Skip to main content
eScholarship
Open Access Publications from the University of California

The diffusion of cesium, strontium, and europium in silicon carbide

Abstract

A novel multi-layer diffusion couple was used to isolate the diffusion of strontium, europium and cesium in SiC without introducing radiation damage to SiC and at concentrations below the solubility limit for the fission products in SiC. Diffusion occurred by both bulk and grain boundary pathways for all three fission products between 900°C and 1,300°C. Cesium was the fastest diffuser below 1,100°C and the slowest above this temperature. Strontium and europium diffusion tracked very closely as a function of temperature for both bulk and grain boundary diffusion. Migration energies ranged from 1.0 eV to 5.7 eV for bulk diffusion and between 2.2 eV and 4.7 eV for grain boundary diffusion. These constitute the first measurements of diffusion of cesium, europium, and strontium in silicon carbide, and the magnitude of the cesium diffusion coefficient supports the premise that high quality TRISO fuel should have minimal cesium release.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View