cr['l/r(tl)+p(tl)Cr] +'I/f(t1) b'>0. Because ~f=b'~r>O we obtain

that 'l/r>O for VtE [tl,T] , ';¢.

A2 (a)....(c)....any regime: At both switching moments 0-=0, implying by lema A3.3 that along
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regime (c) there must be a moment of time, t h where o-(td>O, o-(tl)=O and o-'(tl)<O, Assume that

/l(tl)=O, We obtain o-(tl)=A+1]f-'l/c=O and o-'(tl)=Oo-+Oqccc>O, ,;!" Assume next that /l(tl)<O, In this

case o-(tl)=A+1]f-'l/f=O and o-'(tl)=-/lCf+qcCc>O, ,;!"

A3 (a)-t(c), If Xf>O for Vt then the transversality problem for the fringe problem requires A=O

at the end of regime (a), It must then hold that CfXr-qc~O Vt>T (conditions 3,2,3a-<:), However, qc

must finally converge to zero, ,;!" If Xf=O at the end of regime (a) then qf=-A at the end of regime

(a), Since both qf and A are nonnegative Xf=A=qf=O at the end of regime (a), However, such a

candidate contradicts the solution (3,1.la,b), ,;!"

A4 (c)-t(a)-t(b): This implies that in regime (a) there must be moment oftime tl<T (where T

is the switching moment to b) such that o-'(tl»O and o-'(T)<O, which was shown in part (AI) of the

proof to contradict necessary conditions,

AS (c)-t(a): In this case u<O for Vt>T. Because ir(T)~O and p(T)~O (by 3,2.6) the switch

cannot occur above r 1 implying that xc>O Vt. By the transversality condition t~~ e-t5txc1]c~O we

obtain that 1]c=O in the beginning of regime (a), As t_, U-tCfp+CcXc+1Jf, implying that CfP+1]f must

remain negative. In regime (a) CfP+i}f=01Jf. If 1Jf>0, it must hold for CfP+1Jf to remain negative, that

1Jf-tO as t-too. However, in regime (a) ~f=Cf(1Jf+PCf)+01Jf. It must thus hold that 1Jf<0. But then

~f=Cf(1]f+PCf)+01]f<01]f<O and Ii me-8t1]f(t)<0, Le. transversality condition is violated, ,;!"
t4 00

Case B. XcCc-XfCf~O.

Bl (c)-t(b): At the switching moment p~O implying that XcCc-XfCf+CfP<O, ';!'.

B2 (c)-t(a)-t(b): By lema 3.3 u(O)=XcCc-XfCf+A+1]f-'l/c~O, Thus 0-(0»0, This implies that in regime

(c) there must be tl<T [where T is the switch from (c) to (a)] such that U(tl»O, o-(tl)=O, o-'(tl)<O,

However, in A2 this is shown to contradict with optimalty.

B3 (c)-t(a): At the switching moment u(T)=xcCc-XfCf+PCf+o-=O but 0-<0 (by lema A3,3), p~O,

B4 (a)-t(c): Apply A3.

BS (a)-t(c)-tany regime: Along regime (c) there must be a moment of time, say t 1 such that ir(t 1)=0
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and ir·(tl)=t5ir-itCf+Qccc<O, ';¢'.

We are left with the strategies: XcOC"XfOCf=O ,;(b) for Vt, XcoC"XfoCf>O ,; (c)-t(b) and XcOC"XfOCf<O

,;(aHb).•

Appendix 3.4 Proof of Proposition 3.2

Assume the reverse, Le., that /1(T)=O. By (3.2.1) qc=t(xcCc--'l7c) and by (3.2.7d)

--q~+qc(xcCC--'I7c)=t(xcCc--'l7c)2=--(nf+pcd(XfCf-A) at T. By (3.2.2) and (3.2.3a--e) this implies that

(3.2.7d) is satisfied only if t(xcC,,1}C)=--(1]f+PCf)=XfCf-A.

Consider first the case that /1=0 for Vt<T. Define r=t(xccc--'l7c)-XfCf+A. By (3.2.1) and

(3.2.3a--e) r>O when t<T. Because r(T)=O, -i=t5(A-t1]c)<O before T. By (3.2.6), /1=0 for Vt<T

implies p(T)=O. By (3.4) we obtain that the switch must occur at r j, Le., xc(T)Cc-XfOCf=O. Thus

r=txcc"XfCf+ A--!1]c<O before the switch, ,;¢'.

Consider next the case that /1(T)=O but p(T)<O. By (3.2.1) and (3.2.3a--e) qc is continuous in

regime (c). Thus there must be a moment of time, h<T, at which r(tl)=O. When t<t 1 (3.2.2) and

(3.2.3a--e) imply that r<O. Accordingly when tE(tj,T) we obtain r>O. Because r(T)=O is necessary

for optimality there must be a moment of time, say T 2 such that T 1<T2<T, 7(T2)=0 and T·(T2)<0.

Differentiating yields -i=t5(A--!7Ic) and T'(T2)=DqcCc>0, ';¢'.•

Appendix 4.1: Proof for Lema 4.1.

The existence of a linear equilibrium requires that rj,r2<0 because otherwise there do not exist

bounded solutions converging toward the steady state Xc=Xf=1]c=1]f=O. By (4.6) and (4.7) /12 must

satisfy the relationship: /12=-rlr2[t5Lt5(rl+r2)+rlr2] /Cct5(t5-rl-r2)' Using rj,r2<0 we obtain /12<0. If

/11<0 we obtain qf<O VXf>O, VXc>O implying that a linear equilibrium cannot exist. Thus /11>0.

Using the expressions for rl and r2 one obtains:
1 1 .1 1

(/11+r1)(/12+r2)= [(A' + B)L2/11-t5] {[B-(A)'] '-2/11-t5},

where A= /1~(2/11+ 6) L2/12(2/11+ 6)(2/11+2t5/11+cc6)+4/11+8t5/11+4t5/11( Hc)-4cct52/11+cM2 and B=
1 1

-/12(2/11+ 15)+2/11+2 t5/11+ t5(CC+ 6). When /12=0 the term [(A '+B)'-2/11-t5] can be developed to the
J.

form [I 2/112+ 2t5/11--e/1t5I+ 2/112+2 t5/11+t5(Cc+ 6)] '-2/11-15, which is always positive. Because A and Bare
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decreasing functions of /12, and /12<0, it follows that (A!+B)!-2/11-8>0 when /12<0. We next show
lIZ

that [B-(A)'] '-2/11-8<0. Note that A>(2/11-Cc8+2/118)2>0 and that B>O. It can be shown that
~ ~ 1 1

BLA>O implying B-(A)'>O. Thus [B-(A)'] '-2/11-8<0 "'" A'>B-(2/11+8)2. If B-(2/11+8)2$0 our

claim is verified. When B-(2/11+8)2>0 we obtain A!>B-(2/11+8)2 "'" [B-(2/11+8)] LA<O. Because

(B-4/1T-4/t16-82)2_A=4/12/11[/11(2/11+8)+8(2/11+8)] +8/12(/1i+8/1D+ 4/128(/1i+/118)<0 we obtain that

(/11+rt}(/12+rz)<0 as claimed. Finally, if /11+rl+r2~0 the LHS of (4.7) is always positive, 'l¢'.•

Appendix 4.2. Proof of proposition 4.1.

Proof: Along r 3 both extraction levels are defined by one exponential term with negative root,

implying that qc,qf<O and price price is increasing. When XCO/XfO is low enough, xc(O)=O and we

obtain qf(0)=/11Xf(0)<0. Because qf(t) is given by two exponential terms, qf(t)<O for lit. Accordingly

qc(O)=O and qC(O)=rlrlxCo>O. Because qc(t)-lO as t-lro, qc must have a unique maximum. Using (4.3)

and (4.4) we obtain qC+qfIxc=O=xco [rlrZ-/1lJ12r lrz/(/11+/12)(/11+rZ)] . This implies that

sign(qe+qfI' _0)=sign-(/11z+/1lJ12+/11rl+r lrZ-/1lJ12). Because (/112+/1lJ12+/11r l+r lrZ-/1lJ12)<0Xc-

contradicts equation (4.6), total extraction must decrease in the beginning of the path starting at the

xm=O isocline. Because the total extraction is determined by two exponential terms, we obtain

qe+qf<O and p>O for lit along any path starting above (or on) r 3.

By parallel arguments, a large enough XCO/XfO implies Xf(O)=O and that qf(t) has a unique

maximum, while the cartel supply is monotonically decreasing. Using (4.3) and (4.4) we obtain

sign(qm+qfl Xf=0)=sign(/11-/12+rl+r2). Because /11-/tZ+rl+r2>0 contradicts equation (4.7), it follows

that q~+qf<O and p>O for lit .•

Appendix 4.3: The evaluation of condition =9f(Xf,xcl+ccxc-='J]c$O in regime (a).

In regime (a) the leader's Hamilton-Jacobi-Bellman equation is 8V==9f8V(Xc,Xr)/Oxr, where

V is the value function. To develop a differential equation for 8V /Oxf in Xf differentiate the HJB

function with respect to Xf and apply Young's theorem. This yields:

88V/Oxc==9f [82V/OxcOxr] -[8V/Oxr] 8qr/Oxc· These equations include qf and aqr/ Oxe as unknown

functions. Using the necessary conditions (3.1a,b) and the fact qf==9faqr/ Oxf we obtain an equation
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for determing qr aqr/ &xf=( 6crx[-6qf)/qf. Next, writing this equation as 8qr/&xrq-6(CfXf-q)=O,

differentiating with respect to Xc and applying Young's theorem, yields a differential equation for

8qr/ &xc: a2qr/ &xe&xr=-aqr/ &xc(6+aqr/ &xf)/qf. Let us denote the derivatives fJV/ &xc and 8qr/ &xc by

'y!(xf) and 'Y2(Xf) respectively. Recall that in regime (c) qc=O, and thus Xc enters the above

differential equations as a constant. Thus we obtain the following set of ordinary ordinary differential

equations in xr:

dV(xf) / dxr=-6V(xf)/qf(Xf),

d'Yl(Xf) / dXf=-[6'Yl(Xf)+'Y2(Xf)dV(xf)/dxr] / qf(Xf),

dqf(xf)/dxf=6[crXf-qf(xf)] /qr(Xf),

d'Y2(xf)/dxr=-'Y2(xf) [dqf(xf)/dxr+6] /qr(xr).

To solve this system of nonlinear nonautonomous equations we must have the initial level of Xf and

four boundary conditions. Given any XcO, we obtain the corresponding level of Xf on the xm=O

isocline, Le., Xf=-XCO(/11+rl+r2)/1z!(/11+rl)(tll+r2). Given this initial state in regime (b) we know the

value function V, its derivative with respect to xc, Le. 1)m, the level of fringe extraction qr, and its

dependence on Xc i.e. /12. Using these initial levels it is possible to compute the solution for the

differential equation system forward in Xf and to evaluate whether the necessary condition

-qf(Xf,Xc)+CcXc--17m~O holds along regime (c). We have verified that using the example 6=1/20,

cc=cr=1/2, various initial level for the states and the fourth-order Runge-Kutta method.
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