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Introduction

Non-cooperative game theory is a way of modelling and analyzing situations
in which each player’s optimal decisions depend on his beliefs or expectations
about the play of his opponents. The distinguishing aspect of the theory is
its insistence that players should not hold arbitrary beliefs about the play
of their opponents.' Instead, each player should try to predict his opponents'
play, using his knowledge of the rules of the game and the assumﬁtion that his
opponents are themselves rational, and are thus trying to make their ocwn
pPredictions and to maximize their own payoffs. Game-theoratic metho&ology has
caused deep and wide-reaching changes in the way that practitioners thinks about
key issues in oligopoly theory, much as the idea of rational expectations has
revolutionized the study of macroeconomics. This essay tries to provide an
overview of those aspects of the theory which are most commonly used by
industrial organization economists, and to sketch a few of the most important
or illuminatiég applications. We have omitted mahy interesting game-theoretic

topics which have not yet been widely applied.

1. Games, Strategies, and Equilibria

This section introduces the two formalisms used to represent noncooperative
games, and then discusses what we might mean by a "reascnable prediction” for
how a game will be played. This will lead us to the ideas of Nash and

subgame-perfect equilibria.




The Extensive and Normal Forms

There are two (almost) equivalent ways of formulating a game. The first
is the extensive form.1 An extensive form specifies: {1) the order of play;
(2) the choices available to a player whenever it is his turn to move; {(3) the
information a player has at each of these turns; (4) the payoffs to each player
as a function of the moves selected; and (3) the probability distributions for
moves by "nature.”

The extensive form is depicted by a "game tree," such as those in Figures
1l and 2. Game trees are.the mulﬁi-player generalization of the de;ision trees
used in decision theory. The open circle is the first or initial node. The
tree's structure says which nodes follow which, and the nﬁmbers at each node
indicate which player has the move there. (Part of what is meant by "tree"” is
that this structure is an ordering--two distinct nodes cannot have the same
- Successor. Thus for example in chess, two different sequences of moves which
lead to the same position on the board are assigned different nodes in the tree.
See Kreps-Wilson (1982b) for a more formal discussicn of this and other details
of extensive games. See also the classic book bf Luce and Raiffa (1957) which
addresses most of the topics of this section.) The dotted line comnecting two

of player two's nodes indicate that these two nodes are in the same "information

set,"

meaning that player two cannot tell which of the two actions has ocgurred
when it is his turn to move. Players must know when it is their turn to move,
so different players' information sets cannot intersect, and players must know

which choices are feasible, so all nodes in the same information set must allow

the same choices. We will restrict attention throughout to games of perfect

1The following description is freely adapted from Kreps-Wilseon (1982b).




recall, in which each player always knows what he knew previously, including
his own previous actioms. . -

Players are assumed to maximize their expected utility, given their Beliefs
about the actions of their opponents and of "Nature.” The payoffs correspon&ing
to each sequence of actions are depicted at the terminal nodes or "outcomes"
of ;he tree; (x,y) at a terminal node means that player cne gets X and player
two gets y. The different initial nodes in Figure 3 correspond to different
moves by Nature, i.e. different "states of the world.”" (Note that this is a
one-player game.) rThere is no loss in generality in placing all of Nature's
moves at the start, because players need not receive information about these'
moves until later on. The initial assessment p is a probability measure over
the initial nodes. The formal models we will discuss will always assume that
this éssessment,'the terminal payoffs, and the entire structure of the tree is
"common knowledge," meaning that all players know it, and they know that their
opponénts know it, and so on. This does not mean that all players are perfectly
informed, but rather that we have explicitly depicted all the differences in
information in our trge.z The extensive form will be taken to fully describe
the real situation--all possible moves and cbservationms will be explicitly
specified. For example, if the "same game" is played three times, the "real
game" to be aﬁalyzed is the three-fold replication. The idealized situation
we have in mind is that, possibly after some "pre-play communication,” players
are in separate rooms. They are informed of the course of play only by signals
corresponding to the information structure of the tree, and push various buttons

corresponding to the feasible actions at their various information sets. Once

2 See Aumann (1976) and Bradenburger-Dekel (1985) for a formal treatment of

common knowledge, and also the Mertens-Zamir (1985) paper we mention in Section
3 . . N




play begins, players cannet explicitly communicate, except as provided by the
rules of the game. (In many-situations, it would be very difficult t§?
explicitly model all the possible means of communication. This has spurted
interest in shorthand descriptions of the effects of communication. See our
discussion of correlated equilibrium.) A behavioral strategy for player i

is a map that specifies for each of his information sets, a probability
distribution over the actions that are feasible at that sat. A behavioral pure
Strategy specifies a single action at gacﬁ information set, as opposed to a
proﬁability mixture. (Later we will discuss whether it might be reasonable for
a player t§ randomize.) A given specification of behavioral strategies and an
initial assessment generates a probability distribution over terminal nodes,
and thus over payoffs, in the obvicus way.

The distinguishing feature of game theory is that each player’s beliefs
about his opponents actions are not arbitrarily specified. Instead, each player
is assumed to believe that his opponents are "rational", and to use that
information in formulating his predictions of their play. Any predictions that
are inconsistent with this presumed, but vaguely specified, rationality are
rejected. |

To help clarify what we mean, let us return to the game depicted in Figure
1. Is there a reascnable prediction for how this game should/will be played?
One way to look for a prediction is to apply backwards induction. If player
two's information set is reached, and the payoffs are as specified, then two
should play L . Then if player one knows that Player two knows the payoff,
player one should play U . Is this a good prediction? If all is as in Figure
1, player two should not expect player one to play D . What should two tell
himself if D is nevertheless observed? If the payoffs are guaranteed to be

4s specified, the only possible explanation is that player one made a




"mistake™--he meant to play U but somehow he failed to do so. This analysis
falls apart if we take Figure 1 as a shorthand description for a gaménbhich is
probably as depicted, but might not be, so that playing D could convey' ~
informatioﬁ to player two. We'll say more about this in Section 3. The key
for now is that the game must be taken as an exact description of reality for
our arguments to be sound.

In Figure 1, all (both) the information sets are singletons, so that each
player knows all previous actions at each of his turns to move. Games like this
are called "games of perfect.information." fhe backwards induction argﬁment
used above is called "Kuha's algorithm" (1953). It always "works"” (yields a
conclusion) in finite games of perfect information, and.yields.a‘unique
conclusion as long as'no two terminal nodes give any player exactly the same
payoff. Backwards induction will not yield a conclusion in games of imperfect
information, such as that in Figure 2. Player two's optimal choice at his
information set depends on player ome's previous move, which player two has not
observed. To help find a reasonable prediction for this game we introduce the
idea of the normal form.

The normal form representation of an extensive game condenses the details
of the tree structure into three elements: The sat of players, I ; each
player's strategy space, which is simply the set of his beh;vioralrpure
strategiés; and a payoff function mapping strategy selections into payoffs.

We will use Si to denote player i}s strategy space, S to be the product
of the S, , and 7t:S->R to be player i's pafoff function. A.triple
(1,S,7) completely describes a normal form.

Normal forms for twc-playér games are often depicted as matrices, as in

Figure 4. The left-hand matri# is the normal form for Figure 1, while the

right-hand one corresponds to Figure 2. Note that different extensive forms




can have the same normal form. For example, Figure 2 is a "simultaneous-move'
game, in which neither player observes his opponent's action before cgoosing
his own. We cpuld represent this game equally well with an extensive férm in
which player two moved first.

A mixed strategy is a probability distribution over the normal-form

strategies. Payoffs to mixed strategies are simply the expected value of the
corresponding pure-strategy payoffs. We will denote mixed strategies by I ,
and the space of player i's mixed strategies by Ei . Although different mixed
strategies can give rise to the same behavior strategies, Kuhn showed that the
two concepts dare equivalent in games of perfect recall--any probability
distribution over outcomes that can be generated uéing one kind of randomization
can be duplicated by using thé.cther.s.

In the normal form corresponding to Figure 1, choosing L gives player
two at least as high a payoff as choosing R regardless of player one's choice,
and gives strictly more if player one plays D . In such 2 case we say that
D is a (weakly) dominant strategy for player two. (Stricﬁ dominance means that
the strategy is strictly better for all choices by opponents.) It seems
reasonable that no player should expect an opponent to play a dominated
strategy, which means that one should expect that two will play L . This is
just rephrasing our backwards inductjon argument. The analog of rolling
backwards through the tree is the iterated elimination of dominated strategies:.
making optimal choices at the last nodes is simple dominance, folding back one

step is first-order iterated dominance, and so on. (Actually iterated dominance

Two strategies for a player which differ only at information sets which
follow a deviation by that player vield the same probability distribution over
outcomes for any strategy selections of the other players. Some authors define
the normal form as identifying such equivalent strategies.




is a more general technique, as it can be applied to games of imperfect

information.) -

Nash Equilibrium

The normal form for Figure 2 does not have dominant strategies. Here to
make predictions we will have to accept a weaker notion of "reasomableness,”
that embodied in the concept of a Nash equilibrium. A Nash equilibrium is a
strategy selection such that no player can gain by deviating, given the:strategy

of his opponent. This condition is stated formally as

Definition: Strategy selection s* is a pure-strategy Nash equilibrium of the

game.(I,S,v} if for a1l players i in I and all s in Si s
i i
(L T (s*) 27 (si,s*_i)

Hefe, the notation (s*_i,s) represents the strategy selection in which all
players but i play according to s¥ , ﬁhile i piays Sg We view Nash
equilibrium 2s a minimal requirement that a proposed solution must satisfy to
be "reasonable." If a strategy selection is not a Nash equilibrium, then all
players know that some player would do better not to play as the selection
specifies. If "reasonable" is to mean anything, it should rule out such
inconsistent predictions. Not all Nash equilibria are reasonable, as is
revealed by examining the extensive and normal forms of Figure S. The
backwards-induction equilibrium (D,L) is a Nash equilibrium, but so is (U,R).
We will soon discuss the idea of a "perfect equilibrium,"” which is designed to
formalize the idea that (U,R) is not reasonable. The perfection notion and

other refinements of Nash equilibrium do not help with the following problem.




Consider a game like that in Figure 6. The only Nash equilibrium is (U,L), yet
is this 2 reasonable prediction? It depends on whether the players a;e sure
that the payoffs are exactly as we've specified, and that their opponents -are
"rational."- If one plays U against L , his payoff is 5, which is better than
the 4.9 that one gets from D . However, playing D guarantees that 1 gets
4.9, while if the éutcome is (U,R) then one gets 0. And similarly, player two
can guarantee 4.9 by playing R . Yet if player one's not sure that player two
might not prefer R to L, then D could be attractive. And even if player
one is sure of player two's payoffs, if player one's ‘not sure that player two
knows player oﬂe's payoffs, then player one might still fear that player two
will play' R. The pbint is that the logic of Nash equilibrium relies on every
player knowing that every player knows that ... the payoffs are as specified.
Technically, the payoffs should be "common knowledge," (as should the Nash
concept itself.) The closer the payeffs guaranteed by D and R come.to the
equilibrium payoffs, the more we need to insist on the common knowledge.
Ideally, equilibria should be subjected to this sort of informal check or
"sensitivity analysis."

Returning to Figure 2, the game there has two pure strategy equilibria,
(U,L) and (D,R). If there is a reasonable outcome in this game, both players
must be able to predict it, and predict that their opponents will predict it,
and so on. If players cannot so coordinate their expectations, there is no
reason to expect cbserved play to correspond to eithe; equilibrium--for example,
we might see the outcome (U,R). Not all games have reascnable solutions, and
on the data given so far this could be one. However, Schelling's (1960) theory
of "focal points” suggests that in some "real life" situations players may be

able to coordinate on a particular equilibrium by using information that is

abstracted away in the standard game formulation. For example, the names of




the strategies may have some commonly-understood "focal” power. An example is
two players who are asked to néme an exact time, with the promise of ; reward
if their choices match. Here "12 noonh is focal, while "1:43" is not. The
paycffs may also help coordinate expectations. If both players did better with
(U,L) then (D,R), then (U,L) seems a natural outcome to expect one's opponent
to expect that.... Some authors (including us!) have argued that if there is
a unique Pareto optimum among the set of equilibria, it should be a focal point.
While this intuition seems soun§ for two-piayer games, a recent example of
Bernheim, Peleg and Whinstorr shows that with more than two players the intuiticen
is suspect. In response, they have introduced the concept of
"eoalition-proofness’, which we discuss at the end of this section.

The idea of a Nash equilibrium is implicit in two of the first games to
have been fofmally studied, namely the Cournot and Bertrand models of oligopely.
Let us emphasize that despite the common practice of speaking of Cournot and
Bertrand equilibrium, the models are best thought of as studying the Nash
equilibria of two different simultaneocus move games. In the Cournot model,
firms simultaneously choose quantities, and the price is set at the
market-clearing level by a fictitious auctioneer. In the Bertrand model, firms
simultaneously choose prices, and then must p:pduce to meet demand after the
price choices become known. In each model, firms choose best responses to the
anticipated play of their apponents.

For concreteness, we remind the reader of the Cournot model of a duopoly
producing a homogeneocus good. Firm 1l and Firm 2 simultaneously choose their
respective output levels, 9y and a4, from feasible sets Fi . They sell their
output at the market-clearing price p(Q) , where Q = q; + 4y - Firm i's
cost of production i; ci(qi) , and firm i's total prefit is then ﬁi(ql R

qzj = qip(Q) - ci(qi) . The feasible sets Fi and the payoff functions “i




determine the normal form of the game; the reader should check ihat he/she knows
how to construct an equivalent extensive form. The "Cournot reaction fﬁnctiqns"
Rl(qz) and Rz(ql) specify each firm's optimal output for each fixed oitput
level of its opponent. If the ﬂi are differentiable and strictly concave,
and the appropriate boundary conditions are satisfied, we can solve for these
reaction functions using the first-order conditions. The intersections of the
two reaction functions (if any exist) are the Nash equilibria of the Cournoct
game: neither player can gain by a change in output, given the output level
cf its opponent.

The Cournot game is often contrasted to the situation in which one firm,
say firm one, is a "Stackelberg leader" and the other firm is the "Stackelberg
follower.™ The Stackelberg leader moves first, and chooses an output which is
observed by the follower before the follower makes its own choice. Thus the
Stackelberg game is one of ﬁerfect information. In the backwards inductien
(i.e. "perfect™ - see page 17) equilibrium to this game, firm two's output is
along its reaction curve. Knowing this, £firm oné ;hocses its own output teo
maximize its payoff along the graph of Rz . The first-order condition for this

choice is that
st RYa.),q.0) + antfRY(a,),q, W3, dR%(q,)/dg, = O

The backﬁards-induction equilibrium to the Stackelberg game is called the
"Stackelberg equilibrium.” This terminology can be confusing to the beginner.
The Stackelberg equilibrium is not an alternative equilibrium for the Cournot
game, but rather a shorthand way of describing an alternative extensive form.
While the prevailing terminology is too well established to be changed, the

student will do well to keep this distinetion in mind.
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The Cournot and Bertrand models are all static games, in which firms make
their choices once and for all. Section 24 discusses a dynamic versioﬁ?of these
games. Also, even as static games the Cournot and Stackelberg models mist be
thought of as reduced forms, unless one literally believes in the existence of
the price-setting auctioneer. Kreps~Scheinkman (1983) have shown that the
auctioneer in the Cournot model can be replaced by a second period in which
firms choose prices, taking their production as fixed (at least if the rationing
scheme is "efficient" and the demand function is concave)., Thus in both models
firms choose both prices and oﬁtputs; the difference is in the timing of these

two decisions. (See Gertner (1985a) for simultaneous choices.)

Existence of Nash Equilibria

We will now take up the question of the existence of Nash equilibria. Not
all games have pure-strategy Nash equilibria. A simple example is "matching
pennies”: players oﬁe and two simultaneously announce either "heads' or
".ails." If the announcements match, then player one gains a util, and player
twe loses one. If the.annouﬁcgments differ, it is player two who wins the util,
and player one who loses. If the predicted outcome is that the announcements
will match, then player two has an incentive to deviate, while player one would
prefer to deviate from any prediction in which announcements do not match, The
only "stable" situation is one in which each player randomizes between his two
strategies, assigning equal probability to each. In this ¢ase each player is
completely indifferent between his possible choices. A mixed-strategy Nash
equilibrium is simply a selectién of mixed strategies such that no player
prefers to deviate, i.e. the strategies must satisfy equation {1}. Since
expected urtilities are "linear in the probabilities,” if a player uses a

non-degenerate mixed strategy (one that puts positive weight on more than one

11




pure strategy)} then that player cannot strictly prefer not to deV1ate--the
lnequallty in (1) must be weak. (For the same reason, it suffices to check that
© player has a profitable pure-strategy deviation.) This raises the question
of why a player should bother to play a mixed strategy, when he knows that any
of the pure strategies in its support would do equally well. 1In matching
pennies, if player one knows that player two will randomize, player one has a
Z2ero expected value from all possible choices. As far as his payoff goes, he
could just as well play "heads" with certainty, but if this is anticipated by
Player two the equilibrium disintegrates. Some authors have suggested that for
this reason there is no "reasonable” prediction for matching pennies, or,
equivalently, that all possible probability mixtures over outcomes are equally
reascnable. (See e.8. Bernheim (1984) and Pearce (1984).) Harsanyi (1973)
followed by Aumann et al. { ) and Milgrom-Weber (1986) have offered the defense

that the "mixing" should be interpreted as the result of small, unobservable
| variations in the player's payoffs. Thus in our example, sometimes player one
might prefer matching on T +to matching on H , and conversely. Then for each
value of his payoff player one would play a pure strategy. This "purification"
of mixed-strategy equilibria is discussed in Section 3C. Despite some
controversy, mixed strategies have been widely used both in “"pure" game theory
and in its applications to industrial organization.

One reason is that, as shown by Nash (1950), mixed-strategy equilibria

always exist in finite games (games with a finite number of nodes, or,

equivalently, a finite number of normal-form pure Strategies.)

Theorem (Nash): Every finite n-player normal form game has a mixed-strategy

equilibrium,’

12




This can be shown by applying the Kakutani fixed-point theorem to the player's
- reaction correspondences, as we now explain. A good reference for so;é of the
technical details involved is Green-Heller (1981). W
Define player i's reaction correspondence, ri(a)., to bhe the
-correspondence which gives the set of (mixed) strategies which maximize player
i's payoff when his oppoments play o _, . This is just the natural
generalization of the Cournct reaction functions we introduced above. Since
payoffs are linéar functions of the mixing probabilities, they are in particular
both continuous and quasiconcave. This implies that each player's reaction
correspondence is non-empty valued and convex-valued. Moreover, we can show
that the reaﬁtion correspondences are "upper hemi-continucus': if o"+g and

n i n ve o ' oo
i er (6) , then there is a subsequence of the o, which converges to a

g
cisri(a) . Now define the correspondaence r to be the Cartesian pr§duct of
the T, . This correspondegce satisfies the requirements of the Kakutani
fixed-point theorem: it maps a compact convex subset of Euclidean space (the
relevant probability simplex) into its subsets, and it is non-empty valued,
convex-valued, and upper hemi-;ontinuous. Hence r has a fixed point, and by
construction the fixed peints of r are Nash equilibria.

Economists often use models of games with an uncountable number of actions.
Some might argue that prices or quantities are "really" infinitely divisible,
while others that "reality” is discrete, and the continuum is a mathematical
abstraction, but (almost?) all would agree that it is often easier to work with
a continuum of actions rather than a large fimnite grid. Moreover, as
Dasgupta-Maskin (1986) argue, when the continuum game does not have an
equilibrium, the equilibria corresponding to fine, discrete grids could be very
sensitive to exactly which finite grid is specified. These fluctuations can

me ruled out if the continuum game has an equilibrium. The existence of
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equilibria for infinite games is more involved than for finite ones. If
payoffs are discontinuocus there may be no equilibria at all. If the payoffs
are continuocus, then the Fan (1952) fixed-point thecrem can be used to show that
a mixed-strategy equilibrium exists. If payoffs are quasicéncave as well as
continuous, then there exist equilibria in pure Strategies, as shown by Debreu

(1952) and Glicksberg (1952).

Theorem (Debreu, Glicksberg , Fan): Considez an n-player normal form game whose
Strategy spaces Si are compact convex subsets of an Euelidean space. If the
payoff functions ﬂl(s) are continuous in s , and quasiconcave in si , there

exists a pure-strategy Nash equilibrium.

- The proof here is very similar to that of Nash's theorem: we verify that
continuous payoffs imply non-empty, upper hemi-continuocus feactions, and that

quasiconcavity in own actions implies that reactions are convex-valued,

Theorem (Glicksberg): Consider an n-player normal form game (I,S,m). If for
each 4 ; Si is a compact convex subset of a metric space, and T is

continuous, then there exists a Nash equilibrium in mixed strategies.

Here the mixed Strategies are the (Borel) probability meaéures over the purse.
Strategies, which we endow with the topology of weak convergence. Once more,
the proof applies a fixed-point theorem to the reaction correspondences. Onea
point to emphasize is that the mixed-strategy payoffs will be quasiconcave in
own actions even if the pure=strategy payoffs are not. With infinitely many
Pure strategies, the space of mixed strategies is infinite-dimensicnal, 50 a

More powerful fixed-point theorem is required. Alternatively, one can
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approximate the strategy spaces by a sequence of finite grids. From Nash's
theorem, each grid has a mixed-strategy equilibrium. One then argues that since
the space of probability measures is weakly compact, we can find a limit point
of the sequénce of these discrete equilibria. Since the payoffs are continuocus,
it is easy to verify that the limit point is an equilibrium.

There are many examples to show that if payoffs are discontinuous equilibria
need not exist. Dasgupta-Maskin argue that this iack of existence is sometimes

due to payoffs failing to be quasiconcave, rather than failing to be continuous.

They show if payoffs are quasiconcave, then a pure strategy equilibrium Q;ll
exist under a very weak condition they call "graph continuity.” They also
provide éonditions for the existence of mixed-strategy equilibria in games
wiﬁhout quasicohcave payoffs. The idea of their resﬁlt is to provide conditions
‘ensuring that the limits of the discrete-grid equilibria do not have "atoms"
{(non-negligible probability) én any of the discontinuity points of thg payoff
functions. Simon (1985) relaxes their condition by requiring only that at least
one limit has this no-atoms property, instead of all of them.

4 sizable literature has considered the existence of pure strategy
equilibrium when payoffs are not quasiconcave, particularly in the Cournot

model. Without quasiconcave payoffs, the reaction functions can have '

'jumps . "
To prove existence of equilibrium in this setting one must show that the jumps
"do not matter." Roberts-Sonnenschein (1977) showed that "nice" preferences
and technologies need not lead to gquasiconcave Cournot payoffs, and provided
examples of the non-existence of pure-strategy Cournot equilibrium. McManus
(1962) and Roberts-Sonnenschein (1976) show that pure strategy équilihria exist
in symmetric games with real-valued actions if costs are convex. The key is

that the convex-cost assumption can be shown to imply that all the jumps in the

reaction functions are jumps up. Novshek (1985) has shown that pure-strategy




equilibria exist in markets for a homogeneous good where each firm's marginal
revenue is decreasing in the dggregate output of its opponents, for any
Specification of the cost functions. Topkis (1970) and Vives (1985) use a
fixed-point theorem for non-decreasing functions due to Tarski (1955) to prove
the existence of pure-strategy equilibria in games where the reactions are
increasing. Tarski also proved that a functicn from (0,1) to (0,1) which has
no downward jumps has a fixed point, even if the function is not everywhere
non-decreasing. Vives uses this result to give a simple proof of the
McManus/Roberts-Sonnenschein result. (In symmetric equilibria each firm's
reaction function depends only on the sum of its opponents actions, and all
firms have the the Same reaction function. Thus if the actions are real-valued

the second of the Tarski results can be applied.)

~ The convers§ of the existence question is that of the characterization of the
equilibrium set. Ideally one would prefer there to be a unique equilibrium,
but this is only true under Very strong conditions. When several equilibria
exist, one must see which, if any, seem to be reasonable predictions, but this
Tequires examination of the entire Nash set. The reascnableness of ons
equilibrium may depend on whether there are others with competing claims,
Unfortunately, in many interesting games the set of equilibria is difficult to

characterize.

Correlated Equilibria

for "reasonable” predictions in situations where the players must choose their

actions "independently." Let us Teturn to our story of players who may have
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pre-play discussion, but then must go off to isclated rooms to chocse their
strategies. In some situations, both players could gain if they could build a
"signalling device" that sent signals to the separate rooms. Aumann's (1974)
notion of a correlsted equilibrium captures what could be achieved with any such
signals. (See Myerson (1983) for a fuller introduction to this concept, and
for a discussion of its relationship to the theory of mechanism design.)
To motivate this concept, consider Aumann's example, presented in Figure

7. This game has three equilibria: (U,L), (D,R), and a mixed-strategy
equilibrium that gives each player 2.5. If they can jointly observe a "coin
- £1ip" (or sﬁnspots, or any other publicly observable random variable) before
play, they can achieve payoffs (3,3) by a joint randomization between the two
pure-stratégy equilibria. However, they can do even better (still without
binding contracts) if they can build a device that sends different, but
correlated, signals to each of them. This device will have three equally likely
states, A, B, and C. Player cne's information partiticn is (4,(3,C)). This
means that if A occurs, player cne is perfectly informed, but if the state
is B or C , player one does not know which of the two prevails. Player two's
information partition is ((4,B),C). In this transformed game, the following
is a Nash equilibrium: player one plays U when told A , and D when told
(B,C); player two plays R when told C , and L when told (A,B). Let's check
that player one does not want to deviate. When he cobserves A , he knows that
two observes (A,B), and thus that tﬁo will play L ; in this case U is player
one's best response. If player one observes (B,C), then conditional on his
information he expects player two to play L and R with equal probability.
In this case player one will average 2.5 from either of his choices, so he is
willing to choose D . So player one is choosing a best response; the same is

easily seen to be true for player two. Thus we have constructed an equilibrium
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in which the players' choices are correlated: the outcomes (U,L), (b,L), and
(D,R) are chosen with probability one-third each, while the "bad" outcome (U,R)

Never occurs. In this pew equilibrium the expected payoffs are 3 1/3 each,

device. (Note that adding the signalling device does pot remove the "old"
equilib;ia: since the signals do not influence payoffs, if player one ignores
his signal, player two may as well ignore hers.)

If we had to analyze each possible signalling device oene at a time, we would
never be done. Fortunately, if we want to know what could be done with all
possible devices, we can dispense with the signals, and work directly with
probability distributions over Strategies. In our example, players need not
be told about the states A, B, and C . They could simply be given recommended
Strategies, as long as the joint distribution over recommendations corresponds
to the joint distribution over outcomes that we derived.: Playér one could be
told "play D" instead of (B,C), as long as this means there's a 50-50 chance

of player two playing L .,

Definition: A correlated equilibrium is any probability distribution p(s)

over the pure strategies S1 X...x Sn such that, for every player i and every

function. di(si) that maps Si to Si s

wi(p) 2 OLECHERIPS
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A pure-strategy Nash equilibrium is a correlated equilibrium in which the
distribution p(s) is degenerate. Mixed-strategy Nash equilibria are also
correlated equilibria: just take p(s) to be the joint distribution over actions
implied by the equilibrium strategies, so that the recommendations made to each
pléyer convey no information about the play of his opponents.

Inspection of the definition shows that the set of correlated equilibria
is convex, so the set of correlated equilibria is at least as large as the convex
hull of the Nash equilibria. Since Nash equilibria exist in finite games,
correlated equilibria do too. Actually, the existence of correlated equilibfia
would seem to be a simpler problem than the existence of Nash equilibria,
because the set of correlated equilibria is defined by a system of linear
inequalities, and is therefore convex. Recently, Hart and Schmeidler (1986)
have provided an existence proof that uses only linear methods (as opposed to
fixed-point theorems.) One might also like to know when the set of correlated
equilibria differs "greatly" from the convex hull of the Nash equilibria, but
this question has not yet been answered.

We take the view that the correlation in correlated equilibria shoul& be
thought of as the result of the players receiving correlated signals, so that
the notion of correlated equilibrium is particularly appropriate in situations
with pre-play communication, for then the players might be able to design and
implement a procedure for obtaining correlated, private signals. However, we
should peint out that Aumann (1986)land Brandenburger-Dekel (1986x) argue that
the correlated equilibrium notion is more "natural” than the Nash one froem the

point of view of subjective probability theory.

Coalition-Proof Equilibria and Strong Equilibria
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While no single player can profitably deviate from a Nash equilibrium, it
may be that some coalition could arrange a mutually beneficial deviation. if
players can engage in pre-play communication, then some coalitions of plaﬁers
might hopé to arrange for Joint deviations from the specified play. The notion
of a "gtrcng equilibrium” (Aumann (1959)) requires that no subset of players,
taking the actions of the others as given, could jointly deviate in a way that
benefits all of its members. As this requirement applies to the grand coalition
of all players, Strong equilibria are Pareto-efficient. Because no
restrictions are placed on the play of a deviating coalition, the conditions
for a stroﬁg equilibrium are quite stringent, and these equilibria fail to exist
in many games of interest for industrial organization, such as, for example,
Cournot oligopoly. Recently, Bernheim, Peleg, and Whinston (1986) (B-P-W) have
proposed the idea of a "coalition-proof" equilibrium , which, they argue, is a
more natural way to take account of coalitional deviations.

The best way to explain their concept is to use their example, which also
~ Serves the important function of showing why the criterion of Pareto-dominance
may not be a good Wway to select between equilibria when there are more than two
players. 1In Figure 10, player cne chooses rows, player two chocses columns,
and player three chooses matrices. This game has two pure-strategy Nash
equilibria, (U,L,A) and (D,R,B), and an equilibrium in mixed strategies, BJ-P-y
do not consider mixed strategies, so we will temporarily restrice attention to
pure cnes. The equilibrium (U,L,48) Pareto~-dominates (D,R,B). Is (U,L,A) then
the obvious focal point? Imagine that this was the expected solution, and hold
Player three's choice fixed. This induces a twe-player game between players
one and two. In this twe-player game, (D,R) is the Pareto-dominant equilibrium!

Thus, if players onme and two expect that player three will play A, and if they
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can éoordinatg their play on their Pareto-preferred equilibrium in matrix A,
they should do so, which would upset the "gcod"_equilibrium (U,L,A).

The definition of a coalition-proof equilibrium proceeds by induction on
the coalition size, TFirst one requires that no cne-player coalition can
deviate, i.e. that the given strategies are a Nash equilibrium. Then one
requiress that no two-player deviation can deviate, given that once such a
deviation has "occurred", either of the deviating players (but none of the
others) is free to deviate again. That is, the two-player deviations must be
Nash equilibria of the two-player game induced by holding the strategies of the
others fixed. A4nd one proceeds in this way up to the cocalition of all players;
Clearly (U,L,A) in Figure 10 is not coalition-procf; brief inspection shows that
(D,R,ﬁ) is. However, (D,R,B) is not Pareto-optimal, and thus is not a strong
equilibrium;_no strong equilibrium exists in this game.

fhe.idea of coalition-proofness is an interesting way to try to model the
possibility of coalitional deviations. However, the assumption that only
subsets of the deviating coalitions can be involved in further deviations can
be questioned, and the geqeral pioperties of the concept are unknown. TFor these
reasons, and because coalition-proof equilibria need not exist (even with mixed
strategies), we feel that at this time the B-P-W paper is more important for
the issues it raises than for its solution concept. He should mention here that
Bernheim-Whinston (1986) apply coalition-proofness to several well-known games

with interesting results.

2. Dynamic Games of Complete Information

Most of the examples in the last section were static games: each player's
choice of actions was independent of the choices of his opponents. Many of the

interesting strategic aspects of the behavior of firms are best modelled with

21




dynamic games, in which players can observe and respond to their oppeonents’
actions. This is true not only of inherently dynamic phenomena such as
investment, entry deterrence, and exit, but also of the determination of price
and output in a mature market. Section 2 discusses a few special kinds of
dynamic games that have been frequently used in the study of oligopoly theory.

These are all games of complete information, i.a. the payoff functions are

common knowledge. Section 3 discusses games of incomplete information, which

have become increasingly common in the literature.

Subgame Perfection

In dynamic games a question arises that is not pPraesent in static ones:

What beliefs should players have about the way that their current play will
affect their opponents' future decisions? Recall that the game in Figure 1 had
two Nash equilibria, (D,R) and (U,L). We argued that (U,L)Awas unreasonable,
because L was dominated by R for player two. Alternatively, we arrived
at (D,R) as our prediction by working backwards through the tree. Another way
of putting this is that Player one should not be deterred from playing D by
the "threat" of Player two playing L , because if player two's information set
was actually reached, two would back off from his "bluff" and play D . This
approach is useful for thinking about situations in which backwards induction
and/or weak dominance arguments do not give sharp conclusions. Selten's {1965)

notion of a subgame-perfect equilibrium generalizes the backwards -induction

idea to rule out empty threats in more general situations.

Subgame-perfect equilibrium strategies must yield a Nash equilibrium, not
just in the original game, but in every one of its "proper subgames.” We'll
define this more formally in Section 3, but for now think of a proper subganme

as a subset of the initial game tree which: 1) is closed under succession~-if
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a nede is in the subgame, so are all of its successors; 2) '"respects information
sets" which means roughly that all of the information sets of the subgame are
information sets of the initial game; and 3) begins with an information set that
contains only one node. This last requirement is in a general sense very
restrictive, which is one of the motivations for the various refinements of the
-perfection concept. However, most of the games we discuss in this section are
"deterministic multi-period games," which have a very simple structure that
makes subgame-perfection a useful tool. These games have extensive forms that
can be divided into periods so that: (1) at the start of the kth period all
play in periods 1 through (k-1) is common knowledge, (the initial information
sets in each period are all singletons); and (2) no information set contained
in the kth period provides any knowledge 6f play within that period. Any game
of perfect information is a multi-period game: just take all the successors
of the initial nodes to belong to period 1, their successors to period 2, and
so on. The Cournot and Bertrand models.are l-period games. If the same players
play a Cournot game twice in a row, and all players observe the "first-period"
quantities before making their second choice, we have a two-period game.

In a multi-period game, the beginning of each period marks the beginning
of a new subgame. Thus for these games we can rephrase subgame-perfection as
simply the requirement tﬁat the strategies yield a Nash equilibrium from the
start of each'period.

Figure 5 is actually the game Selten used to introduce subgame perfection.
Here there are two proper subgames: the whole game, and the game beginning
in the second "period” if onme played D . In this subgame, the only Nash
equilibriuvm is for player two to choose D » S0 that any subgame perfect
equilibrium must prescribe this choice, and only (D,L) is subgame-perfect. Mora

generally, in any game of perfect information subgame perfection yields the same
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answer as backwards induction. In finite-peried simultaneous move games,
subgame-perfection does "backwards induction” period by period: at the last
period, the strategies must yield a Nash equilibrium, given the history. Then
we replace the last period with the possible last-period eéuilibria, and work
backwards. For example, a subgame-perfect equilibrium of a two-period Cournot
model must yield Cournot equilibrium outputs in the second period, regardless
of first-period play. Caution: if there are several Cournot equilibria, then
which of them prevails in the‘second period can depend on first-period play.

We will say more about this when we discuss Benoit-Krishna (1985).

2A. Repeated Games and "Implicit Collusion"

Deterministic Repeated Games

Chamberlin (1956) criticized the Cournot and Bertrand models of oligopoly
for assuming that firms were myopic. He argued that in an industry with few,
long-lived firms, firms woﬁld realize their mutual interdependence and thus play

more "cooperatively" than the Cournot and Bertrand models suggested. The theory

of repeated games provides the simplest way of thinking about the effects of
long-term competition.

This theory shows that, under the proper circumstances, Chamberlin's
intuition can be partially formalized. Repetition can allow "cooperation” to
be an equilibrium, but it does not eliminate the "uncooperative" static
equilibria, and indeed can create neﬁ'equilibria which are worse for all players
than if the game had been played only once. Thus to complete the Chamberlin
drgument, one must argue that the "cooperative" equilibria are "reasonable."

In a repeated game, players féce the same constituent game in each of
infinitely many periods. There is no direct physical link between the periods;

each period's feasible actions and per-period payoffs are exactly as in the
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constituent game. This rules out important phenomena such as investment in
productive machinery, so few interesting industries can be modeiled exactly as
repeated games, Nevertheless, if the history-dependent aspectstof the industry
are not too important, the repeated game model may be a reasonable
approximation. Also, many of the qualitative p;edictions about the importance
of repeated play and the nature of equilibria are useful in thinking about more
general dynamic games, as we discuss in Section 2B. Of course, the main reason
that rgpeated games have raceived sc much attention is their simplicity.

The Constituent Game g is a finite n~-player game in normal form,

{I,1,7) where Zi is the probability distributions over a finite set Si of.
pure strategies. In the repeated version of g , each player i's strategy
'is a sequence of maps (ﬂ;(t)) mapping the previous actions of 2ll players to
a o, ¢ Ei .

Players maximize the average discounted sum of their per-period payoffs with
common discount factor & . (We use the average discounted sum rather than
simply the sum so that payoffs in the one-shot and repeate& games aré
comparable--if a player receives payoff 5 every period his average discounted
payoff is 5, while the discounted sum is, of course, S5/(1-8) .

.

Player i's reservation utility is

= s i '
v.* £ min max v (5.,0 .) .
i i’7 -1

=i i

In any equilibrium of the repeated game, player i's strategy must be a best
response to the strategies of his opponents. One option player i has is to

play myopically in each period, that is to play to maximize that period's
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payoff, ignoring the way this influences his opponents' future play. This
static maximization will give player i at least vi* in each periocd, so that

in any equilibrium, player 1i's expected average payoff must be at least

vi* . A payoff vector v is individually rational if for all players v, >

vi* . |
Notice that the equilibria of the constituent game (the "static equilibria") ?
remain equilibria if the game is repeated: If each player's play is inéependent
of the past history, then no player can do better than to play a static bes;
respense. Notice also that if the discount factor is very iow, we'd expect that
the static'gquilibria are the only equilibria--if the future is unimportant,
then once again players will choose static best responses. (This relies on g

being finite.)

The Sest-known result about repeated games'is the celebrated "folk theorem.”
This theorem asserts that if the game is reéeated infinitely often and players
are sufficiently patient, then "virtually anything" is an equilibrium outcome.
By treating the polar case of extreme patience, the folk theoreﬁ provides an
uppef bound for the affects of fepeated play, and thus a benchmark for thinking
about the intermediate case of mild impatience.

The oldest version of the folk theorem asserts that if players are
sufficiently patient (the-discount factors are near enough to one) then any

feasible individually rational payoffs are supportable by a Nash equilibrium.

The idea of the proof is simple: any deviation from the prescribed path by
player i leads the other players to play to "minmax" him (i.e., using the
strategies that attain the minimum in the definition of vi* ) for the rest of
the game. In a repeated Cournot game, this would correspond to all players
choosing the largest possible output forever. Given this threat, players will

indeed choose not to deviate as long as
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(1) never deviating yields more than vi* , and

(2) the discount factor is large enough that the géins to any

one-period deviation are cutweighed by the never ending
("grim") punishment.

The strategies sketched above clearly need not be subgame perfect--no firm
would choose to produce a huge amount if the market price were zero! The
"perfect folk theorem" say, roughly, that restricting attention to perfect
equilibria does not reduce the limit set of equzllbrxum payoffs. (It does, of
course, rule out some Nash equilibria.) |

Friedgan (1971) proved a weaker version of this theorem which showed thaf
any payoffs better for all players than a Nash equilibrium of the constituent
gama are the outcome of a perfect equilibrium of the repeated game, if players
are sufficiently patient. The desired Play is enforced by the "threat" that
any deviation will trigger a permanent switch to the static equilibrium.
Because thzs punlshment is itself a perfect equilibrium, so are the overall
Strategies., This result shows, for example, that patient, identical, Cournot
duopolists can "implicitly collude" by each producing one-half the monopoly
output, with any deviation triggering a switch to the Cournot outcome. This
would be "collusive™ in yielding the monopely price. The collusion is
"implicit" (or "tacit") in that the firms would not need to enter into binding
contracts to enforce their cooperatien. Instead, each firm is deterred from
breaking the agreement by the (credible) fear of Provoking Cournot competition.
If this equilibrium is suitably "focal,” as it might be with two identical
firms, then the firms might be able to collude without eéven communicating! This
Possibility has grave implications for anti-collusion laws based on observed

conduct. How could twe non~communicating firms be charged with conspiracy?
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Whether collusion can be enforced in a particular oligopoly then depends
on whether the "relevant" discount factor is sufficiently large. This discount
factor measures the length of the observation lag between periods, as well as
the player's impatience "per unit time." In a market where orders are large
but infrequent, a single order might represent several years of full-time
production. Here the short-run gains to cheating might well outweigh the costs
of (greatly delayed) punishments. In the other extreme, with frequent, small
orders, implicit collusion is more likely to be effective.

The Friedman result is weaker than the folk theorem because of its
requirement tha£ both players do better than in a static equilibrium. As a
Stackelberg follower's payoffs are worse than a Cournot duopolist's, Friedman's
result does not show that the Stackelberg ocutcome can be enforced in a repeated
Cournot game. That this is however true is shown in the "perfect folk theorems”
of Aumann-Shapley (1976), Rubinstein (1979), and Fudemberg-Maskin (1986a).
Aumann-Shapley and Rubinstein consider the no-discounting models in which
players are "completely”" patient. Fudenberg-Maskin show that, under a mild
"full-dimensionality"-condition, the result continues to hold if the discount
factors are sufficiently close to one. They also strengthen earlier results
by allcwiné players to use mixed strategies as punishments. Aumann-Shapley and
Rubinstein had restricted attention to pure strategies, which leads to higherx
individually-rational payoff levels, and thus a weaker theorem. (Their work
can alsc be interpreted as allowing mixed strategies as long as the mixing
probabilities themselves, and not just the actions actually chosen, are
observable at the end of each period.)

One might wish to characterize the set of equilibria when there is
"substantial” impatience. A fascinating paper by Abreu (1984) provides a tool

for this purpose. (See also Harris (1986), who gives a clearer exposition and
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simplér proofs of Abreu's results.) Call strategies "simple" if they have the
following form: there is an "equilibrium path“ and n '"punishment paths," one
for each player. Play follows the equilibrium path as long as no one has
deviated. If player i was the most recent player to deviate, and did so at
period t , then play at period (t+k) is given by the kth element of the
"ounishment path" corresponding to player i . (What happens if two or more
players deviate simultaneously is irrelevant.) The force in the restriction
to simple strategies is that player i's punishment path is independent of the
history before i's deviation and also of ﬁhe nature of the deviation itself.
Simple strategies are optimal if each player's average discounted utility at
the beginning of his punishment phase is the lowest payoff he receives in any
peffeéi equilibrium. Abreu shows that optimal simple strategies exist, and that
any sequence of outcomes that is enforceable by a perfect equilibrium can be
enforced by optimal simple strategies. Thus, to characterize the set of
equilibria in any game it suffices to find the worst possible perfect
equilibrium payoffs for each player. This technique can be used in other games
than repeated omes. Harris (1985b) uses it to characterize the (perfect)
equilibria of games éf perfect information. Abreu's thesis (1983) uses this
technique to characterize the equilibria of repeated Cournot games for all
discount factors. TFudenberg-Maskin (1986c) show that in any game there is a
discount factor &§ < 1 such that for all larger discount factors the worst
possible equilibrium payoffs are in fact the reservation values. (That is, the
minmax levels can be attained for a range of discount factors, and not only in
the limit.) Because the reservation values are of course the worst possible
punishments, any equilibrium outcome (Nash or perfect) can be enforced with the
threat-that deviations will switch play to an equilibrivm in which the deviator

is held to his reservation value. Thus the result provides a way to
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characterize the set of equilibria in games with little, but not arbitrarily

little, impatience.

Repeated Games with Imperfect Monitoring

One drawback of repeated games as a model of collusion is that they do not
explain price wars: In equilibrium, no firm ever deviates. This lack motivated
the Green-Porter (1984) model of "Noncooperative Collusion under Imperfect

Price Information.”

The Green-Porter model is a repeated quantity-setting game
in which firms do not cobserve the outputs of their opponents. Instead, firms
only observe the market price, p(Q,8) , which is determined by aggregate output
Q and a stochastic disturbance, 8 . The 8's in the different periods are
identicallf and independently distributed according to a density £(8) , which
" is such-that the set of possible prices is indeﬁendent of Q . All firms are
identical, and there is a symmetric equilibrium of the constituent game in which
each firm produces output qc . As with ordinary repeated games, one
equilibrium of the repeated game is for all firms to produce qc each period.
Could the firms hope to improve on this outcome if they are patient?
Green-Porter show that they can, by constructing a family of "trigger-price”
equilibria of the following form: Play begins in the "cooperative" phase, with
each firm producing some output g% . Play remains in the cooperative phase
as long as last period’s price exceeded a trigger level p* . If the price falls
below p* , firms switch to a "punishment phase” in which each firm produces
output qc . Punishment lasts for T periocds, after which play returns o a
cooperative phase. For a triple (q%,p*,T} to generate a Nash equilibrium,
each firm must prefer not to cheat in the cooperative phases. (Since qc is

a static equilibrium, no firm will cheat in the punishment phases.) Setting

c ; o . . P .
Q¥ = q° results in a trivial trigger-price equilibrium if the firms are
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somewhat patient they can do better by setting q*f < q° . In such an
equilibria, lp must be high encugh that-punishment occurs with positive
probability. Otherwise, a firm could increase its output slightly in the

cooperative phase without penalty. Thus punishment will occur even if no firm

has deviated. On seeing a low price, all firms expand their output not out of

concern that an opponent has cheated, but rather in the knowledge that if low
prices did not sometimes trigger punishment, then their collusive scheme would
not be self-enforcing. (See Rotemberg~Saloner (1984) for a repeated game model
with perfect Qonitoring in which pfice wars are voluntary.) | ‘
The trigger-price equilibria constructed by Gréen-?orter have an appealing.
'simplicity, but they need not be optimal~--other aquilibria may yield higher
expectead pgyoffs (for the firms). Abreu-Pearce-Stacchetti (1985) iﬁvestigated
the structure of the optimal symmetric equilibria in the Green-Porter model,
In the process, they devélop a tool which is ﬁseful for analyzing all repeated
games with imperfect monitoring. This tool, which they call "self-generation,"
is extended in their 1986 paper.

Self-generation is a sufficient condition for a set of payoffs to be
supportable by equilibriz. It is a multi-player generalization of dynamic
programming's principle of optimality, which provides a sufficient condition
for a set of payoffs, one for each state, to be the maximal net present values
obtainable in the corresponding states. Abreu-Pearce-Stacchetti's insight is
that the "states" need not directly.influencé the player's payoffs, but can
instead reflect (in the usual self-confirming way) changes in the play of
opponents. Imagine for example that, in the Green-Porter model, there are only
three pqssible values of the market price -~ P, > Py > Py - Price p; occurs
with probability mi(Q) , where Q is total industry output. Note that past

prices do not directly influence current payoffs or transaction prebabilities.

31




Nevertheless, we can censtruct equilibrium strategies that use the realized
prices to determine the transitions between "fictitious" states.

For example, imagine that we are told that there are two fictitious states
a and b, with associated payoffs for both firms of u and o, (We will
look at symmetric equilibria; otherwise we would need to specify each firm's
payoffs.) We are also given the following transition rule: the state switches
from a to b if p, occurs, remaining at a, if p= P, orp, . State
b is absorbing: once it is reached, it prevails from then on.- As we will see,
state b corresponds to an infinite “punishment phaseﬁ in Green-Porter. The
values u are self-generating if, in each state i=a,b, when players believe
that their future payoffs are given by u , there is an equilibrium ss in
cur?ent actions with average (over current and future payoffs) payoff u, .
In the language of dynamic programming, this says that for each player the
payoff u, is unimprovable, given the specified continuation payoffs and his
opponents’ currenﬁ actions. To show that self-generating payoffs are
sustainable by Nash equilibria, we first must define strategies for the players.
To do this, trace out the succession of singlefperiod equilibria, i.e. if play
begins in sfate a , and p, occurs in the first period, the state is still
a , 80 the second-period outputs are again given by the S, - By construction,
no player can gain by deviating from strategy s in state 1 for one periocd
and then reverting to them thereafter. The standard dynamic programming
argument then shows that unimprovability implies optimality: By induction, no
player can improve on u, oru, by any finite sequence of deviations, and the
payoff to an infinite sequence of deviations can be approximated by finitely
many of thgm. In our example, since state b is absorbing, for (ua, ub) to
be self-generating, u, must be self-generating as a singleton set. This means

that u, must be the payoffs in a static equilibrium, as in Green-Porter's
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punishment phase. In state a , today's outcome influences the future state,

so that players have to trade off tﬁeir short run incentive to deviate against
the risk of switching to state b . Thus state a corresponds to a 'cooperative”
phase, where players restrict output to decrease the probébility of switching.
to the punishment state.

The self-generating criterion not only provides a way of testing for
equilibria, it also suggests a way of constructing them: one can construct
stata spaces and trﬁnsition rules instead of working directly with the strategy
spéces. Fudenberg-Maskin (1986b) use this technique to investigate when "folk
theorems" obtain for repeated games with imperfect monitoring.

Returning to the topic of implicit collusion in oligopelies? First,’
repetition matters more, and (privately) efficient outcomes are more likely to
be equ@libria, ﬁhen the periods are short. Second, more precise infermation
makes collusion easier to sustain, and lowers the costs of'the occasional
"sunishments" which must occur to sustain it. Third, firms will prefer
"bright-line" rules which make "cheating" easy to identify. For example, firms
would like to be able to respond to changes in market conditions without
triggering "ounishment.” Scherer (1980) suggests that the institutions of prics
leadership and mark-up pricing may be responses to this problem. (See also
Rotemberg-Saloner (1985), who explain how price leadership can be a collusive
equilibrium with asymmetrically-informed firms.)

While most applications of repeated games have been concerned with games
with infinitely lived players, "implicitly collusive equilibria” can arise even
if all the players have finite lives, as long as the model itself has an infinite
horizon. Let us give two examples. First, a finitely lived manager of a firm
becomes the equivalent of an infinitely lived player if he owns the firm,

because the latter's value depends on the infinite streams of profits (as in
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Kreps (1985)); Second, overlapping generations of finite lived players can-
yield some cooperation between the players. A player who cheats early in his
life will be punished by the next generation, which in turn will be punished
by the following generation if it does not punish the fifst player, etc. (Cremer
(138x)).

We conclude this section with three warnings on the limitations of the
repeated game model. First, by focusing on stationary environments, the model
sidesteps the questions of entry and entry deterrence. These questions can in

principle be studied in games whose only time-varying aspect is the number of

entrants, but serious treatments of the entry process more naturally allow for

factors such as investment. Second, because repetition enlarges fhe set of
equilibria,.selecting an equilibrium becomes difficult. If firms ére identical,
an equai division of the monopoly profits seems an obvious solution; however
if one complicates the model by, for instance, intreducing a prior choice of
investment, most subgames are asymmetric, and the quest for a focal equilibrium
becomes harder. However, the selection criterion of picking a date-zero Pareto
optimal equilibrium outcome is not "meta-perfect”: date-zero Pareto optimal
outcomes are typically enforced by the threat of switching to a non-Pareto
optimal outcome if some player deviates. Just after the deviation, the game
is formally identical to the pericd-zero game, yet it is assumed that players
will not again coordinate on the focal Pareto-optimal outcome. Third, implicit
collusion may not be enforceable if the game is repeated only finitely many

times. What then should we expect to occur in finite-lived markets?

Finite-Horizon Games

Infinite-horizon repeated games are used as an idealization of repeated

play in long-lived markets. Since actual markets are finite-lived, one should
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ask whether the infinitg-horizon idealization is sensible. One response is that
we can incorporate a constant.probability 4 of continuing to the next period
directly into the utility functions : the expected present value of ten utils
tomorrow, if tomorrow's utils are discounted by &, and tomorrow arrives with
probability u, is simply ou.

Then if both 8 and u are near to one -the folk theorem applies. This
specification implies that the game ends in finite time with probability one,
but there is still a positive probability that the game exceeds any fixed finite
length. Thus one may ask what the theory predicts if the game is certain to
end by some very far-distant date. It is well known that in sﬁme games the
switch from an infinite horizon to a long finite one yields dramatically
different ccnclusion;--the set of equilibrium payoffs can expand
disecontinuously at the infinite;-horizon limit. This is.true for example in the
celebrated game of the "prisoner’'s dilemma,” which is dgpiﬁted in Figure 8.
When played only once, the game has a unique Nash equilibrium, as it is a
dominant strategy for each player to "fink." "Never fink" is a perfect
equilibrium outcome in the infinitely-repeated game if players are sufficiently
patient.

With a finite horizon, cooperation is ruled out by an iterated dominance
argument: Finking in the last period dominates cooperating there; iterating
once, both players fink in the second period, etc. The infinite-horizon game
lacks a last period and so the dominance argument cannot get started. Should
we then reject the cooperative equilibria as technrical artifacts, and conclude
that the "reasonable solution" of the finitely-repeated prisoner's dilemma is
"always fink"? Considerable experimental evidence shows that subjects do tend
to cooperate in many if not most periods. Thus, rather than reject the

cooperative equilibria, we should change the model to provide an explanation
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of cooperation. Perhaps players derive an extra satisfaction from "cooperating"
beyond the rewards specified by the experimenters. While this explanation does
not seew implausible, it seems a bit too convenient. Other explanations do not
add a payoff f0£ cooperation per se, but instead change the medel to break the
backwards-induction argument, which is argued to be unreasonable. One way of
doing this is developed in the "reputation effects” models of Kreps, Milgrom,
Roberts, and Vilson, which we discuss in Section 3. These models assume, not
that all players prefer cooperation, but that each player attaches a very small
prior probability to the event that his oppenent does,

Radne? (1980) provides another way of derailing the backwards inductien
in the finitely-repeated game. He observes that the best response against an
oppenent who will not fink until you do, but will fink thefeafter (the "grim"
strategy) is to cooperate until the last peried, and then fink. Moreover, as
the horizon T grows, the average gain-(the gain divided By T ) to playing
this way instead of always cooperating goes to zero. Formally, in an
t-equilibrium, player's strategy gives him within ¢ of his best attainable

payoff (over the whole horizon); in a subgame-perfect e-equilibrivm this is true

in every subgame. Radner shows that cooperation is the outcome of a perfect
g-~equilibrium for any ¢ > 0 if players maximize their average payoff and the
horizon is sufficiently long. Radner's result relies on "rescaling" the
player's utility functions by dividing by the length of the game. Thus
one-period gains become relatively unimportant (compéred to the fixed = ) as
the horizon grows.

Fudenberg~Levine (1983) show that if players discount the future then the
¢-equilibrium, finite horizon approach gives "exactly" the same conclusions as
the infinite-horizon one: the set of infinite-horizon {perfect) equilibria

coincides with the set of limit points of finite horizon (perfect)
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g-equilibria, where ¢ goes to zero as the horizon T goes to infinity. (I.e.,
every such limit point is on infinite-horizon equilibria, and every
infinite-horizon equilibrium can be approximated by a convergent sequence of
finite horizon ¢-equilibria.) Fudenberg-Levine defined the "limits" in the
above with respect to a topology that requires the action played to be uniformly
close in every éubgame. In finite-action games (games with a finite number of
actions per pericd) this reduces to the condition that (sn)*s if

Sh and s exactly agree in the first kn periods for all initijal histories,
where kn*O as n*e . Harris (19852) shows that this simpler ﬁonvergence
condition can be used in most games, and dispenses with a superfluous
requirement that payoffs be continuous.

With either of the Fudenberg-Levine or Harris topology, the strategy spaces
are compact in finite~action games, so that the limit result can be restated
as follows:r Let T(z, T) be the correspondence yielding the set of
t-equilibria of the T-period game. Then [ is continuous at (0,=) . This
continuity allows cne to characterize infinite-horizon equilibria by working
with finite-horizon ones. Backwards-induction can be applied to the latter,
albeit tedicusly, bu; not to the former, so that working with the finite horizonm

e-equilibria is more straightforward. The "continuity” result holds for
d;scounted repeated games, and for any other game in which players are not too
concerned about actions to be taken in the far-distant future. Specifically,
preferences over outcome paths need not be additively separable over time, and
there caﬂ be links between paét play and éuture opportunities. In particular
the result covers the non-repeated games discussed later in this section. The
intuition is simply that if players are not too concerned about the future, the
equilibria of the infinite-horizon game should be similar to the equilibria of

the "truncated” game in which no choices are allowed after some terminal time
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T. Sd for any equilibrium s of the infinite horizon game and ¢ > 0 , by
taking T long enough, the difference in each player's payoff between the play
prescribed by s and that obtained by truncating s at time t will be of
order £ .

We should point out that the "epsilons" are not always needed to ensure
continuity at the infinite-horizen limit. One example is Rubinstein's (1982)
bargaining game, which even with an infinite horizon has a unique perfect
equilibrium. (Rubinstein allows players to choose from a continuum of sharing
rules between 0 and 1 . With a2 finite grid of shares, the unigueness result
requires that ea;h player prefers the second-largest partition today to the
largest one tomorrow, so that the grid must be very fine if the discount factors
are near to one.) Benoit-Krishna (1985) provide conditions for continuity to
obtain in the "opposite" way, with the set of finite-horizon equilibria
expanding as the horizon grows, and approaching the limit set given by the folk
theorem. {(Friedman (1984) and Fraysse-Mdreaux (1985) give independent but less
complete analyses.) For Nash equilibria this is trﬁe as long as the static
equilibria give all players more than their minmax values. Then any
inaividually-rational paycffs can be enforced in all periods sufficiently
distant from the terminal date by the threat that any deviations result in the
deviator being minmaxed for the rest of the game. Such thréats are not
generally credible, so proving the analogous result for perfedt equilibria is
more difficult. Benoit-Krishna show that the result does hold for perfect
equilibria if each player has a strict preference for one static equilibria as
opposed to another (in particular there must be at least two static equilibrié)
and the Fudenberg-Maskin full dimensionality condition is satisfied. The
construction that Benocit-Krishna use to prove this is too intricate to explﬁin

here, but it is easy to see that there can be perfect equilibria of a
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finitely-repeated game which are not simply a succession of static equilibria.
Consider the game in Figure 9.

There are two pure-strategy static equilibria, (U,L) and (M,M). In the
twice-repeated game (without discounting, for simplicity) there is an
equilibrium with total payoffs (-1,-1). These payoffs result from the

strateéies "play (D,R) in the first period; play (U,L) in the second iff (D,R)

was played in the first, otherwise, play (M,M)."

28. Continuous-time Games

Frequentiy,-continuous-time models seem simpler and more natural than models
with a fixed, non-negligible period length. For example, differential equations
can be easier to work with than differesnce equations. As in games with a
continuum of actions, continucus-time games may fail to_hava equilibria in the
absence of continuity conditions. More troublesome, there are deep mathematical
problems in formulating general continucus-time games.

As Anderson (1985) observes, "general"” continuous-time strategies need not
lead to a well-defined outcome path for the game, even if the strategies and
the outcoﬁe path are restricted to be continuous functions of time. He offers
the example of a two-player game where players simultaneously choose actions
on the unit interval. Consider the continuous-time strategy "play at each time

t the limit as r*t of what the opponent has played at times r previous

to t . This limit is the natural analog of the discrete-~time strategies "match
the opponent's last actien.” If at all times before t the players have chosen
matching actions, and the history is continuous, there is no problem in

computing what should be played at t . However, there is not a unique way of

extending the outcome path beyond time t . Knowing play before t determines

the outcome at t , but is not sufficient to extend the ocutcome path to any open
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interval beyond t . As a result of_thié problem, Anderson opts to study the
limits of discreﬁe-time equilibria instead of working with continuous time.
Continuous time formulations are fairly tractable when strategies depend
‘on a "small” set of histories. This is the case in stopping-time games,
open-loop games, and in situations where players use "state-space" strategies.
These games or strategies are not restricted t$ continuous time, and
discrete-time versions of all of them have been used in the industrial

organization literature.

2C. State-Space or Markov Egquilibria

Consider games in which players maximize the present value of instantaneous
flow payoffs, which may depend on state variables as well as current actions.
(The feasible actions may also depend on the state.) For example, current
actions could be investment decisions, and the state could be the stocks of
machinery. Or current actions could be expenditures on R&D, with the state
variables representing accumulated knowledge. The strategy spaces are
simplified by restricting attention to "state-space” (or "Markev") strategies
that depend not on the complete specification of past play, but only on the

state (and, perhaps, on calendar time.) A state~space or Markov equilibrium

is an equilibrium in state-space strategies, and a perfect state-space
equilibrium must yield a state-space equilibrium for every initial state. Since
the past's influence on current and future payoffs and opportunities is
summarized in the state, if one's opponents use state-space strategies, one
could not gain by conditioning one's play on other aspects of the history. Thus
& state-space equilibrium is an equilibrium in a game with less restricted
strategies.' The state-space restriction can however rule out equilibria, as

shown by the infinitely-repeated prisoner's dilemma. Since past play has no
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effect on current payoffs or opportunities, the state-space is null, and all
state-space strategies_must be constants. Thus the only state-space equilibrium
is for both sides to always fink. (Caution: this conclusion may be dge to a
poor medel, and not to the wrong equilibrium concept. Section 4E shows hoﬁ the
conclusion is reversed in a slightly different model.)

Maskin-Tirole (1985), using the Markov restriction, obtain collusion in a
repeated price game in which prices are locked in for two periods. They argue
that Qhat is meant by "reaction" is often an attempt by firms to react to a state
that affects their curfent profits; for instance, when facing a low price by
their oppconents, they may want to regain market share. In the classic repeated
game model, firms move simultanecusly, and there is no physical state to react
to. If, however, one allows firms to alternate moves, they can react to their
opponent's price. (Maskin-Tirole derive asynchronicity as the (equilibrium)

- result of the two-period commitments.) The possibility'of'reaction leads te
interesting Markov equilibria. However, although equilibrium payoffs are
bounded away from the competitive levels (in contrast to the folk theorem
approach), they are still many equilibria (Maskin-Tirole use
renegotiation-proofness to select one which exhibits the classic "kinked demand
curve.") Gertner (1985b) formalizes collusion with Markev strategies when
commitment (inertia) takes the form of a fixed cost of changing prices.‘

The literal definition of a statea says that strategies can depend "a lot"
on variables with very little influence on paycffs, but they cannot depend at
all on strategies that have no influence. This can generate rather silly
discontinuities. For example, we can restore the cooperative equilibria in the
repeated prisoner's dilemma by adding variables that keep track of the number
of times each player has finked. If these variables have an infinitesimal

effect on the flow payoffs, the cooperative equilibria can be restored,.
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The state-space restriction does not always rule out ''supergame'-type
equilibria, as shewn in Fudenberg-Tirocle (1983a). They reconsidered a model
of continuous-time investment that had been introduced by Spence (1979). Firms
chocse rates of investment in productive capacity. The cost of investment is
linear in the rate up to some upper bound, with units chosen so that one unit
of capital costs one deollar. If firms Aid not observe the investment of their
rivals, each firm would invest up to the point where its marginal productivity
of capital equalled the interest rate. The capital levels at this "Cournot"
point exceed the levels the firms would choose if they were acting collusively,
because each firm has ignorsd the fact that its investment lowers its rivals'
payoffs. Now, if firms observe their rivals' investment (in either discrete
or continuous time) they could play the strategy of stopp;ng investment once
the collusive levels are reached. This "early stappingf is enforced by the
(credible) threat that if any firm invests past thé ¢collusive level, all firms
will continue to invest up to the "Cournot” levels. The state-space restriction
seems to have little force in this game. There are no general results om when
the restriction is likely to have a significant impact.

State-space games closely resemble control problems, so it is not surprising
that they have been studied by control theorists. Indeed, the idea of
perfection is just the many-player version of dynamic programming, and it was
independently formulated by Starr-Ho (1967) in the context of nonzero-sum
differential games. The differential games literature restricts attention to
state-space equilibria in which the equilibrium payoffs are continuous and
almost-everywhere differentiable functions of the state. These conditions
obtain naturally for control problems in smooth environments, but they impose
significant restrictions in games: It might ﬁe that each player's strategy,

and thus each player's payoff, change discontinucusly with the state due to the
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self-fulfilling expectation that the other players use discontinuous
stratégies. This was the case in the. "early-stopping” equilibria of ;he last
paragraph, so those equilibria would not be admissible in the differential games
setting. Perhaps the continuity restriction can be justified by the claim that
the "endogenous discontinuities' that they prohibit require excessive
coordination, or are not robust to the addition of a small amount of noise in
the players' observations. We are unaware of formal arguments along these
lines.

The technical advantage of restricting attention to sﬁooth equilibria is
that necessary conditions can then be derived using the variational methods of
optimal control theory. Assume that player i wishes to choose a; to maximize

- the integral of his flow payeff ui , subject to the state evolution equation
(2) k(t) = £(k(t)) , k(0) =k

0"

Introducing costate variables ki , we define Hi , the Hamiltonian for player

i, as

(3) H, = 75(k,a,8) + X £(k(E))

A state-space equilibrium a(t) must satisfy
(&) g, = ai(k,t) maximizes Hi(k,t,a,ki) .

and
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B b = . - . - t
(5) li aﬁi/aki ZaHi/aaj aaj/aki , along with the appropriate
transversality condition.

-

Notice that for a one-player game the second term in (5) vanishes, and the
conditions reduce to the familiar ones. In the n-player case, this second term
captures the fact tﬁat player i cares about how his opponents will react to
changes in the state. Because of the cross-influence term, the evolution of

A is determined by a system of partial differential equaﬁions, instead of by
ordinary differential equations as in the one-player case. As a result, vefy
few differential games can be solved in closed form. An exception is the
linear-quadratic case, which has been studied by Starr-Ho among others. Hanig
(1985) and Reynolds (1985) consider a linear-quadratic version of the
continuous-time investment game. (Their model is that of
Spence-Fudenherg-Tircle; except that the cost of investment increases
éuadratically in the rate.) They show that the "smooth" equilibrium for the
game is has higher steady-state capital stocks and so lower profits, than the
static "Cournot” levels. Is this a better prediction than the collusive levels?
We do not know.

Judd (1985)'offérs an alternative to the strong functional form assumptions
typically invoked to obtain closed form soluticn to differential games. His
method is to analyze the game in the neighborhood of a parameter value that
leads to 2 unique and easily computed equilibrium. In his examples of patent
races, he lﬁoks at patents with almost zero value. Obviocusly if the patent has
exactly zero value, in the unique equilibrium players do no R&D and have zero
values. Judd proceeds to expand the system about this point; neglecting all
terms over third order in the value of the patent. Judd's method gives only

local results, but it solves an "open set” in the space of games, as opposed
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to conventional techniques that can be thought of as solving a lower-dimensional
subset of them. We encourage the interested reader to consult Judd's paper
for the technical details. - -

“

2D. Games of Timing

In a-game of timing, each player's only choice is when and whether to take
a single pre-specified action. Few situations can be exactly be described this
way, because players typically have a wider range of cheices. TFor example,
firms typically do not simply choose a time to enter a market, but also decide
on the scale of entry, the ﬁype of product to produce, etec. This detail can
prove unmanageable, which is why industrial organizaticn economists have
frequently abstracted it away to focus on the timing question in isclatiom.

We will not even try to discuss all games of timing, but only two-player
games which "end" once at least one player has moved. Paycffs in such games
can be completely deseribed by six functions Li(t) . Fi(t), and Bi(t) .
i=1,2. Here L, is player i's payoff if player i is the first to move
(the "leader™), F, is i's payoff if § is the first to move (the
"follower™), and B, is i's payoff if both players move simultaneously. This
framework is slightly less restrictive than it appears, in that it can
incorporate games which éontinue until both players have moved. In such games,
once one player has moved, the other one faces a simple maximization problem,
which can be solved and "folded back” to yield the payoffs as a function of the
time of the first move alone. A classic example of such a game is the "war of
attrition,” first analyzed by Maynard Smith (1974): Two animals are fighting
for a prize of value v; fighting costs one util per unit time. Once one animal
quits, his opponent wins the prize. Here L(t) is -t, and F(t) is v-t

With short time periods B(t) will turn ocut to not matter much; let's set it
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equal to wv/q=t , g2 2 . If q=2 then each player has probability 1/2 of
winning the prize if both quit at once; if gq=~ this probability is z;rc. Let
us solve for a symmetric equilibrium of the discrete time version with period
length A . .Let p be the probability that either player moves at t when
both are still fighting. For players to use stationary mixed strategies, the
payoff to dropping out, pv/q , must equal that to fighting one more period and

then dropping out, pv+(l-p) pv/q - A . Equating these terms yields
P = (1-(1-48/q)V/%)q/2 .

Let us note that as 420 , p*A/v , independent of gq . More generally, a war
of attrition is a game of "chicken", in which each player prefers his opponent
to move (F(t)SL(t)), and wishes that he would de so qﬁickly (F and L decrease
over time.) Weiss-Wilson (1984) characterize the equilibria of a large family
of discrete-time wars of attrition; Hendricks-Wilson do the same for the
continuous-time version. Section 3 describes some of the many
incomplete-information wars of attrition that have been épplied to oligopoly
theory.

Preemption games are the opposite case, with L(t) > F(t) , at least over
scme set of times. Here the specification of B(t) is more important, as if
B exceeds F we might expect both players to move simultanecusly. One example
of a preemption game is the decision of when and whether te build a new plant
or adopt 2 new innovation, when the market is only big enough to support one
such addition. (If each firm will eventually build a plant, but the second
mover would optimally choose to wait until long after the first one, we can
"fold back” the second mover's choice to get the payoffs as a function of the

time of the first move alone.)
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The relationship between L and F can change over time, and the two
players may have different "types" of preferences, as in Katz-Shapiro (1984).
No one has yet attempted a general classification of all games of timing.
Because the ﬁossible actions and histories are so limited, it is easy to
formulate continuous-time strategies for these games, in a way that permits a
well-defined map from strategies to outcomes. We develop these strategies
below. However, we will see tﬁat the simplicity of this formulatien is not
without cost, as it is not rich enough to represent some limits of discrete-time
strategies. That is, there are distributions over outcomes (who moves and when)
that are the limits of distributions induced by discrete-time strategies, but
which caﬁnot be generated by the"obvious" continuous time strategies.

The usual and simple continuous-time formulation is that each player’'s
strategy is a function Gi(t) which is non-decreasing, right-continuous, and
has range in (0,1). This formulation was developed in the 1950's for the study
of zero-sum "duels", and was used by Pitchik (1982), who provides several -
existence theorems. The interp}etation is that Gi is a distribution function,
representing the cumulative probability that player i has moved by time t
conditional on the other player not having moved previocusly. These distribution
functions need ﬁot be continuocus; a discontinuity at time t implies that the
player moves with non-zero probability at exactly time t. Where G is
differentiable, its derivative dG is the density which gives the ﬁrcbability
of a move over a short time interval. With this notatiom, player one's payoff

to the strategies G1 s Gz is
i -
= - - + .
v (Gl,Gz) {3 {L(s)(1 Gj(s))dGi(s)+F(s)(1 Gi(s))de(s)] Zui(s}aJ(s)B(s) ,
where ci(s) is the size of the jump in Gi at s
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This formulation is very convenient for wars of attrition. In these games
there are "nice” discrete-time equilibria in which the probability of moving
in each period is proportional to the period length. In the example computed
above, the equilibrium strategies converged to the continuous-time limit
G(t)=1l-exp(-t/v) . (For the case q=2 , the sum of the two players' payoffs
is uéper hemi-continucous, and the fact that the equilibria converge is a
consequence of Tﬁeorem 5 of Dasgupta-Maskin (1986).) More complex wars of
attrition can have continuous-time equilibria with "atoms," (ui(t)>0 for some
t), but as the periods shrink these atoms beéome isolated, and again admit a
nice continucus-time representation.

Preemption games are markedly different in this respect, as shown in
Fudenberg-Tirole (1985). Consider the discrete-time "grab-the dollar” game:
L(t)=1, F(t)=0, and B(t)= -1. The interpretation is that "moving" here is
grabbing a dollar which lies between the two players. If either graﬁs alone,
he obtains the dollar, but simultanecus grabbing costs each player one. There
is a symmetric equilibrium in which éach player moves with (conditional)
probability 1/2 in each period. Note well that the intensity of the
randomization is independent of the:period length. The corresponding payoffs
are (0,0), and the distribution over outcomes is that with identical probability
(1/4)(t+1) either player cne wins (moves élone) in period t, or player two wins
in peried t, or both move at once at t. As the length of the period converges
to zero, this distribution converges to one in which the game ends wich
probability one at the start, with equal probabilities of 1/3 that player one
wins, that player two does, or that they both move at once. This distribution
cannot be implemented with the continuous-time strategies described above, for
it would require a correlating device a 1'Aumann. Otherwise, at least ome
player would move with probability one at the start, which would make it

-
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impossible for his opponent to have a 1/3 probability of winning. The problem
is that a great many discrete-time strategies converge to a continuous-time
limit in which both players move with probability cne at time zero, including
"nove with probability 1/2 each pericd,” and "move with probability ome at the
start." The usual continuous-time strategies implicitly associate an atom of
size one with an atom of that size in discrete time, and thus they cannot
represent the limit of the discrete-time strategies. Fudenberg-Tirole offered
an expanded notion of continuous time strategies that "works" for the grab-the
dollar game, but they did not attempt a general treatment of what the strategy
space would need to be to handle all games of timing.

The moral of this story is that while continuous time is often a convenient
idealization of very short time periods, one should keep in mind that a given
formulation of con;inucus time may not be adequéte for all possible
applications. When confronted with, for example, the non-existence of
equilibria in a seemingly "nice” continuous-timé game, it can be useful to think
about discrete-time approximations. Simon and Stinchcombe (1985) provide a
general analysis of when the usual continuous-time strategies are in fact

appropriate.

2E. Discrete vs. Continuous Time, and the Role of Pericd Length

The discussion above stressed that one must be careful that a given
continuous time model is rich enough to serve as the "appropriate"” idealizatioen
of very short time periods. Now we'd like to point out that new equilibria can
arise in passing to continuocus time, and that these should not be discarded as
pathological. The simplest, and oldest, example of this fact is the
Kreps-Wilson (1982a) stopping-time version of the prisoner's dilemma. In this

version, players begin by cooperating, and once either finks they both must fink

49




forever afterwards. Thus the enly choice players have is when to fink if their
opponent has not‘yet done so. In discrete time with a finite herizon, the
familiar backwards induction argument shows that the only equilibrium is to both
fink at once. However, the gain to finking one periocd ahead of one's opponént
is proportional to the period length, and in the continuous-time limit, there
is no gain to finking. Thus cooperation is an equilibrium in the
continuous-time game.

The analogy with the finite-to-infinite horizon limit is more than
Suggestive. In a generalization of their earlier work, Fudenberg-Levine (1988)
showed that, in cases such as stopping-time games and state-space games where
the continuous time formulation is not too problematic, any continucus-time
equilibrium is a limit of discrete-time epsilon-equilibria, where the epsilon
converges to zéro with the length of the pericd.

Little is known in general about the effect of period length on equilibrium
play, but several éxamples have been intensively studied. The best known is
the work of Coase (1972), Bulow (1982)), Stokey (1981), and
Gul-Sonnenschein-¥Wilson (1983) who argue with varying degrees of formality that
the monopolistic producer of a durable good loses the power to extract rents
s the time period shrinks, tﬁﬁs verifying the "Coase conjecture.” (See also

Sobgl-Takahashi (1983) and Fudenberg-Levine-Tirole (1985).)

2F. Open-Loop Equilibria

The terms "open-loop" and "closed-loop" refer to two different information
structures for multi-stage dynamic games. In an open-loop model, players cannot
observe the play of their opponents; in a closed-loop model ail past play is
common knowlédge at the beginning of each stage. Like "Cournot" and "Bertrand"
equilibria, open- and closed-loop equilibria are shorthand ways of referring
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to the perfect equilibria of the associated model. (Caution: This terminology
is widespread but not universal. Some authors use "cloﬁed-loop equilibrium"
to refer to all the Nash equilibria of the closed-loop model. We prefe¥ to
ignore the imperfect equilibria.) Open and closed loop models embody different
assuﬁptions about the information lags with which players cobserve and respond
to each other's actions, and thus about the length of time to which players can
"commit" themselves not to respond to their opponents. In an open-loop model,
these lags are infinite, while in a closed-loop model, a player can respond to
his opponents. Because dynamic interactions are limited in open-loep
equilibria, they are more tractable than closéd~loop ones. For this reason,
economists have sometimes analyzed the open-loop equilibria of situations which
seem more naturally to allow players to respond to their opponents. One
possible justificaticn for this is that, if there are maﬁy "small" players, so
that no one player can greatly affect the others, then optimal reactions should
be négligiblé. When this is true, the open-loop equilibria will be a good
approximation of the closed-loop ones. Fudenberg-Levine (1986b) explore this
argument, and find that its validity in a T-pericd game réquires sﬁrong |

conditions on the first through T-th derivatives of payoffs.

31




Section 3: Static Games of Incomplete and Imperfect Information

3A., Bayesian Games and Bavyesian Equilibrium

Players in a game are said to have incomplete information if they do

not know some of their opponent's characteristics (objective functions);

they have imperféct information if they do not observe some of their oppo-

nent's actions. Actually, the distinction between incomplete and imperfect
information is convenient, but artificial. As Harsanyi [1967] has shown, at
a formal level, one can always transform a game of incomplete information
into a game of imperfect information. 7YThe idea is the following: let the
original game be an n-player game without incomplete informatien. Assume
that each player's characteristic is known by the player, but, from the point
of view of the (n;l) other players, is drawn according to some known probabi-
iity distribution. (See below for a discussion of this representation).
Harsanyi's construction of a transformed game introduces nature as a {n+1)st
Player, whose strataegy consists in choosing characteristics for each of the n
original players at the start of the game, say. Each player observes his own
characteristics, but not the other players'. Thus, he has imperfect informa-
tion about nature's choice of their characteristics. (One can endow nature
with an objective function in order for it to become a player. One way of
doing so is to assume that nature is indifferent between all its moves. To
recover the equilibria of the coriginal game (i.e., for given initial probabi-
lity distributions), one takes the projection of the equilibrium correspon=-
dence for these probability distributions).

The notion of "type": The "characteristic" or "type" of a player embod-

ies everything which is relevant to this player's decision making. This
includes the description of his objective function (fundamentals), his be-

liefs about the other player's objective functions (beliefs about fundamen-
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talsg), his beliefs about what the other players believe his objective func-
tion is {(beliefs about beliefs about fundamentals), et¢. As this is a bit
abstract, it is helpful to begin with Harsanyi's simplé representation (this
representation is used in virtually all applications). Suppose that in an
cligopoly context, each firm's marginal cost ci is drawn from an "objective"”
distribution pi(ci) {n.b.: we will write probability distributions as if
the number of potential types were finite. Continuous type spacas are also

allowed; summation signs should then alsc be replaced by integral signs)}:; ci

is observed by firm i, but not by the other firms; pi is common knowledge;

everybody knows that ci is drawn from this distribution; that everybody knows

that e is drawn from this distribution, ete. ...(see Aumann [1976] for a
definition of common knowledge). In this case firm i's type is fully sum-

marized by ci: because the probability distributions are common knowledge,

knowing ci amounts to knowing everything known by firm i, By abusa of ter-
minology, one can identify firm i's type with the realization of ci.

n
More generally, Harsanyi assumed that the player's types {1:1}:."1 are

drawn. from some cbjective distribution p(t1,...,tn), where ti belongs to some

space T For simplicity, let us assume that T, has a2 finite number ITil of

i i

alements. ti is observed by player i only. pi{t-i hi) denotes player i's

conditional probability about his oppeonent's types t i " (ti""’ti 1'ti+1’

P his t .
y n) given ype ti
To complete the description of a Bayesian game, we must specify an

g vy

action set A, (with elements ai) and an objective function Hi(a

i 1

an’t1""'tn) for each player i. The action spaces A the objective func-

il
tions Hi and the probability distribution p are common knowledge (every play-

er knows them, knows that everybody knows them, ...). In other words,
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everything which is not commonly known is subsumed in the type.

The Harsanyi formulation looks a priori restrictive because it prasumes
a large common knowledge base. However, as Mertens and Zamir [1983] have
shown (see also Brandenburger-Deckel [1985]), one can always define type
spaces that are large enough to describe every element of player i's private
information. Coming back to our original idea, player i's type then includes
his beliefs about the other players' beliefs about payoff relevant informa-
tion, his beliefs about the other players' beliefs about payoff relevant
information etc. Mertens and Zamir essentially show that this infinite re-
gression is well defined (under some weak assumptions, the space of types is
compact for the product topologyl.

In this section we conside? only c¢ne=shot simultaneous move games of
incemplete information. The n players first learn their types and then si-
multaneously choose their actions (note that the game is also a game of im=-
perfect information)}. The game is static in that the players are unable to
react to their opponent's actions. The inference process as to the other
players' types is irrelevant becaunse the game is over at the time each player
learns some signal related to his opponents' moves., Section 4 considers
dynamic games and the‘associated updating process.

Each player's decision naturally depends on his information, i.e., his
type. For instance, a high cost firm chooses a high price. Let ai(ti) d;-
note the action chosen by player i when his type is ti {this could also de-
note a mixed strategy, i.e., a randomization over actions for a given type).
If he knew the strategies adopted by the other players {aj(tj)}j¢i as a func=-
tion of their types, player i would be facing a simple decision problem;

given his type ti' he ought to maximize:
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B, Pyt Jt) Uda (t),...,a

. ""’an(th'ti'""ti""’tn)'

i

'Harsanyi extended the idea of a Nash equilibrium by assuming that each player
correctly anticipates how each of his opponents behaves as a function of his’
type:

Definition: A Bayesian equilibrium is a set of (type contingent) strategies

{a;(ti)}gtl such that aI(ti) is player i's best'rESponse to the other strate-
gies when his type is ti:

*
fi(tij £ arg mg: Zt_ipi‘t-i hi)ui(al(t1)""ai’"’an(tn)’ti""ti""tn)'

Thus, the Bayesian equilibrium concept is a straightforward extension of
the Nash equilibrium concept, in which each player recognizes thgt the other
player's strategies depend on their types.

Proving existence of a Bayesién equilibrium turns cut to inveolve a sim-
pie extension of the proof of a Nash equilibrium. The trick is the follow-
ing: since player ifs optimal action depends on type ti’ everything is as if
player i's opponents were playing against ]Til different players, each of
these players being drawn and affecting his opponent{s payoffs with some

probability. Thus, considering different types of the same player as differ-

ent players leads to transform the originél gaﬁe inte a game with {21_1 Eil}
pPlayers. Each "player" is then defined by a name and a type. He does not
care {(directly) about the action of a player with the same name and a diffaer-
ent type {another incarnation of himself}, but he does care about the other

players' actions. If ai't denotes the action chosen by player {i,ti}, play-
i

er {i,ti}'s objective is to maximize over a:
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N ,t1,..,ti...,tn).
wi 1

'tn
Thus, existence of a Bayesian equilibrium of a game with ITi | players stems
directly from the existence of a Nash eguilibrium for a game with {Eilmil}
players, as long as the numbers of players and types are finite.

With a continuum of types, some technicalities appear about whether
there exists a measurable structure over the set of random variables (Aumann
[1964]). One is then led to define a mixed strategy as a measurable function
from {0,1]xT, into A,. Or, equivalently, one can define it, as Milgrom and

i i

Weber [1985] do, as a measure on the subjects of T xAi for which the marginal

i

distribution on Ti is pi. Milgrom and Weber give sufficient conditions for

the existence of an equilibrium in such settings.'

Example 1: Consider a duopoly playing Cournot (quantity) competition. Let
] . =

firm i's profit be quadratic: Hi qi(ti-qi-qj

between the intercept of the linear demand curve and firm i's constant unit

}, where ti is the difference

‘cost (i = 1,2) and q is the guantity chesen by firm i (ai = qi). It is

common knowledge that, feor firm 1, t, = 1 {"firm 2 has complete information

1

about f£irm 1", or "firm 1 has only one potential type"). Firm 2, however,
has private information about its unit cost. Firm 1 only knows that t2 = 3/4
with probability 1/2. Thus, firm 2 has two potential types, which we will
call the "low cost type" (t2 = 5/4) and the "high cost type" (t2 = 3/4), The
two firms choose their ocutputs simultaneously. Let us loock for a pure stra=-

tegy equilibrium. Firm 1 plays q, firm 2 plays qg(if t, = 5/4) ox qg {(if ¢

2 2

= 3/4), Let us start with firm 2:

q2(t2) £ arg ma; {qz(tz-qz-q1)} => qz(tz) = (tzuq1)/2.

Let us now consgider f£irm 1, which does not know which type it faces.
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£ x{l (1 el g 1 L)}
q, & arg max {, g {1=q,=d,/* 5 24,1179y,
94
=5 q1 = (1-Eq2)/2s

. 1
where E{ )} denotes an expectation over firm 2's types. But qu = % qg+‘3 qg

= (Etz—q1)/2 = (1-q1)/2. One thus obtains {q1 = 1/3, qg = 11/24, qz = 5/24}
as a Bayesian equilibrium (one can prove this equilibrium is unique). This
simple example illustrates how one can compute the Bayesian equilibrium as a
Nash equilibrium of a 3-player game (|T1[ =1, | T2| =2).

Example 2: Consider an incomplete-information version of the war cé
attxitian discussed in Section 3d. Firm irchooses a number aiin [0,+=).

Both firms choose simultanecusly. The payoffs are:

Hi = -ai, if aj > ai

t,~a,, if a, < &,.
3 i

i 3

ti' firm i's type, is private information and take values in [{0,+w) with
cumulative distribution function fi(ti) and densit? pi(ti). Types are, as in
example 1, independent between the players. ti is the price to the winner,
i.e., the highest bidder. The game resembles a second=-bid auction in that
the winner pays the second bid. However, it differs from the second-bid
auction in that the loser also pays the second bid.

Lat us look for a Bayesian equilibrium of this game. Let ai(ti)_d?note

firm i's strategy. Then, we require

a (t) € arg max {-a, Prob[aj(tj) > ai)+ f (t.-a ) -

a, {tj[aj(tj)<ai}
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A few tricks make the problem easy to solve. First, one can write the "self-
selection constraints®: by definition of equilibrium, type ti prefers ai(ti)

1 1 3 R
to ai(ti). and type ti prefers ai(ti) to ai(ti)' Writing the two correspond

ing inequalities and adding them up showsg that ai must be a non-decreasing
function of ti' Second, it is easy to show that there can not be an atom at

a, > 0, i.e., Prob [a

N (tj) =a, > 0) = 0. To prove this, notice that if

3

there were an atom of types of firm j playing ai, firm i would never play in

[ai-e,ai) for ¢ small: it would be better off bidding just above ai (the
3

proof is a bit loose here, but can be nade rigoroug)., Thug, the types of
firmg that play ai would be better off playing (ai-a), because ﬁhis would not
reduce the probability of winning and would lead to reduced payments.

Let us look for a strictly monctonic, contincus function ai(ti) with

inverse t, = Qi(ai).- Thus, ¢i(ai) is the type that bids a We then ob-

i i’

tain:
2
.{(t.,) £ arg max {=-a,l[1=-P ($ .(a )) | + t,=a.) d.(a,) |¥'(a }da,}.
2,(t;) & arg max {-a, (12 (0 (a )] + [ (2yma)py (8y(ay) )05 (a0 da,
i
By differentiating, one obtains a system of two differential equations in
¢1(-) and ¢2(-) {or, equi%alently, in ai(-J and az(-)). Rather then doing
so, let us take the following intuitive approach: If firm i, with type ti’

bids (a +dai) instead of a it loses dai with probability t (since there is

i i’

no atom), conditionally on firm j bidding at least a_, {otherwise this in-

i
crease has no effect). It gains ti [- ¢i(ai)] with probability {pi(¢j(ai))

¢§(ai}f{1-Pj(¢ (ai}))}dai. Thus, in order for £irm i to be indifferent:

3

°i‘ai)pj(°j‘ai’)°3‘ai’ = 1-p (o,a)) .

3

We leave it to the reader to check that, for a symmetric exponential

-% .
i . . e sty
distributien Pi{ti) = l-e , there exists a symmetric equilibrium: @i(ai) =
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JZai, which corresponds to ai(ti) = -% (as Riley [1980) has shown, there also

exists a continuum of asymmetric equilibria:

- =2
@1- K/;I and b, = ¢ J;; for X > 0).

Let'us now give an industrial organization interpretation of the game.
Suppose that there are two firms in the market; they both lose 1 per unit of
time when the compete; they make a monopolyvprofit when their opponents has
left the market, the present discounted value of which is ti (it would make
sense to assume that the duopoly and monopoly profit are correlated, but sueh
a modification would hérdly’ch;nge the results). The firms play a war of
attrition. ay is the time firm i intends to stay in the market, if firm j
has not exited before. At this stage, the reader may wonder about oﬁr dynam—-
ie interpretation: if firms are free to leave when they want and are not
committed to abide by their date 0 choice of 2y is the Bayesian equilibrium
"perfect"? It tufns out that the answer is "yes™; the dynamic game is essen-
tially a static game (which is the reason why we chose %o present it in this
section). At any time ay, either firm j has dropped out (bid less then ai)
and the game is over, or firm j is still in the market and the conditional

probability of exit is the one computed earlier. Thus the equilibrium is

perfect as well.“

“The war of attrition was introduced in the theoretical bilology litera-
ture (e.g., Maynard Smith [1974}, Riley [1980] and has known many appli-
cations since. It was introduced in industrial organization by Kreps-—
Wilson [1982a]. (See also Nalebuff {1982] and Ghemewat-Nalebuff
{1985]). For a characterization of the set of equilibria and a unique-
ness result with changing duopoly payoffs and/or large uncertainty over
types, see Fudenberg-Tirole [1986|. See also Hendricks and Wilson
(1985a, 1985b].

59



3B, Using Bayesian Equilibria to Justify Mixed Equilibria

In Section 1, we saw that simultaﬁeous move games of complete informa-
tion often admit mixed strategy equilibria. Some Tesearchers are unhappy
with this notion because, they argue, "real world decision makers do not £lip
a2 coin." However, as Harsanyi [1973] has shown, mixed strategy equilibria of
complete information games can often be vindicated as the limits of pure
strategy equilibria of slightly perturbed games of incomplete information.
Indeed, we have already noticed that in a Bayesian game, once the players!
type-contingené strategies have been computed, each Player behaves ag if he
ware faciné m;xéd strategies by his opponents (nature creétes uncertainty
through its choice of tybes rather then the choice of the side of the coin).

To illustrate the mechanics of this construction, let us consider the
one-«period version of the "grab-the-dollar" géme intreduced in Section 2.
Each player has two possible actions: investment, no investment. In the
;omplete information version of the game, a firm gains 1 if it is the only
one to make the investment (wins), loses 1 if both invest, and breaks even if
it.does not invest. (We can view this game as an extremely crude representa-
tion of a natural monopoly markét.) The enly symmetric equilibrium involves
mixed strategies: each firm invests with probability 1/2. This clearly is
an equilibzrium: each firm makes 0 if it does not invest, and %‘(1)+'§ {=1)
= Q0 if it does not not. Now consider the same game with the following type
of incomplete information: Each firm has the same payoff structure except
that, when it wins, it gets (1+t) wher; t is uniformly distributad on
(-z,+e]. Each firm knows its type t, but not that of the other firm. Now,

it is easily seen that the symmetric pure strategies: "a({t < 0) = do not

invest, a(t » 0) = invest" form a Bayesian equilibrium. From the point of
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view of each firm, the other firm invests with probability 1/2. Thus, the
firm should invest if and only if‘% (1+t) +'% (=1) » 0, i.e., t » 0. Llast,
note that, when ¢ converges to zZer9, the pure strategy Bayesian equilib;ium
converges to the mixed strategy Nash equilibrium of the complete information
game,

lAs another example, the resader may want to study the symmetric war of
attrition. Under complete information aﬁd identical payoffs, it is easily
shown that in a symmetric equilibrium, each player's strategy is a mixed
strategy with exponential distribution over possible times.> The symmetric
incomplete information equilibrium (computed in Section 3A) converges to this
mixed thategy gquilibrium when the uncertainty converges to zero {see
Milgrom§Weber for the cése of a uniform distributicn).

Milgrom-nger [1985] offers sufficient (continuity) conditions on the
objective functions and information stfuctuze so that the limit of Bayesian
equilibrivm strategies when the uncertainty becomes "negligible, " forms a
Nash equilibrium of the limit complete information game. (Note: the war of
attrition does not satisfy their continutity conditions; but as Milgrom an&
Weber show, the result holds anyway). They also identify a class of (atomw-
less) games for which there.exists a pure strategy equilibrium.

We must realize that games of complete information are an idealization.
In practice, everyone has a£ least a slight amount of incomplete information
about the others' objectives; Harsanyi's argument shows that it is hard to
make a strong <ase against mixed strateqgy equilibria on the grounds that they

require a randomizing device.

sLetting t denote the common payoff to winning, waiting da more yields
[x(a)t)da where x{a)da is the probability that the opponent drops be-
tween a and (a+da). This must equal the cost of waiting: da. Thus,
x(a) = 1/t is independent of time a.




4. Dynamic Games of Incomplete Information

We now study games in which, at soﬁe point of time, a player bases his
decision on a signal that conveys information about another player. This
type of game is dynamie in that a player reacts to another player's move.
The tricky aspect of it is that, under incomplete information, the former
must-apply Bayes rule to update his beliefs about the latter's type. To do
so, he uses the latter's choice of action (or a signal of it} and equilibrium
Strategy, as we shall see shortly. The equilibrium notion for dynamic games
of incomplete information is naturally a combination of the subgame perfact
equilibrium concept that we discussed earlier and Harsanyi [1967]'s concept
of Bayesian equilibrium for games of incomplete information. In this sectioﬁ
we consider the simplest such notion, that of perfect Bayesian equilibrium
concept, as well as some easy-to-apply (and sometimes informal) refinements.

In the next section, we will discuss more formal refinements of the perfact
Bayesian equilibrium conceptlfor finite games.

The notion of a perfect Bayesian equilibrium was developed under various
names and in various contexts in the late 'sixties and the 'seventies. In
economics, Akerloff [1970] and Spence [1974]'s market games make implicit use
of the concept. In industrial organization the fi;st and crucial application
is Milgrom-Roberts {1982a]'s.limit pricing paper, followed by the work of
Kreps-Wilsoﬁ [1982a] -Milgrom-Roberts [1982b] on reputation. In game theory,
Selten [1975] introduced the idea of trembles to refine the concept of sub-
game perfect equilibria in games without (many} proper subgames.r (If each
Player's type is private information, the only proper subgame is the whole
game, so subgame perfection has no force). Kreps-Wilson [1982b]l's sequential
equilibrium is similar, but, in the tradition of the economics literature, it

emphasizes the formation of beliefs, which makes the introduction of refine-
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anticipate that his action would affect player 2's also through the posterior
beliefs. Thus, the natural extsnsion of the Nash equilibrium concept to the
signaling game is:

Definition: A perfect Bayesian equilibrium (PBE) of the signaling game is a

set of strategies a?(tj) and az(a;) and posterior beliefs Sttttlaj) such

that:

(P,) as(a,) € arg max 2 p1{t1[aI)H2(a1,a2,t1)
225

*
(P,) at(t,) ¢ azrg m:x Hl[al.az(ai).t1]
2

and aT(-) using Bayes' rule

{B) 51(t1la3) is derived froum the prior p1(-), 2,

{when applicable).

(P1) and (P2) are the perfectness conditions. (P1) states that player 2
reacts optimally to player 1's action given his posterior beliefs about t1'
(PZ).demonstrates the optimal Stackelberg behavior by player 1; note that he
takes into account the effect of a, on player 2's action. (B) correspends to
the application of Bayes!' ﬁule. The quantifier "when applicable" stems from
the fact that, if a1 is not part §f pPlayer 1's optimal strategy for some
type, observing a, is a zero-probability event and Bayes rule does not pin
down posterior beliefs. Any posterior beliefs ;1(-|a1) is then admissible. .
Indeed, the purpose of the refinements of the perfect Bayesian equilibrium
concept is to put some restrictions on these posterior beliefs.

Thus, a PBE is simply a set of strategies and beliefs such that, at any
stage of the game, stategies are optimal given beliefs and beliefs are ob-

tained from equilibrium strategies and observed actions using Bayes' rule.

Two features of the concept developed thus far should be emphasized:
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Pirst, a PBE has a strong fixed point flavpr. Beliefs are derived from
strategies, which are optimal given beliefs. For this reason, there exists
no handy algorithm to help us construct equilibria. Remember that for games
of complete information, Kuhn's algorithm of backward induction gave us the
set of perfect equilibria, Here we must also operate the Bayesian updating
in a forward manner. This makes the search for equilibria rely on a few
tricks (to be discussed latter) rather than on a general method.

Seccnd, too litle structure has been imposed on the type and action
spaces and on the objec¢tive funcﬁions to prove existence of a PBE. Actually,
existence theorems are available only for games with a finite number of types
and acticons (see subsection 4E). Most applications, however, involve either
a econtinuum of types or/and a continuum of actions. Existence is then
obtained by construction, on a case by case basis.

For more general games than the signaling game, the definition of a PBE
is the same: At each information set posterior beliefs are computed using
optimal strategies and the information at the information set. And; strate=-
gies are optimal given beliefs. We will not give the formal definition of
this because it invelvesg nothing more than a {very heavy) extension of the
netation.

Let us now give simple examples of PBE in signaling games. From now on,
we delete the subscript on player 1's type, as there is no possible confu-

sion.

4B, Examgles

Example 1: a two=-period reputation game., The following is a much simplified
version of the Kreps-Wilson-Milgrom-Roberts reputation story. There are two

firms (i = 1,2). In period 1, they are both in the market., Only firm 1 (the
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mincumbent”) takes an action 2,. The action space has two elements: “prey"
and "“accomodate.” Firm 2 (the "entrant"}'s profit is D2 if firm 1 accomo-
dates and Pz if firm 1 preys, such that D2 >0 > Pz. Firm | has one of two

potential types t1: "gane" and "crazy." When sane, firm 1 makes D1 when it

accomodates and P when it preys, where 01 > P,. Thus, a sane firm prefers

i i

to accomodate rather then preying. However, it would prefer to be a monopo-
ly, in which case it would make-M1 per period. When crazy, firm 1 enjoys
predation and thus preys (its utility function is such that it is always
worth preying). Let p1 {respectively, (1~p1}) denote the prior probability

that firm 1 is sane (respectively, crazy).

In period 2, only firm 2 chooses an action az. This action can take two
values: "stay" and "exit." If it stays, it obtains a payoff D2 if firm 1 is
actually sane, and P2 if it is crazy (the idea is that unless it is crazy,
firm 1 will not pursue any predatory strategy in the second period because
there is no point buiid;ng or keeping a reputatién at the end. This assump-
tion can be derived more formally from the description of the second-period

competition). The sane firm gets D if firm 2 stays and M1 > D, if firm 2

1 1

exits. We let & denote the discount factor between the two periods.

We presumed that the <¢razy type aiways preys. The interesting thing to
study is thus the sane type's behavior. From a static point of view, it
would want to accomodate in the first period; however, by preyiné it might
convince firm 2 that it is of the crazy type, and thus induce exit (as
PZ < 0) and increase its second-peried profit.

Let us first start with a taxonomy of potential perfect Bayesian equili-
bria. A separating equilibrium is an equilibrium in which firm 1's two types

choose two different actions in the first period. Here, this means that the
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sane type chooses to accomodate. Note that in a separating equilibrium, firm

two has complete information in the second peried:
;1(t = sane[a1 = zocomodate) = 1 and P1(t = crazy131 = prey) = 1,

A pooling equilibrium is an equilibrium in which firm 1's two types choose
the same action in the first period. Here, this means that the sane type
preys. In a pooling equilibrigm, firm 2 does not update its beliefs when
observing the equilibrium acti&n: SI(t = sane]a1 = prey) = pt. Last, there

can also exist hybrid or semi-separating equilibria. For instance, in the

reputation game, the sane type may randomize between preying and accomodat-

ing, i.e., between pooling and separating. One then has
;1(t - same[ah1 = prey) ¢ (0,p,) and 51(t = gane Ia1 = accomodate} = 1,

Let us fifst look for conditions of existence of-a ssparating equili-
briumi In such an equilibrium; the sane type accomodates and thus re#eals _
its type and obtainé D1(1+5) {firm 2 stays because it expects D2 > Q0 in the
second period). If it decided to prey, it would convince £irm 2 that it is
crazy and would thus obtain P1+6M1. Thus, a necessary condition for the
existence of a separating equilibrium is:

(&) 6(M1~D1) < (D}-P1)-

Conversely, suppose that (§) is satisfied. Consider the following strategies
and beliefs: the sane incumbent accomodates, and the entrant (correctly)
anticipates that the incumbent is sane when observing accomodation; the crazy
incumbent preys and the entrant (correctly) anticipates that the incumbent is
crazy when observing predation. Clearly, these strategies and beliefs form a
separating PBE.

Let us now look at the possibility of a2 pooling equilibrium. Both typés
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prey; thus, as we saw, 51 = P, when predation is observed. Now, the sane
type, who loses (D1-P1) is the first period, must induce exit. Thus, it must

be the case that:
(7) p]D2+(1-p1)Pz < Q.

Conversely, assume that (7) holds, and consider the following strategies and
beliefs: both types prey; the entrant has posterior beliefs ;1 = P, when
predation is observed and 31 = | when accomodation is observed. The sane
type's equilibrium profit is P1+6M1 while it would beconme DI(I+6) under ac-
comedation. Thus, if (6) is vioiated, the proposaed strategies and beliefé
form a pooling PBE (note that if (7) is satisfied with equality, there exists
not one, but a continuum of such egquilibria).

We leave it to the reader to check that if both (6) and (7) are violat-

ed, the unique equilibrium is a hybrid PBE (with the entrant's randomizing

when observing predation).

Remark: The (generic) uniqueness of the PBE in this model is due %o the fact
that the "strong® type (the crazy incumbent) is assumed to prey no matter
what. Thusg, predation is not a zero probability evenﬁ and, furthermore,
accomodation is antomatically interpreted as coming from the sane type if it
belongs to the equilibrium path. The next example illustrates a more compléx
and a more common structure, for which refinements of the PBE are required.
Example 2, which, in many respects, can be regarded as a generalization of

example ! also involves several cases resembling those in example 1.
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Example 2: The Limit-Pricing Game

As menticned earliex, the paper which introduced signaling games into
the industrial organization field is Milgrom-Roberts [1982a)]'s article on )
limit pricing. Let us take the following simple version of their tweo-period
model. Firm 1, the incumbent, has in the first period a monopoly power and
Chooses.a first-period quantity a1 = q1. Firm 2, the entrant, then decides
to enter or to stay out in the second period (thus, as in the previous game,
32 = 0 or 1 or e{0,7] if we allow mixed strategies). 1If it enters, the?e is
duopolistic competition in period two. Otherwise, firm ! remains a mono-
poly.

Firm 1 can have cne of two potential types: its ﬁnit production cost is

"high" (H) with probability p, and "low" (L) with probability (1—p1). Ve

1
will denote by q: the monopoly quantities for the two types of incumbent

{t = H,L). Naturally, qg < qz. ‘We let M?(q1) denote the monopoly profit of
type tTwhen producing qi; in particular, let Mf = Mf{q:) denote type i's
monopoly profit when it maximizes its short-run profit. We assume that
M:(q1) is sﬁrictly concave in -

Firm 1 knows t1 from the start; £irm 2 does not. Let D; denote firm 2's
duopoly profit when firm 1 has type t (it possibly includes entry costs). To
make things interesting, let us assume that firm 2's entry decision is influ-
enced by its beliefs about £irm 1's type: ng >0 > ng. The discount factor
is 6.

Let us look for separating equilibria. PFor this, we first obtain two

necessary conditions: that each type does not want to pick the other type's

equilibrium action {"incentive constraints”). We then complete the descrip-
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tion of equilibrium by choosing beliefs off-the-equilibrium path that deter
the two types from deviating from their equilibrium actions. Thus, our
necassary conditions are also sufficient, in the sense that the corresponding
quantities are equilibrium quantities. In a separating equilibrium, the
high-cost £ype's quantity induces entry. He thus plays qi (if it did not, he
could increase his first-period profit without adverse effect on entry).
Thus, he gets {M?+6 D?}. Let §1 denote the.output of the low-cost type. rhe
high=cost type, by producing this output, deters entry and obtains

{M?(q1)+6M?}. Thus, a necessary condition for equilibrium is:

H 'H H
(8) Mi-Mj(ql) > G{MI-_-D

-

).

The similar condition for the low-cost type is:

L
1

L L :
{2) Mi-M1(q1) < &{M

L
-DI)'
To make things interesting, we will assume that there is no (separating)

aquilibrium in which each type behaves as in a full information context;

i.e., the low-cost type would wish to pool:
d H, L H _HB
{10} M1-M1(qm) < S(Ml-n1).
To characterize the set of q1 satisfying (8) and (2), one must make more

specific assumptions on the demand and cost functions. We will not do it

here, and we refer to the literature for this. We just note that, under

reasonable conditions, (8) and (9) define a region [é1’51}’ where 51 > qi.

Thus, to separate, the low-cost type must produce sufficiently above its
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monopoly quantity so as to make pooling very costly to the high-cost type. A
crucial assumption in the derivation of such an interval is the Spence-
Mirrlees (single-crossing) condition:

S L H
6q1(M1(q1)'M1(q1’) > 0

51 is such that (8) is satisfied with equality; it is called the “"least-cost”
separating quantity, because, of all potential separating equilibria, thé
low=cost type would prefer the one at 51.

Let us now show that these necessary conditions are also sufficient.
Let the high cost type choose q: and the low-cost type choase q1 in [&1,51];
When a quantity that differs from these two quantities is cobserved, beliefs
are arbitrary. The easiest way to obtain equilibrium is to choose beliefs
that induce entry; this way, the two types will be little tempted to deviate
from their presumed egquilibrium strategies; so let us specify that when q1
does not belong to {q:,qt}, ;1 = 1 (firm 2 believes firm 1 has high~cost);
whether these beliefs, which ars consistent with Bayes' rule, are "reason-
able," is discussed later on. Now, let us check that no type wants to devi-
ate, The high-cost type obtains its mﬁnopcly profits in the first period
and, thus, is not willing to deviate to another gquantity that induces entry.
He does not deviate to q1 either from {8). And similarly for the low-cost
type. Thus, we have obtained a continuum of separating equilibria.

Note that this continuum of separating equilibria exists for any P, > 0.
By contrast, for py = 0, the low-cost firm plays its monopoly quantity q?.

We thus observe that a tiny change in the information structure may make a




huge difference. A very small probability that the firm has high cost may
force the low cost firm to increas; its production discontinuously to signal
its type. Games of incomplete information (which include games of complete
information!) are very sensitive to the specification of the information
structure, a topic we will come back to latexr on.

Note also that Pareto dominance selects the least cost separating equi-
1ibrium zmong separating eéuilibria. {The entrant has the same utility in
all separating equilibria (the informative content is the same); similarly,
the high cost type is indifferent. The low cost type prefers lower out-
puts].

Thé existence of pooling equilibria hinges on whether the following

conditién is- satisfied.
(1) p,Da+(1-p,)D; < 0.

Assume that condition (11) is violated (with a strict inequality -- we
will not consider the equality case for simplicity). Then, at the pooling
quantity, firm 2 makes a strictly positive profit if it enters (as 51 = p1).
This means that entryris not deterred, so that the two tyﬁes can not do bet-
ter then choosing their (static) monopoly outputs. As these outputs differ,
ne pooling equilibrium can exist.

Assume, therefore, that (11) is satisfied so that a pooling quantity q1
detars entry. A necesary c¢ondition fﬁr a quantity qQ, to be a pooling equili-
brium quantity is that none of the types want to play his static optimum, If
he were to do so, it would at worse deter entry. Therefore, q1 must satisfy
{3) and the analogous condition for the high-cost type:

H_H H
(12} M =M (q,) < 80 =D

- R

}e
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Again, the set of outpu?s q, that satisfy both (9} and (12) depends on
the cost and demand functions. Let us simply notice that, from (10}, there
exists an intexrval of ocutputs around qi that satisfy these two inequalities.

Now it is easy to see that if q, satisfies (9} and (12},Aq1 can be made
part of a pooling equilibrium. Suppose that whenever firm 1 plays an output
diffeéing from q, {an off-the~equilibrium path action}, firm 2 believes firm
1 has a high cost. Firm 2 then enters, and firm 1 might as well play its
monopoly output. Thus, from (9) and (12}, ncne of the types would want to
deviate from q,- ’

We leave it to the reader to derive hybrid equilibria (the analysis is

very similar to the previous ones). We now investigate the issue of refine-

ments.

4C. Some Refinements

Games of incomplete information in geﬁeral have many PBE. The reason
why this is so is easy to grasp. Consider the basic signaling game and sup-
pose that one wants to rule out some action a1 by player 1 as an equilibrium

action. If, indeed, a, is not played on the equilibrium path, player 2's

1

beliefs following a, are arbitrary. In most games there exists some type t

1
such that if player 2 puts all the weight on t, it takes an action that is

detrimental for all types of player 1| (for instance, t is the high cost type

in the limit pricing game; it induces entry). As playing a1 produces a bad

outcome for player 1, not playing a_ on the equilibrium path may be self-

1

fulfilling. Some authors have noted that, while non credible actions ware
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ruled out by the perfectness part of the PBE, players could still "threaten®
each other through beliefs. This subsection and 4D discuss refinements that
select subsets of PBEs.

Often, however, the very structure of the game tells us that some be=-

liefs, while allowable because cff-the-equilibrium path, "do not make sense.".

Over the years intuitive criteria for selection of beliefs have been devel-
oped for each particulaf game. We mention here only a few of these criteria.
These criteria, which apply to all types of games {including games with a
continuum of types or actions), are sometimes informal in that they have not
been designed as part of a formal solution concept for which existence_has
been proved. But most of them are, for finite games, satisfied by the
Kchlbefg—Mertens {1982] concept of stable equilibria, which are known to
exist (see subsectign 4E below). Last, we should warn the feader that the
presentation below resembles more a list of cookbook receipes than a unified

methédological approach.

i} Elimination of Weakly Dominatgd Strategies

In the tradition of Luce-Raiffa [1957], Fargquharson [196%], Moulin
[1979], Bernheim [1984], and Pierce [1984], it seems natural to require that,
when an action is dominated for some type, but not for some other, the pos-
terior beliefs should not put any weight on the former type. This simple
restriction may already cut on the number of PBE considerably. Consider the
limit pricing game. Quantities above 51 are dominated for the high cost type
(if this type chooses qi, its intertemporal profit is M?+5D?; if it chooses
q this profit deoes not excead M?(q1)+5 M?; from the definition of Ei’ the

[ad

gecond action is weakly dominated for q, > qt). Thus, when q1 belongs to
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[51,51], the entrant should believe that the incumbent's cost is low, and
should not enter. Thus, the low cost incumbent need not produce above 51 to
detar entry. We thus see that we are left with a single separating PBE in-
stead of a contiﬁuum (this reasoning is due to Milgrom-Roberts).

A small caveat hera: playing a gquantity above 31 is dominated for the
high cost type conly once the second period has been folded back. Before . =
that, one can think of (non-~equilibrium) behavior which #ould not make such a
quantity a dominated strategy. For instance, following qi, the entrant might
enter and charge a very low price. So, we are invoking a bit more than the

elimination of dominated strategies. A gquantity above 51 is dominated condi-

tional on subsequent equilibrium behavior -- a requirément in the spirit of
perfectness. More generally, one will want tc iterate the elimination of
weakly dominated strategies.

-Note that, in the limit pricing game, tﬁe elimination of weakly domin-

ated strategies leaves us with the "least cost" separating equilibrium, but

does not help us select among the pocoling equilibria. This is because the

equilibrium pooling quantities are not dominated for the high'cost type.

ii) Elimination of Equilibrijum Weakly Dominated Strategies (Intuitive
Criterion)

The next criterion was proposed by Kreps [1984] to single out a property
satisfied by the more stringent stability requirement of Xohlberg-Maxrtens
[1982] and, thus, to simplify its use in applications of game theory. The
idea is roughly to extend the elimination of weakly dominated strategies to

strategies which are dominated relative to equilibrium pavoffs., So doing

eliminates more strategies and thus refines the equilibrium concept further.
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More precisely, consider the signaling game and a corresponding PBE and

associated payoffs. Let az denote an out of equilibrium action which yields

for a subset J of types payoffs lower than their equilibrium payoffs whatever

beliefs player 2 forms after observing al.
More formally, let H;(t) denote player 1's equilibrium payoff when he

has type t. Let BR(S ,2,) = arg max ZS {t)1.({a_,a.,t) | denote playexr 2's
1' 71 a_cA 1 2 71'72 :
2772

best responsa{s) when he has posterior beliefs ;1(-);_and let BR(I,a1) =

U BR(si,a } dencte the set of player 2's best responses when his

- —~ 1
{p,:p,(1)=1}
poesterior beliefs put all the weight in a subset I of types.

Suppose that there exists a subset J of T such that:
(1) Por alil t in J and for all a2 in BR(T,al), HI(ai,az,t) < H;(t) .

{2) There exists a type t in T-J such that for all a, in BR(T—J,aij,

2
H1(al,a2,t} > H;(t).

Prom condition {1), we know that no type in J would want to deviate from
his equilibrium path, whatever inference player 2 would make following the
deviation. It thus seems logical that player 2 does not put any weight on
types in J. But, one would object, no type ocutside J may gain from the devi-
ation either. This is why condition (2) is imposed. There exists some type
outside J, this type strictly gains from the deviation. The intuitive cri-
terion rejects PBE that satisfy (1) and (2) for some action a, and some sub-
set J.‘

Cne immediately sees that this criterion has most power when there are

only two potential types (see below for an application to the limit pricing

game). The subsets J and T-J of the criterxién is then necessarily composed
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of one type each. Thus, the requirement "for all a_ in BR(T-J,a1)..." in

2
condition 2 is not toorstringent, and the criterion has much cutting power.
With more than two types, however, there may exist many a2 in BR(T-J.al)
and, therefore, the requirement that some type prefers the deviation for all
az in BR(T-J,a1) becomes very strong. The refinement then loses some of its

power,

Cho [1985] and Cho~Kreps [1985] invert the quantifiers in conditien (2),

which becomes:
(2') PFor all action a2 in BR(T-J,ai), there exists t such that
H1(a1,a2,t) > H?(t).

In other words, whatever beliefs are formed by player 2 which do not put
weight on J, there exists some type (in T-J) Qho would like to deviate,
Condition (2') is somewhat more appealing than condition {2}, as if (2') is
satisfied, the players can not think of any continuation equilibrium which
would satisfy (1) and deter any deviation. By contrast, condition (2), ex-
cept in the two;type case, allows continuum equilibria that satisfy (1) and
such that no player in {T-J) wants to deviats from equilibrium behavior,

Cho [1985} and Cho—K&eps [19858])'s "communicational egquilibrium" is a PBE
such thét there does not exist an off-the-equilibrium action a. and a subset

1
of types J that satisfy (1) and (2'). Banks and Sobel [1985] identify a

condition that is equivalent to {2'); they require (among other things) that
player 2's off-the-equilibrium path beliefs place positive Qrobability only
on player i's types who might not lose from a defection. Tgéy go on to de-
fine fhe concept of "divine equilibrium.” A divine equilibium thus satisfies
the Cho-Kreps c¢riterion and, for finite games, exists (because it is

stable).
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We should also mention the work by Farrell [1984] and Groséman and Perry
{1984, 1985] who offer a criterion similar to, but stronger than, the int;i—
tive criterion. In a signaling game their criterion roughly says that, if
there exists a deviation a1 and a set of types J such that if the posterior
beliefs are the same as the prior truncated to (I-J), types in J (respective-
l}, in (T~J)) lose (respectively, gain) relative toc their equilibrium pay-
offs, the initial equilibrium is not acceptable. This requirement is strong-
ar than the Cho-Kreps criterion because, in p;rticular, it does not allow any
leeway in specifying posterior beliefs within the support (T-J). The refine-
ment, however, is so strong that equilibrium may not gxist; so it is re-
stricted to a given {(and yet unknown) class of games.

Let us now apply the intﬁitive criterion to the limit pricing game. As
the intuitive criterién is stronger than iterated elimination of waakly domi~-
nated strategies, we get at most cne separating equilibrium. The reader will
check that this least-cost separating egquilibrium indeed satisfies the intui-
tive criterion. Let us next discuss the pooling equilibria (when they exist,
i.e., when pooling deters entry). Let us show that pooling at q, < q; does
not satisfy the intuitive criterion: Considexr the deviation to qi. This
deviation is dominated for the high-cost type ("J = H"), who makes a lower
fifst-period profit and cénnct increase his second-period profit. Thus,
posterior heliafs after qi should be 51 = 0, and entry is deterred. But,
then the low=-cost type would want to produce q:. This reasoning, however,
does not apply to poeling equilibria with q1 ? qi. Deviations to produce

less are not dominated for any type. Thus, one gets a (smaller) continuum of
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pooling equilibria {(the intuitive criterion here has lesslcﬁtting power than
in the Spence sign;ling game == see Kreps [1984]). |

One can restrict the set of pooling equilibria that satisfy the
intuitive criterion by invoking Pareto docminance: The podling equilibrium at
qi Pareto dominates pooling equilibria with q, > qi {both types of player 1
are closer to their static optimum, and player 2 deces not care). But, we are
still left with a separating and a pooling equilibria, which cannot be ranked

using Pareto deminance (player 2 prefers the separating equilibrium).

{iii} Guessing Which Equilibzriuwm One is in (McLennan [1985])

McLennan's idea is that a move is more likely if it can be explained by
a confusion over which PBE is played. He c#lls'an action "useless" if it is
not part of somé PBE path. Posterior beliefs at some unreached information
set must assign positive probability only to nodes that are part of some FBE,
if any (i.e., to actions which are not useless). One thus obtains a smaller
set of PBE, and cone c¢an operate this selection recursively until one is left

with "justifiable equilibria™ (which, for finite games, are stable).

iv) Getting Rid of Out-of-Egquilibrium Events

As we explained, the indeterminacy of beliefs for out-of-squilibrium
events is often a factor of multiplicity. The previous criteria (as well as
the cone presented in the next section) try to figure ocut what posterior be-
liefs are reasonable in such events. An alternative approach, which was
pioneered by Saloner {1981] and Matthews-Mirman [1983] consists in perturbing
the game slightly so that these zero-probability events do not occur. The

basic idea of this technique is to let the action chosen by an informed play-

78




er be (at least a bit) garbled bgfore it is observed by his opponents. For
instance, one could imagine that a firm's capacity choice is observed with an
error or that a manufacturer's price is garbled at the retail level., By
introducing noise, all (or most) potentially received signals are equilibrium
ones and, thus, refinemeﬁts are useless., Although the e¢lass of games to
which this technique can be applied is limited (the noise must represent some
reascnable economic phenomencn), this way of proceeding seems natural and is
likely to select the "reasonable™ equilibria of the corresponding ungarbled
game in the limit (as Saloner, for instance, shows in the limit pricing

game).

4D. Finite Games: Existence and Refinements in Finite Games

We now informally discgss-befinements that are defined only for finite
games. JSome of these refinements (Selten, Myerson) rest on the idea of tak-
ing the limit of equilibria with "totally mixed strategies." COne basically
- considers robustness of each PBE to slight perturbations of the following
form: each agent in the game tree is forced to play all his potential ac—
tions with some (possibly small) probability, i.e., to "tremble." This way,
Bayes' rule applies everywhere (there is no off-the-equilibrium-path out-
come). To be a bit more formal, assume that an agent is forced to put weight
(probability) o(a) » €(a) > 0 on action a (for each action a). Then £he
agent can maximize his payoff given these cohstraints and pick a best per-
turbed strategy. A refined equilibrium is a PBE which is the limit of equi-
libria with totally mixed strategies, where the limit is taken for a given
¢lass of perturbaticons. The other two refinements we discuss (Kreps-Wilson,
Kohlberg~Mertens) employ somewhat similar ideas. We shall present the re-

finements in an increasing-strength order.
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General existence results for equilibria of dynamic games with incoa-
plete information have been provided only for games with a2 finite number of
actions and types, starting with Selten. We sketch the proof of existence of

a trembling hand equilibrium below. Proofs of existence for alternative

refinements are similar.

i) Seguential Equilibrium (Kreps-Wilsen [1982])

Kreps-Wilson lock at PEE which satisfy a consistency requirement. The
set of strategies and beliefs at each information set of the game must{ be the
limit of a sequence of sets of strategies and beliefs for which strategies
are always totally mixed (and beliefs are.thps pinned down by Bayes' rule.)
The strategies and beliefs are not a priori required to form a PEE of a per-
turbed game. So, the check is purely mechanical; given a PEE, it suffices to
show that it is or is not the limit of a sequence of totally mixed strategies
and associated beliefs. |

Let us now discuss the consistency requirement. This requirement is
actually fairly weak, but is quite natural. In the simple signaling game
considered above, it has no bite, and & PBE is also sequential, as is easily
seen (by choosing adequately the trembles in player 1's strategy, one can
generate any beliefs one wants). Sequential equilibrium has more cutting
power in more complex games because it imposes consistent beliefs between the
players (or agents) off the equilibrium path. For instance, if there are two
receivers in the signaling game (players 2 and 3), these two players should
form the same beliefé as to player 1's iype when observing the latier's ac-
tion. This property comes from the fact that at each stage of the converging
sequence, players 2 and 3's Bayesian updating uses the same trembles by play-

er 1 and, thus, reach the same conclusion. Similarly, sequentiazl equilibrium

-
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requires consistency of a player's beliefs over time. Kreps and Wilson have
shown that for "almost all” games, the sequential equilibrium concept coin-
¢ides with the perfect equilibrium concept (see below). For the other (mon
generic) games, it allows more equilibria. Seltem requires the strategies in
the perturbed game to be optimal given the perturbed strategies. But, unless
the payoff structure exhibits ties, this condition has no more bife than the

¢onaiatency requirement of Kreps-Wilson.

i1) Trembling-hand Perfect Equilibrium (Selten [1975])

In developing his notion of the "trembling hand” perfection Selten
begins by wc-:rking with the normal form. An equilibrium is “trembling-hand
perfect in the normal form” if it is the limit of equilibria of "c-perturbed”
games in which all strategies have at least an e probability of being played.
That is, in an e-pertfurhbed game, players are forced to play action a with
probability of at least e{a), where the e(a) are arbitrary as long as they
all exceed £. The e(a) are called "trembles.” The idea of introducing
trembles is to give.each node in the tree positive probability, so that the
best responses at each node are well-defined. The interpretation of the
trembles is that in the original game if a player unexpectedly observes a
deviation from the equilibrium path he attributes this to.an inadvertent
"mistake” by one of his opponents.

To see how the trembles help refine the equilibrium set, let us once
again consider the game in Figure 5 which Selten used to motivate subgame
perfectness.

The Nash equilibrium {U,R} is not the limit of equilibria with {trembles:
if player 1 plays D with some probability, player 2 puts as much weight as.

possibhle on L.
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However, Selten notes that his refinement is not totally satisfactory.
Consider Figure 11, which is a slight variation on the previous game. Player
1 moves at "dates" 1 and 3.

The only equilibrium is {Ll’Lz‘Li}' But the subgame-imperfect Nash
equilibrium {Rl,RZ,Ri} is the limit of equilibria with trembles. To see why,
let player 1 play (Ll’Li) with probability 2 and (Ll,ﬂi) with probability ¢.
Then player 2 should put as mﬁch weight as possible on Rg, because player 1l's
probability of "playing" Ri conditional on having "played” Ll is
e/(c + €2) = 1 for e small.

When perturbing the normal form, we are allowing for a type of correla—
tion between a player's trembles at different information se;#. In the above
example, if a player "trembles" onto Ll, he is very likely £o tremble again.
This correlation goes against the idea that players expect their opponents to
play optimally at any point in the game tree, including those not on the
equilibriuvm path.

To avoid this correlation, Selten introduces a second‘refinement, based
on the "agent's normal form." The idea is to treat the two choices of player
1l in Figure 11 as made by two differént players, each of whom trembles inde-
pendently of the other. More precisely, the agent normal form for a given
game is constructed by distinguishing players not only by their names (i)} and
their types (ti), but also by their location in the game tree. So, for in-
stanee, player 1 with type tl pPlaying at date 1 is not the same agent as
player 1 with type tl playing at date 3; or player 1 with type t1 playing at
date 3 should be considered as a different agent depending on his (her) in-
formation at that date. In the agent's normal form, each information set

represents a different agent/player. However, different agents of a same
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player i with type ti are endowed with the same objective function. A
rrrembling hand perfect” equilibrium is a limit of equilibria of g-perturbed
versions of the agent's normal form.

It is clear that a trembling-hand perfect equilibrium is sequential: We
can construct consistent beliefs at each information set as the limit of the
beliefs computed by Bayes rule in the perturbed games, and the equilibrium
strategies are sequential given these beiiefs. One might expect that the
{eonstrained) optimality requirement along the converging sequence adds sowme
cutting power. However, the arbitrariness of the c{a) makes perfectness a
weak refinement, as shown by Kreps-Wilson's result on that the sats of the
sequential and perfact equil#bxia coincide for generic extensive-form pay-
offs.

Let us now sketch the proof of existence of a trembling-~hand perfect
equilibrium. Remember that the proof of existence of a Bayesian equilibrium

consists of considering {E[Ti[} players (i.e., in introducing one player per
i

type), and applying standard existence theorems for Nash equilibrium. Moxe
generally, the proof for trembling-hand perfect_equilibrium uses existence of
a Nash equilibrium on the agents' normal form. Consgider the perturbed game
in which the agents are forced to play trembles (i.e., to put weight at least
equal to £{a) on action a). The strategy spaces are compact convex subsets
of a Euclidean space. Payoff functions a?e continuous in all variables and
quasiconcave (actually, linear) in own strategy. So there exists a Nash
equilibrium of the agents’' normal form of the perturbed game. Now consider a
sequence of equilibrium strategies when ¢ tends to zero. Because the strate-

gy spaces are compact, there is a converging subsequence. The limit of such
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a subsequence is called a trembling-hand perfect equilibrium.®

We should also note that Selten works with the normal form or the
agents' normal form; so do the next two refinements. Thus, beliefs are left
implicit. Kréps and Wilson's paper is the first pure game theory article to
put emphasis on the extensive form and on beliefs (although there is a cur~
rent debate about whether defined on the normal or extensive form, the re-
finements that are currentl& easily applicable to industrial organizational

models put constraints on beliefs -— see the previous section).

iii) Proper Equilibrium (Myerson [1978])

Myerson considers perturbgd games in which, say, a player'’s second best
action(s) get at most ¢ times the weight of the first best action(s), the
third best action(s) get at most e times the weight of the second best ac—
tion(s), ete.  The idea is that a player is "more likely to tremble™ and put
weight on an action which is not too detrimental to him; the probability of
deviations from equilibrium behavior is inversely related to their costs. As
the set of allowed trembles is smaller, a proper'eéuilibrum is also perfect.
[With such an ordering of trembles, there is no need to work on the agent's

normal form. The normal form suffices.]

iv) Stable Equilibrium (Kohlberg-Mertens [1982])

Ideally, one would wish a PBE to be the limit of some perturbed equili-
brium for all perturbations when the size of these perturbations goes to

zero. J3uch an equilibrium, if it exists, is labelled "truly perfect." Un-

SNote that because payoffs are continuous, the limit is automatically a
Nash equilibrium. But the converse, of course, is not true {for in-
stance, for games of perfect information, a trembling~hand equilibrium
is subgame perfect, as is easily seen}.
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fortunately, true perfection may De out of this world (impossible to
achieve}. Kohlberg and Mertens, to obtain existence, settled for "stabili-
ty." Stability is a complex criterion, which encompasszes the intuitive ori-
terion mentioned in the previous section and other features as well. Let us
give an example of the description of a stable equilibrium in the signaling

game (this introduction follows Kreps [1985}). Consider two totally mixed

strategies 31 and Eé for players 1 and 2, and two strictly positive numbers

€, and ;. A{ei,ai}izl perturbation of the original game is such that, when
player i chooses strategy Oy the strategy which is implemented for him is 9y
with probability (1—51) and Ei with probability € Let (01,02) be a PBE of
the perturbed game. A subset E of PSE of the origina; game is stable if, for
any n > O, there exists an equilibria of the perturbed game that lies no more
than ¢ from the set E. A stable component is then defined as a minihal con=-
nected stable set of equilibria. Kohlberg and Mertens have shown that every
game has at least one stable component, and that, for almost every signaling

game, all equilibria within a given connected component give rise to the same

probability distribution on endpoiﬁts.

48. Perturbed Games and Robust Equilibria

Qur earlier discussion of the Saloner/Matthews-ﬁirman contribution
emphasized the robustness of the solution to the introduction of noise. More
generally, robustness to "reasonable" structural changes in the game seem
desirable. This leads us to the discussion of the reputation~effects model
of Kreps=Wilson-Milgrom~Roberts [1982], which is one of the most important

applications of the theory of dynamid games of incomplete information.

85




This work actually started with a robustness issue: In the finite
horizen repeated prisoners’' dilemma the only equilibrim is "fink, fink" af,
each period. As we observed in Section 2, this conclusion seems extreme for
long, finite games; in response, the four authors decided to perturb the
prisoner's dilemma game slightly by introducing a small probability that each
party is willing to play the suboptimal strategy tit-for-tat. Similarly, in
the context of example 1; one could introduce a probability that firm 1
anjoys preying (is crazy). Then, if the horizon is sufficiently long and the
discount rate sufficiently small, it may be worthwhile for a sane ﬁype {one
whose payoff is as originally specified) to pretend at the start that it is a
crazy type. By cooperating in the repeated priscners' dilemma game oxr prey-
ing in the predation game, the sane type invests in reputation that will
induce the other player to take actions that are favorable to the former
{cocperate; stay out). Thus, in games that are repeated for a long time, a
small difference in information can make a big.difference in terms of out-
come.

Fudenberg-Maskin [1986] develop the reputation-effects model to its
logical conclusion. They show that, for any g, ;hen the horizon goes to
infinity, all individually rationalrpayoffs of a finitely repeated, full-
information game can arise as PBE of a slightly perturbed, incomplete infor-
mation game, in which the objective function of each player is the cne of the
original game with pzrobability (1-¢) and can be any "crazy" objective fuhc-
tion with probabiity €. In the Friedman tradition, the result that one can
obtain any payoff Pareto superior to a Nash payoff is easy to obtain: Con=-
sider a Nash equilibrium of the original game ("fink, £ink" in the repeated

prisoners’' dilemma) and an allocation that dominates this Nash equilibrium,

and the corresponding prescribed strategies ("cooperate, cooperate"). Sup-
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pose tﬁat with probability ¢, each player has the following objective funce
tion: "I like to play the strategy corresponding to the superior allocation
as long as the others have followed their corresponding strategies; if some-
body has deviated in the past, [y taste commands me to play my Nash equili-
brium strategy forever." Now suppose that the horizon is long. Then by
cooperating, each player loses scme payoff at most over one period if the
other player deviates. When When deviating, he automatically loses the gain
of being able to cooperata with the crazy type until the end. So¢, as long as
there remains enough time until the end of ﬁhe horizoen, ("enough" depends on
£) deviating is not optimal. The proof for points that do not dominate a
Nash equilibrium is harder.

The reputation effects papers show that adding a small ¢ of incomplete
information to a long but finitely repeated game could make virtually any-
thing into a PBE. However, for any fixed horizon, a sufficiently small ¢ of
the form they considered has no effect. If we admit the possibility that
players have private information about their opponents' payoffs, then even in
a fixed extensive form, the sequential rationality requirements of PBE com-
plately lose their force. More pracisely, any Nash equilibriuﬁ of an exten-
sive form ig a PBE {indeed, a stable PBE} of ﬁ perturbed game in which pay-
offs differ from the original ones with vanishiﬁglf small probability.

Consider the game in Figure 12. Player 1 has two possible types t‘ and

t2' with Preb(t = tI) = 1-g, When t = ¢ the game is just as in the game of

1’
Figure 5, where the backwards induction equilibrium was (D,C). When t = t2,

though, pléyer 2 prefers R to L. The strategies (UI’D R) are a PBE for this

2}
game; if player 2 sees D, he infers that t = tz. Thus, a "small" perturba-

tion of the game causes a large change in play -- player 1 chooses U with
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probability (1-¢}). Moreover, this eqﬁilibrium satisfies all the currently
known refinements. |

Most of these refinements proceed by asking what sort of beliefs are
"reasonable" -- what should players expect following unexpected events? If
they have very small doubts about the structure of the game, the unexpected
may signal, as here, that things are indeed other than had previously seemed
likely. This point is developed in Fudenberg-Kreps-Levine [1986].

fhus, small changes inuinformati§n structure can always extend the set
of predictions to include ;ll of the Nash equilibria, ana in long repeated
games the "robustness" problem i3 even more severe. What then is the predic-
tive content of game theory? In real world situations, it may be the case
that only scme types are unlikely (most types of "craziness" are not plaan=-
sible). The players may then have a fairly good idea of what game is played.
However, the economist, who is an outsider, may have a hard time knowing
which information structure is the relevant one. Thus, cne may think of a
sitnation in which, at the same time, the players are following the Kreps-
Wilson-Milgrom-Roberts strategiesg, and the reputation literature is of little
help to the econcmist. If this is true, the economist should collect infor=-
mation about the way real world players play their games and which informa-
tion structure they believe they face, and then try to explain why particular
sorts of "craziness" prevail.

The ahbove implies a fairly pessimistic view of the likelihood that game
theory can hope to provide a purely formal way of choosing between PBEs. It
would be rash for us to assert this position too strongly, for research on
equiiibrium }efinements is proceeding quite rapidly, and our discussion here
may well be ocutdated by the time it appears in print. However, at present we

would not want to base important predictions solely on formal grounds., In
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evaluating antitrust policy, for example, practicioners will need to combine
B

a knowledgé of the technical niceties with a sound understanding of the work-

ings of actual markets.

Concluding Remark

Our already incomplete discussion of equilibrium concepts for dynamic

games of imcomplete information is likely to be out of date very shortly, as

the pace of activity in this field is very intense, and current refinements
have not yet been tested for a wide class of models. Our purpose was only to
provide an introduction, a survey and some cookbook receipes for readers who

currently want to apply these techniques to specific games.
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