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Introduction

At its core, the study of psychology is concerned with the discovery of plausible
explanations for human behavior. For instance, one may observe that “practice makes
perfect”: as people become more familiar with a task, they tend to execute it more quickly
and with fewer errors. More interesting is the observation that practice tends to improve
performance such that most of the benefit is accrued early on, a pattern of diminishing
returns that is well described by a power law (Logan, 1988; but see Heathcote, Brown,
& Mewhort, 2000). This pattern occurs across so many different tasks (e.g., cigar rolling,
maze solving, fact retrieval, and a variety of standard psychological tasks) that it is known
as the “power law of practice”. Consider, for instance, the lexical decision task, a task
in which participants have to decide quickly whether a letter string is an existing word
(e.g., sunscreen) or not (e.g., tolphin). When repeatedly presented with the same stimuli,
participants show a power law decrease in their mean response latencies; in fact, they show a
power law decrease in the entire response time distribution, that is, both the fast responses
and the slow responses speed up with practice according to a power law (Logan, 1992).

The observation that practice makes perfect is trivial, but the finding that practice-
induced improvement follows a general law is not. Nevertheless, the power law of practice
only provides a descriptive summary of the data and does not explain the reasons why
practice should result in a power law improvement in performance. In order to go beyond
direct observation and statistical summary, it is necessary to bridge the divide between
observed performance on the one hand and the pertinent psychological processes on the
other. Such bridges are built from a coherent set of assumptions about the underlying
cognitive processes—a theory. Ideally, substantive psychological theories are formalized as
quantitative models (Busemeyer & Diederich, 2010; Lewandowsky & Farrell, 2010). For
example, the power law of practice has been explained by instance theory (Logan, 1992,
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2002). Instance theory stipulates that earlier experiences are stored in memory as individual
traces or instances; upon presentation of a stimulus, these instances race to be retrieved,
and the winner of the race initiates a response. Mathematical analysis shows that, as
instances are added to memory, the finishing time of the winning instance decreases as a
power function. Hence, instance theory provides a simple and general explanation of the
power law of practice.

For all its elegance and generality, instance theory has not been the last word on
the power law of practice. The main reason is that single phenomena often afford differ-
ent competing explanations. For example, the effects of practice can also be accounted
for by Rickard’s component power laws model (Rickard, 1997), Anderson’s ACT-R model
(Anderson et al., 2004), Cohen et al.’s PDP model (Cohen, Dunbar, & McClelland, 1990),
Ratcliff’s diffusion model (Dutilh, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2009; Rat-
cliff, 1978), or Brown and Heathcote’s linear ballistic accumulator model (Brown & Heath-
cote, 2005, 2008; Heathcote & Hayes, 2012). When various models provide competing
accounts of the same data set, it can be difficult to choose between them. The process of
choosing between models is called model comparison, model selection, or hypothesis testing,
and it is the focus of this chapter.

A careful model comparison procedure includes both qualitative and quantitative
elements. Important qualitative elements include the plausibility, parsimony, and coherence
of the underlying assumptions, the consistency with known behavioral phenomena, the
ability to explain rather than describe data, and the extent to which model predictions can
be falsified through experiments. Here we ignore these important aspects and focus solely
on the quantitative elements. The single most important quantitative element of model
comparison relates to the ubiquitous tradeoff between parsimony and goodness-of-fit (Pitt
& Myung, 2002). The motivating insight is that the appeal of an excellent fit to the data
(i.e., high descriptive adequacy) needs to be tempered to the extent that the fit was achieved
with a highly complex and powerful model (i.e., low parsimony).

The topic of quantitative model comparison is as important as it is challenging; for-
tunately, the topic has received—and continues to receive—considerable attention in the
field of statistics, and the results of those efforts have been made accessible to psychologists
through a series of recent special issues, books, and articles (e.g., Grünwald, 2007; Myung,
Forster, & Browne, 2000; Pitt & Myung, 2002; Wagenmakers & Waldorp, 2006). Here we
discuss several procedures for model comparison, with an emphasis on minimum description
length and the Bayes factor. Both procedures entail principled and general solutions to the
tradeoff between parsimony and goodness-of-fit.

The outline of this chapter is as follows. The first section describes the principle of
parsimony and the unavoidable tradeoff with goodness-of-fit. The second section summa-
rizes the research of Wagenaar and Boer (1987) who carried out an experiment to compare
three competing multinomial processing tree models (MPTs; Batchelder & Riefer, 1980);
this model comparison exercise is used as a running example throughout the chapter. The
third section outlines different methods for model comparison and applies them to Wagenaar
and Boer’s MPT models. We focus on two popular information criteria, the AIC and the
BIC, on the Fisher information approximation of the minimum description length principle,
and on Bayes factors as obtained from importance sampling. The fourth section contains
conclusions and take-home messages.
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The Principle of Parsimony

Throughout history, prominent philosophers and scientists have stressed the im-
portance of parsimony. For instance, in the Almagest—a famous 2nd-century book on
astronomy—Ptolemy writes: “We consider it a good principle to explain the phenomena by
the simplest hypotheses that can be established, provided this does not contradict the data
in an important way.” Ptolemy’s principle of parsimony is widely known as Occam’s razor
(see Box 14.1); the principle is intuitive as it puts a premium on elegance. In addition,
most people feel naturally attracted to models and explanations that are easy to under-
stand and communicate. Moreover, the principle also gives ground to reject propositions
that are without empirical support, including extrasensory perception, alien abductions, or
mysticism. In an apocryphal interaction, Napoleon Bonaparte asked Pierre-Simon Laplace
why the latter’s book on the universe did not mention its creator, only to receive the curt
reply “I had no need of that hypothesis”.

However, the principle of parsimony finds its main motivation in the benefits that
it bestows those who use models for prediction. To see this, note that empirical data
are assumed to be composed of a structural, replicable part and an idiosyncratic, non-
replicable part. The former is known as the signal, and the latter is known as the noise
(Silver, 2012). Models that capture all of the signal and none of the noise provide the
best possible predictions to unseen data from the same source. Overly simplistic models,
however, fail to capture part of the signal; these models underfit the data and provide poor
predictions. Overly complex models, on the other hand, mistake some of the noise for actual
signal; these models overfit the data and again provide poor predictions. Thus, parsimony is
essential because it helps discriminate the signal from the noise, allowing better prediction
and generalization to new data.

Goodness-of-fit

“From the earliest days of statistics, statisticians have begun their analysis by propos-
ing a distribution for their observations and then, perhaps with somewhat less enthusiasm,
have checked on whether this distribution is true. Thus over the years a vast number of
test procedures have appeared, and the study of these procedures has come to be known as
goodness-of-fit” (D’Agostino & Stephens, 1986, p. v).

The goodness-of-fit of a model is a quantity that expresses how well the model is able
to account for a given set of observations. It addresses the following question: Under the
assumption that a certain model is a true characterization of the population from which we
have obtained a sample, and given the best fitting parameter estimates for that model, how
well does our sample of data agree with that model?

Various ways of quantifying goodness-of-fit exist. One common expression involves
a Euclidean distance metric between the data and the model’s best prediction (the least
squared error or LSE metric is the most well-known of these). Another measure involves the
likelihood function, which expresses the likelihood of observing the data under the model,
and is maximized by the best fitting parameter estimates (Myung, 2000).
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Occam’s razor (sometimes Ockham’s) is named after the English philosopher and Franciscan
friar Father William of Occam (c.1288-c.1348), who wrote “Numquam ponenda est pluralitas
sine necessitate” (plurality must never be posited without necessity), and “Frustra fit per
plura quod potest fieri per pauciora” (it is futile to do with more what can be done with
less). Occam’s metaphorical razor symbolizes the principle of parsimony: by cutting away
needless complexity, the razor leaves only theories, models, and hypotheses that are as
simple as possible without being false. Throughout the centuries, many other scholars have
espoused the principle of parsimony; the list predating Occam includes Aristotle, Ptolemy,
and Thomas Aquinas (“it is superfluous to suppose that what can be accounted for by a
few principles has been produced by many”), and the list following Occam includes Isaac
Newton (“We are to admit no more causes of natural things than such as are both true and
sufficient to explain their appearances. Therefore, to the same natural effects we must, so
far as possible, assign the same causes.”), Bertrand Russell, Albert Einstein (“Everything
should be made as simple as possible, but no simpler”), and many others.
In the field of statistical reasoning and inference, Occam’s razor forms the foundation for the
principle of minimum description length (Grünwald, 2000, 2007). In addition, Occam’s razor
is automatically accommodated through Bayes factor model comparisons (e.g., Jeffreys,
1961; Jefferys & Berger, 1992; MacKay, 2003). Both minimum description length and
Bayes factors feature prominently in this chapter as principled methods to quantify the
tradeoff between parsimony and goodness-of-fit. Note that parsimony plays a role even in
classical null-hypothesis significance testing, where the simpler null hypothesis is retained
unless the data provide sufficient grounds for its rejection.

Box 14.1: Occam’s razor.

Parsimony

Goodness-of-fit must be balanced against model complexity in order to avoid
overfitting—that is, to avoid building models that well explain the data at hand, but fail in
out-of-sample predictions. The principle of parsimony forces researchers to abandon com-
plex models that are tweaked to the observed data in favor of simpler models that can
generalize to new data sets.

A common example is that of polynomial regression. Figure 1 gives a typical example.
The observed data are the circles in both the left and right panels. Crosses indicate unob-
served, out-of-sample data points to which the model should generalize. In the left panel,
a quadratic function is fit to the 8 observed data points, whereas the right panel shows a
7th order polynomial function fitted to the same data. Since a polynomial of degree 7 can
be made to contain any 8 points in the plane, the observed data are perfectly captured by
the best fitting polynomial. However, it is clear that this function generalizes poorly to the
unobserved samples, and it shows undesirable behavior for larger values of x.

In sum, an adequate model comparison method needs to discount goodness-of-fit with
model complexity. But how exactly can this be accomplished? As we will describe shortly,
several model comparison methods are currently in vogue; all resulting from principled
ideas on how to obtain measures of generalizability1, meaning that these methods attempt

1This terminology is due to Pitt and Myung (2002), who point out that measures often referred to as
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Figure 1 . A polynomial regression of degree d is characterized by ŷ =
∑d

i=0 aix
i. This model

has d + 1 free parameters ai; hence, in the right panel, a polynomial of degree 7 perfectly
accounts for the 8 visible data points. This 7th order polynomial, however, accounts poorly
for the out-of-sample data points.

to quantify the extent to which a model predicts unseen data from the same source (cf. Fig-
ure 1). Before outlining the details of various model comparison methods we now introduce
a data set that serves as a working example throughout the remainder of the chapter.

Example: Competing Models of Interference in Memory

For an example model comparison scenario, we revisit a study by Wagenaar and Boer
(1987) on the effect of misleading information on the recollection of an earlier event. The
effect of misleading postevent information was first studied systematically by Loftus, Miller,
and Burns (1978); for a review of relevant literature see Wagenaar and Boer (1987) and
references therein.

Wagenaar and Boer (1987) proposed three competing theoretical accounts of the
effect of misleading postevent information. To evaluate the three accounts, Wagenaar and
Boer set up an experiment and introduced three quantitative models that translate each of
the theoretical accounts into a set of parametric assumptions that together give rise to a
probability density over the data, given the parameters.

Abstract Accounts

Wagenaar and Boer (1987) outlined three competing theoretical accounts of the effect
of misleading postevent information on memory. Loftus’ destructive updating model (DUM)
posits that the conflicting information replaces and destroys the original memory. A coexis-
tence model (CXM) asserts that an inhibition mechanism suppresses the original memory,

“model fit indices” are in fact more than mere measures of fit to the data—they combine fit to the data with
parsimony and hence measure generalizability. We adopt their more accurate terminology here.
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Figure 2 . A pair of pictures from the third phase (i.e., the recognition test) of (Wagenaar &
Boer, 1987, reprinted with permission), containing the critical episode at the intersection.

which nonetheless remains viable though temporarily inaccessible. Finally, a no-conflict
model (NCM) simply states that misleading postevent information is ignored, except when
the original information was not encoded or already forgotten.

Experimental Design

The experiment by Wagenaar and Boer (1987) proceeded as follows. In Phase I, a total
of 562 participants were shown a sequence of events in the form of a pictorial story involving
a pedestrian-car collision. One picture in the story would show a car at an intersection, and
a traffic light that was either red, yellow, or green. In Phase II, participants were asked a
set of test questions with (potentially) conflicting information: Participants might be asked
whether they remembered a pedestrian crossing the road when the car approached the
“traffic light” (in the consistent group), the “stop sign” (in the inconsistent group) or the
“intersection” (the neutral group). Then, in Phase III, participants were given a recognition
test about elements of the story using picture pairs. Each pair would contain one picture
from Phase I and one slightly altered version of the original picture. Participants were
then asked to identify which of the pair had featured in the original story. A picture pair is
shown in Figure 2, where the intersection is depicted with either a traffic light or a stop sign.
Finally, in Phase IV, participants were informed that the correct choice in Phase III was the
picture with the traffic light, and were then asked to recall the color of the traffic light. By
design, this experiment should yield different response patterns depending on whether the
conflicting postevent information destroys the original information (destructive updating
model), only suppresses it temporarily (coexistence model), or does not affect the original
information unless it is unavailable (no-conflict model).

Concrete Models

Wagenaar and Boer (1987) developed a series of MPT models (see Box 14.2) to
quantify the predictions of the three competing theoretical accounts. Figure 3 depicts the
no-conflict MPT model in the inconsistent condition. The figure is essentially a decision
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Table 1
Parameter point estimates from Wagenaar and Boer (1987).

p c q d s

No-conflict model (NCM) 0.50 0.57 0.50 n/a n/a

Destructive updating model (DUM) 0.50 0.57 0.50 0.00 n/a

Coexistence model (CXM) 0.55 0.55 0.43 n/a 0.20

tree that is navigated from left to right. In Phase I of the collision narrative, the traffic light
is encoded with probability p, and if so, the color is encoded with probability c. In Phase
II, the stop sign is encoded with probability q. In Phase III, the answer may be known, or
may be guessed correctly with probability 1/2, and in Phase IV the answer may be known
or may be guessed correctly with probability 1/3. The probability of each path is given
by the product of all the encountered probabilities, and the total probability of a response
pattern is the summed probability of all branches that lead to it. For example, the total
probability of getting both questions wrong is (1−p)×q ×2/3+(1−p)×(1−q)×1/2×2/3.
We would then, under the no-conflict model, expect that proportion of participants to fall
in the response pattern with two errors.

The destructive updating model (Figure 2 in Wagenaar & Boer, 1987) extends the
three-parameter no-conflict model by adding a fourth parameter d: the probability of de-
stroying the traffic light information, which may occur whenever the stop sign was encoded.
The coexistence model (Figure 3 in Wagenaar & Boer, 1987), on the other hand, posits an
extra probability s that the traffic light is suppressed (but not destroyed) when the stop
sign is encoded. A critical difference between the latter two is that a destruction step will
lead to chance accuracy in Phase IV if every piece of information was encoded, whereas a
suppression step will not affect the underlying memory and lead to accurate responding.
Note here that if s = 0, the coexistence model reduces to the no-conflict model, as does
the destructive updating model with d = 0. The models only make different predictions in
the inconsistent condition, so that for the consistent and neutral conditions the trees are
identical.

Previous Conclusions

After fitting the three competing MPT models, Wagenaar and Boer (1987) obtained
the parameter point estimates in Table 1. Using a χ2 model fit index, they concluded that
“a distinction among the three model families appeared to be impossible in actual practice”
(p. 304), after noting that the no-conflict model provides “an almost perfect fit” to the
data. They propose, then, “to accept the most parsimonious model, which is the no-conflict
model.” In the remainder of this chapter, we re-examine this conclusion using various model
comparison methods.

Three Methods for Model Comparison

Many model comparison methods have been developed, all of them attempts to ad-
dress the ubiquitous tradeoff between parsimony and goodness-of-fit. Here we focus on
three main classes of interrelated methods: (1) AIC and BIC, the most popular infor-
mation criteria; (2) minimum description length; (3) Bayes factors. Below we provide a
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Figure 3 . Multinomial processing tree representation of the inconsistent condition according
to the no-conflict model (adapted from Wagenaar & Boer, 1987).

brief description of each method and then apply it to the model comparison problem that
confronted Wagenaar and Boer (1987).

Information Criteria

Information criteria are among the most popular methods for model comparison.
Their popularity is explained by the simple and transparent manner in which they quan-
tify the tradeoff between parsimony and goodness-of-fit. Consider for instance the oldest
information criterion, AIC (“an information criterion”), proposed by Akaike (1973, 1974a):

AIC = −2 ln p

(

y | θ̂
)

+ 2k. (1)

The first term ln p

(

y | θ̂
)

is the log maximum likelihood that quantifies goodness-of-fit,

where y is the data set and θ̂ the maximum-likelihood parameter estimate; the second
term 2k is a penalty for model complexity, measured by the number of adjustable model
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Multinomial processing tree models (Batchelder & Riefer, 1980; Chechile, 1973; Chechile
& Meyer, 1976; Riefer & Batchelder, 1988) are psychological process models for categorical
data. MPT models are used in two ways: as a psychometric tool to measure unobserved
cognitive processes, and as a convenient formalization of competing psychological theories.
Over time, MPTs have been applied to a wide range of psychological tasks and processes.
For instance, MPT models are available for recognition, recall, source monitoring, percep-
tion, priming, reasoning, consensus analysis, the process dissociation procedure, implicit
attitude measurement, and many other phenomena. For more information about MPTs,
we recommend the review articles by Batchelder and Riefer (1999), Batchelder and Riefer
(2007, pp. 24–32), and Erdfelder et al. (2009). The latter review article also discusses dif-
ferent software packages that can be used to fit MPT models. Necessarily missing from that
list is the recently developed R package MPTinR (Singmann & Kellen, in press) with which
we have good experiences. As will become apparent throughout this chapter, however, our
preferred method for fitting MPT models is Bayesian (Chechile & Meyer, 1976; Klauer,
2010; Lee & Wagenmakers, in press; Matzke, Dolan, Batchelder, & Wagenmakers, in press;
Rouder, Lu, Morey, Sun, & Speckman, 2008; Smith & Batchelder, 2010).

Box 14.2: Popularity of multinomial processing tree models.

parameters k. The AIC estimates the expected information loss incurred when a probability
distribution f (associated with the true data-generating process) is approximated by a
probability distribution g (associated with the model under evaluation). Hence, the model
with the lowest AIC is the model with the smallest expected information loss between reality
f and model g, where the discrepancy is quantified by the Kullback-Leibler divergence
I(f, g), a distance metric between two probability distributions (for full details, see Burnham
& Anderson, 2002). The AIC is unfortunately not consistent: as the number of observations
grows infinitely large, AIC is not guaranteed to choose the true data generating model. In
fact, there is cause to believe that the AIC tends to select complex models that overfit the
data (O’Hagan & Forster, 2004; for a discussion see Vrieze, 2012).

Another information criterion, the BIC (“Bayesian information criterion”) was pro-
posed by Schwarz (1978):

BIC = −2 ln p

(

y | θ̂
)

+ k ln n. (2)

Here, the penalty term is k ln n, where n is the number of observations.2 Hence, the BIC
penalty for complexity increases with sample size, outweighing that of AIC as soon as
n ≥ 8. The BIC was derived as an approximation of a Bayesian hypothesis test using
default parameter priors (the “unit information prior”; see below for more information on
Bayesian hypothesis testing, and see Raftery, 1995, for more information on the BIC). The
BIC is consistent: as the number of observations grows infinitely large, BIC is guaranteed
to choose the true data generating model. Nevertheless, there is evidence that in practical
applications the BIC tends to select simple models that underfit the data (Burnham &
Anderson, 2002).

Now consider a set of candidate models, Mi, i = 1, ..., m, each with a specific IC (AIC

2Note that for hierarchical models, the definition of sample size n is more complicated (Pauler, 1998;
Raftery, 1995).
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 k = 0.4  β = 1.0
k = 0.7  β = 0.5

c = 0.1  b = 2.0
c = 0.5  b = 0.5

Figure 4 . Two representative instances of Fechner’s law (left) and Steven’s law (right).
While Fechner’s law is restricted to nonlinear functions that level off as stimulus intensity
increases, Steven’s law can additionally take shapes with accelerating slopes.

or BIC) value. The model with the smallest IC value should be preferred, but the extent
of this preference is not immediately apparent. For better interpretation we can calculate
IC model weights (Akaike, 1974b; Burnham & Anderson, 2002; Wagenmakers & Farrell,
2004); First, we compute, for each model i, the difference in IC with respect to the IC of
the best candidate model:

∆i = ICi − min IC. (3)

This step is taken to increase numerical stability, but it also serves to emphasize the point
that only differences in IC values are relevant. Next we obtain the model weights by
transforming back to the likelihood scale and normalizing:

wi =
exp (−∆i/2)

∑M
m=1 exp (−∆m/2)

. (4)

The resulting AIC and BIC weights are called Akaike weights and Schwarz weights, re-
spectively. These weights not only convey the relative preference among a set of candidate
models (i.e., they express a degree to which we should prefer one model from the set as
superior), but also provide a method to combine predictions across multiple models using
model averaging (Hoeting, Madigan, Raftery, & Volinsky, 1999).

Both AIC and BIC rely on an assessment of model complexity that is relatively crude,
as it is determined entirely by the number of free parameters but not by the shape of the
function through which they make contact with the data. To illustrate the importance
of the functional form in which the parameters participate, consider the case of Fechner’s
law and Steven’s law of psychophysics. Both of these laws transform objective stimulus
intensity to subjective experience through a two-parameter nonlinear function.3 According
to Fechner’s law, perceived intensity ΨW (I) of stimulus I is the result of the logarithmic
function k ln(I + β). Steven’s law describes perceived intensity as an exponential function:
ΨS(I) = cIb. While both laws have the same number of parameters, Steven’s is more
complex as it can cover a larger number of data patterns (see Fig. 4).

Application to Multinomial Processing Tree Models. In order to apply AIC
and BIC to the three competing MPTs proposed by Wagenaar and Boer (1987), we first need

3For a more in-depth treatment, see Townsend (1975).
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Table 2
AIC and BIC for the Wagenaar & Boer MPT models.

log likelihood k AIC wAIC BIC wBIC
No-conflict model (NCM) −24.41 3 54.82 0.41 67.82 0.86

Destructive updating model (DUM) −24.41 4 56.82 0.15 74.15 0.04
Coexistence model (CXM) −23.35 4 54.70 0.44 72.03 0.10

Note: k is the number of free parameters.

to compute the maximum log likelihood. Note that the MPT model parameters determine
the predicted probabilities for the different response outcome categories (cf. Figure 3 and
Box 14.2); these predicted probabilities are deterministic parameters from a multinomial
probability density function. Hence, the maximum log likelihood parameter estimates for an
MPT model produce multinomial parameters that maximize the probability of the observed
data (i.e., the occurrence of the various outcome categories).

Several software packages exist that can help find the maximum log likelihood pa-
rameter estimates for MPTs (e.g. Singmann & Kellen, in press). With these estimates in
hand, we can compute the information criteria described in the previous section. Table 2
shows the maximum log likelihood as well as AIC, BIC, and their associated weights (wAIC
and wBIC; from Equation 4).

Interpreting wAIC and wBIC as measures of relative preference, we see that the re-
sults in Table 2 are mostly inconclusive. According to wAIC, the no-conflict model and
coexistence model are virtually indistinguishable, though both are preferable to the de-
structive updating model. According to wBIC, however, the no-conflict model should be
preferred over both the destructive updating model and the coexistence model. The extent
of this preference is noticeable but not decisive.

Minimum Description Length

The minimum description length principle is based on the idea that statistical infer-
ence centers around capturing regularity in data; regularity, in turn, can be exploited to
compress the data. Hence, the goal is to find the model that compresses the data the most
(Grünwald, 2007). This is related to the concept of Kolmogorov complexity—for a sequence
of numbers, Kolmogorov complexity is the length of the shortest program that prints that
sequence and then halts (Grünwald, 2007). Although Kolmogorov complexity cannot be
calculated, a suite of concrete methods are available based on the idea of model selection
through data compression. These methods, most of them developed by Jorma Rissanen,
fall under the general heading of minimum description length (MDL; Rissanen, 1978, 1987,
1996, 2001). In psychology, the MDL principle has been applied and promoted primarily
by Grünwald (2000), Grünwald, Myung, and Pitt (2005), and Grünwald (2007), as well as
Myung, Navarro, and Pitt (2006), Pitt and Myung (2002), and Pitt, Myung, and Zhang
(2002).

Here we mention three versions of the MDL principle. First, there is the so-called
crude two-part code (Grünwald, 2007); here, one sums the description of the model (in bits)
and the description of the data encoded with the help of that model (in bits). The penalty
for complex models is that they take many bits to describe, increasing the summed code
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length. Unfortunately, it can be difficult to define the number of bits required to describe
a model.

Second, there is the Fisher information approximation (FIA; Pitt et al., 2002; Rissa-
nen, 1996):

FIA = − ln p

(

y | θ̂
)

+
k

2
ln
(

n

2π

)

+ ln
∫

Θ

√

det [I(θ)] dθ, (5)

where I(θ) denotes the Fisher information matrix of sample size 1 (Ly, Verhagen, & Wa-
genmakers, in preparation). I(θ) is a k × k matrix whose (i, j)th element is

Ii,j(θ) = E

(

∂ ln p (y | θ)
∂θi

∂ ln p (y | θ)
∂θj

)

,

where E() is the expectation operator.
Note that FIA is similar to AIC and BIC in that it includes a first term that represents

goodness-of-fit, and additional terms that represent a penalty for complexity. The second
term resembles that of BIC, and the third term reflects a more sophisticated penalty that
represents the number of distinguishable probability distributions that a model can generate
(Pitt et al., 2002). Hence, FIA differs from AIC and BIC in that it also accounts for
functional form complexity, not just complexity due to the number of free parameters.
Note that FIA weights (or Rissanen weights) can be obtained by multiplying FIA by 2 and
then applying Equations 3 and 4.

The third version of the MDL principle discussed here is normalized maximum like-
lihood (NML; Myung et al., 2006; Rissanen, 2001):

NML =
p

(

y | θ̂(y)
)

∫

X p

(

x | θ̂(x)
)

dx
. (6)

This equation shows that NML tempers the enthusiasm about a good fit to the observed
data y (i.e., the numerator) to the extent that the model could also have provided a good
fit to random data x (i.e., the denominator). NML is simple to state but can be difficult to
compute; for instance, the denominator may be infinite and this requires further measures
to be taken (for details see Grünwald, 2007). Additionally, NML requires an integration
over the entire set of possible data sets, which may be difficult to define as it depends on
unknown decision processes in the researchers (Berger & Berry, 1988). Note that, since the
computation of NML depends on the likelihood of data that might have occurred but did
not, the procedure violates the likelihood principle, which states that all information about
a parameter θ obtainable from an experiment is contained in the likelihood function for θ
for the given y (Berger & Wolpert, 1988).

Application to Multinomial Processing Tree Models. Using the parameter
estimates from Table 1 and the code provided by Wu, Myung, and Batchelder (2010), we
can compute the FIA for the three competing MPT models considered by Wagenaar and
Boer (1987).4 Table 3 displays, for each model, the FIA along with its associated complexity

4Analysis using the MPTinR package by Singmann and Kellen (in press) gave virtually identical results.
Technical details for the computation of the NML for MPTs are provided in Appendix B of Klauer and
Kellen (2011).
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Table 3
Minimum description length values for the Wagenaar & Boer MPT models.

Complexity FIA wFIA
No-conflict model (NCM) 6.44 30.86 0.44

Destructive updating model (DUM) 7.39 31.80 0.17
Coexistence model (CXM) 7.61 30.96 0.39

measure (the other one of its two constituent components, the maximum log likelihood, can
be found in Table 2). The conclusions from the MDL analysis mirror those from the AIC
measure, expressing a slight disfavor for the destructive updating model, and approximately
equal preference for the no-conflict model versus the coexistence model.

Bayes Factors

In Bayesian model comparison, the posterior odds for models M1 and M2 are ob-
tained by updating the prior odds with the diagnostic information from the data:

p(M1 | y)
p(M2 | y)

=
p(M1)
p(M2)

×
m(y | M1)
m(y | M2)

. (7)

Equation 7 shows that the change from prior odds p(M1)/p(M2) to posterior odds p(M1 |
y)/p(M2 | y) is given by the ratio of marginal likelihoods m(y | M1)/m(y | M2) (see
below for the definition of the marginal likelihood). This ratio is known as the Bayes factor
(Jeffreys, 1961; Kass & Raftery, 1995). The log of the Bayes factor is often interpreted as
the weight of evidence provided by the data (Good, 1985; for details see Berger & Pericchi,
1996; Bernardo & Smith, 1994; Gill, 2002; O’Hagan, 1995).

Thus, when the Bayes factor BF12 = m(y | M1)/m(y | M2) equals 5, the observed
data y are 5 times more likely to occur under M1 than under M2; when BF12 equals 0.1, the
observed data are 10 times more likely under M2 than under M1. Even though the Bayes
factor has an unambiguous and continuous scale, it is sometimes useful to summarize the
Bayes factor in terms of discrete categories of evidential strength. Jeffreys (1961, Appendix
B) proposed the classification scheme shown in Table 4. We replaced the labels “not worth
more than a bare mention” with “anecdotal”, “decisive” with “extreme”, and “substantial”
with “moderate”. These labels facilitate scientific communication but should be considered
only as an approximate descriptive articulation of different standards of evidence.

Bayes factors negotiate the tradeoff between parsimony and goodness-of-fit and im-
plement an automatic Occam’s razor (Jefferys & Berger, 1992; MacKay, 2003; Myung &
Pitt, 1997). To see this, consider that the marginal likelihood m(y | M(·)) can be expressed
as
∫

Θ p(y | θ, M(·))p(θ | M(·)) dθ: an average across the entire parameter space, with the
prior providing the averaging weights. It follows that complex models with high-dimensional
parameter spaces are not necessarily desirable—large regions of the parameter space may
yield a very poor fit to the data, dragging down the average. The marginal likelihood will
be highest for parsimonious models that use only those parts of the parameter space that
are required to provide an adequate account of the data (Lee & Wagenmakers, in press).
By using marginal likelihood the Bayes factor punishes models that hedge their bets and
make vague predictions. Models can hedge their bets in different ways: by including extra
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Table 4
Evidence categories for the Bayes factor BF12 (based on Jeffreys, 1961).

Bayes factor BF12 Interpretation
> 100 Extreme evidence for M1

30 — 100 Very Strong evidence for M1

10 — 30 Strong evidence for M1

3 — 10 Moderate evidence for M1

1 — 3 Anecdotal evidence for M1

1 No evidence
1/3 — 1 Anecdotal evidence for M2

1/10 — 1/3 Moderate evidence for M2

1/30 — 1/10 Strong evidence for M2

1/100 — 1/30 Very Strong evidence for M2

< 1/100 Extreme evidence for M2

parameters, by assigning very wide prior distributions to the model parameters, or by using
parameters that participate in the likelihood through a complicated functional form. By
computing a weighted average likelihood across the entire parameter space, the marginal
likelihood (and, consequently, the Bayes factor) automatically takes all these aspects into
account.

Bayes factors represent “the standard Bayesian solution to the hypothesis testing and
model selection problems” (Lewis & Raftery, 1997, p. 648) and “the primary tool used in
Bayesian inference for hypothesis testing and model selection” (Berger, 2006, p. 378), but
their application is not without challenges (Box 14.3). Below we show how these challenges
can be overcome for the general class of MPT models. Next we compare the results of
our Bayes factor analysis with those of the other model comparison methods using Jeffreys
weights (i.e., normalized marginal likelihoods).

Application to Multinomial Processing Tree Models. In order to compute
the Bayes factor we seek to determine each model’s marginal likelihood m(y | M(·)). As
indicated above, the marginal likelihood m(y | M(·)) is given by integrating the likelihood
over the prior:

m(y | M(·)) =
∫

p

(

y | θ, M(·)

)

p

(

θ | M(·)

)

dθ. (8)

The most straightforward manner to obtain m(y | M(·)) is to draw samples from the prior
p(θ | M(·)) and average the corresponding values for p(y | θ, M(·)):

m(y | M(·)) ≈
1
N

N
∑

i=1

p

(

y | θi, M(·)

)

, θi ∼ p(θ). (9)

For MPT models, this brute force integration approach may often be adequate. An MPT
model usually has few parameters, and each is conveniently bounded from 0 to 1. However,
brute force integration is inefficient, particularly when the posterior is highly peaked relative
to the prior: in this case, draws from p(θ | M(·)) tend to result in low likelihoods and only
few chance draws may have high likelihood. This problem can be overcome by a numerical
technique known as importance sampling (Hammersley & Handscomb, 1964).
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Bayes factors (Jeffreys, 1961; Kass & Raftery, 1995) come with two main challenges, one
practical and one conceptual. The practical challenge arises because Bayes factors are
defined as the ratio of two marginal likelihoods, each of which requires integration across
the entire parameter space. This integration process can be cumbersome and hence the
Bayes factor can be difficult to obtain. Fortunately, there are many approximate and exact
methods to facilitate the computation of the Bayes factor (e.g., Ardia, Baştürk, Hoogerheide,
& van Dijk, 2012; Chen, Shao, & Ibrahim, 2002; Gamerman & Lopes, 2006); in this chapter
we focus on BIC (a crude approximation), the Savage-Dickey density ratio (applies only
to nested models) and importance sampling. The conceptual challenge that Bayes factors
bring is that the prior on the model parameters has a pronounced and lasting influence on
the result. This should not come as a surprise: the Bayes factor punishes models for needless
complexity, and the complexity of a model is determined in part by the prior distributions
that are assigned to the parameters. The difficulty arises because researchers are often not
very confident about the prior distributions that they specify. To overcome this challenge
one can either spend more time and effort on the specification of realistic priors, or else one
can choose default priors that fulfill general desiderata (e.g., Jeffreys, 1961; Liang, Paulo,
Molina, Clyde, & Berger, 2008). Finally, the robustness of the conclusions can be verified
by conducting a sensitivity analysis in which one examines the effect of changing the prior
specification (e.g., Wagenmakers, Wetzels, Borsboom, & van der Maas, 2011).

Box 14.3: Two challenges for Bayes factors.

In importance sampling, efficiency is increased by drawing samples from an impor-
tance density g(θ) instead of from the prior p(θ | M(·)). Consider an importance density
g(θ). Then,

m(y | M(·)) =
∫

p

(

y | θ, M(·)

)

p

(

θ | M(·)

)

g(θ)
g(θ)

dθ

=
∫ p

(

y | θ, M(·)

)

p

(

θ | M(·)

)

g(θ)
g(θ) dθ

≈
1
N

N
∑

i=1

p

(

y | θi, M(·)

)

p

(

θi | M(·)

)

g(θi)
, θi ∼ g(θ).

(10)

Note that if g(θ) = p(θ | M(·)) the importance sampler reduces to the brute force integration
shown in Equation 9. Also note that if g(θ) = p(θ | y, M(·)), a single draw suffices to
determine p(y) exactly.

In sum, when the importance density equals the prior we have brute force integration,
and when it equals the posterior we have a zero-variance estimator. However, in order to
compute the posterior, we would have to be able to compute the normalizing constant (i.e.,
the marginal likelihood), which is exactly the quantity we wish to determine. In practice
then, we want to use an importance density that is similar to the posterior, is easy to eval-
uate, and is easy to draw samples from. In addition, we want to use an importance density
with tails that are not thinner than those of the posterior; thin tails cause the estimate to
have high variance. These desiderata are met by the Beta mixture importance density de-
scribed in Box 14.4: a mixture between a Beta(1, 1) density and a Beta density that provides
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Importance sampling was invented by Stan Ulam and John von Neumann. Here we use it to
estimate the marginal likelihood by repeatedly drawing samples and averaging—the samples
are, however, not drawn from the prior (as per Equation 9, the brute force method), but
instead they are drawn from some convenient density g(θ) (as per Equation 10; Andrieu,
De Freitas, Doucet, & Jordan, 2003; Hammersley & Handscomb, 1964). The parameters in
MPT models are constrained to the unit interval, and therefore the family of Beta distri-
butions is a natural candidate for g(θ). The middle panel of Figure 5 shows an importance
density (dashed line) for MPT parameter c in the no-conflict model for the data from
Wagenaar and Boer (1987). This importance density is a Beta distribution that was fit
to the posterior distribution for c using the method of moments. The importance density
provides a good description of the posterior (the dashed line tracks the posterior almost
perfectly) and therefore is more efficient than the brute force method illustrated in the left
panel of Figure 5, which uses the prior as the importance density. Unfortunately, Beta
distributions do not always fit MPT parameters so well; specifically, the Beta importance
density may sometimes have tails that are thinner than the posterior, and this increases
the variability of the marginal likelihood estimate. To increase robustness and ensure that
the importance density has relatively fat tails we can use a Beta mixture, shown in the
right panel of Figure 5. The Beta mixture consists of a uniform prior component (i.e., the
Beta(1, 1) prior as in the left panel) and a Beta posterior component (i.e., a Beta distri-
bution fit to the posterior, as in the middle panel). In this example, the mixture weight
for the uniform component is w = 0.2. Small mixture weights retain the efficiency of the
Beta posterior approach but avoid the extra variability due to thin tails. It is possible to
increase efficiency further by specifying a multivariate importance density, but the present
univariate approach is intuitive, easy to implement, and appears to work well in practice.
The accuracy of the estimate can be confirmed by increasing the number of draws from the
importance density, and by varying the w parameter.

Box 14.4: Importance sampling for MPT models using the Beta mixture method.

a close fit to the posterior distribution. Here we use a series of univariate Beta mixtures,
one for each separate parameter, but acknowledge that a multivariate importance density
is potentially even more efficient as it accommodates correlations between the parameters.

In our application to MPT models, we assume that all model parameters have uni-
form Beta(1, 1) priors. For most MPT models this assumption is fairly uncontroversial.
The uniform priors can be thought of as a default choice; in the presence of strong prior
knowledge one can substitute more informative priors. The uniform priors yield a default
Bayes factor that can be a reference point for an analysis with more informative priors, if
such an analysis is desired (i.e., when reliable prior information is available, such as can be
elicited from experts or derived from earlier experiments).

Monte Carlo sampling for the posterior distribution. Before turning to the
results of the Bayes factor model comparison we first inspect the posterior distributions.
The posterior distributions were approximated using Markov chain Monte Carlo sampling
implemented in JAGS (Plummer, 2003) and WinBUGS (Lunn, Jackson, Best, Thomas,
& Spiegelhalter, 2012).5 All code is available on the authors’ websites. Convergence was

5The second author used WinBUGS, the first and third authors used JAGS.
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Figure 5 . Three different importance sampling densities (dashed lines) for the posterior
distribution (solid lines) of the c parameter in the no-conflict model as applied to the
data from Wagenaar and Boer (1987). Left panel: a uniform Beta importance density
(i.e., the brute force method); middle panel: a Beta posterior importance density (i.e., a
Beta distribution that provides the best fit to the posterior); right panel: a Beta mixture
importance density (i.e., a mixture of the uniform Beta density and the Beta posterior
density, with a mixture weight w = 0.2 on the uniform component).

confirmed by visual inspection and the R̂ statistic (Gelman & Rubin, 1992). The top panel
of Figure 6 shows the posterior distributions for the no-conflict model. Although there
is slightly more certainty about parameter p than there is about parameters q and c, the
posterior distributions for all three parameters are relatively wide considering that they are
based on data from as many as 562 participants.

The middle panel of Figure 6 shows the posterior distributions for the destructive-
updating model. It is important to realize that when d = 0 (i.e., no destruction of the earlier
memory) the destructive-updating model reduces to the no-conflict model. Compared to
the no-conflict model, parameters p, q, and c show relatively little change. The posterior
distribution for d is very wide, indicating considerable uncertainty about its true value. A
frequentist point-estimate yields d̂ = 0 (Wagenaar & Boer, 1987; see also Table 1), but this
does not convey the fact that this estimate is highly uncertain.

The lower panel of Figure 6 shows the posterior distributions for the coexistence
model. When s = 0 (i.e., no suppression of the earlier memory), the coexistence model
reduces to the no-conflict model. Compared to the no-conflict model and the destructive-
updating model, parameters p, q, and c again show relatively little change. The posterior
distribution for s is very wide, indicating considerable uncertainty about its true value.

The fact that the no-conflict model is nested under both the destructive-updating
model and the no-conflict model allows us to inspect the extra parameters d and s and
conclude that we have not learned very much about their true values. This suggests that,
despite having tested 562 participants, the data do not firmly support one model over the
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Figure 6 . Posterior distributions for the parameters of the no-conflict MPT model, the
destructive updating MPT model, and the coexistence MPT model, as applied to the data
from Wagenaar and Boer (1987).

other. We will now see how Bayes factors can make this intuitive judgment more precise.
Importance sampling for the Bayes factor. We applied the Beta mixture im-

portance sampling method to estimate marginal likelihoods for the three models under
consideration. The results were confirmed by varying the mixture weight w, by indepen-
dent implementations by the authors, and by comparison to the Savage-Dickey density ratio
test presented later. Table 5 shows the results.

From the marginal likelihoods and the Jeffreys weights we can derive the Bayes factors
for the pair-wise comparisons; the Bayes factor is 2.77 in favor of the no-conflict model over
the destructive updating model, the Bayes factor is 1.39 in favor of the coexistence model
over the no-conflict model, and the Bayes factor is 3.86 in favor of the coexistence model over
the destructive updating model. The first two of these Bayes factors are anecdotal or “not
worth more than a bare mention” (Jeffreys, 1961), and the third one just makes the criterion
for “moderate” evidence, although any enthusiasm about this level of evidence should be
tempered by the realization that Jeffreys himself described a Bayes factor as high as 5.33
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Table 5
Bayesian evidence (i.e., the logarithm of the marginal likelihood), Jeffreys weights, and
pairwise Bayes factors computed from the Jeffreys weights or through the Savage-Dickey
density ratio, for the Wagenaar & Boer MPT models.

Bayesian Jeffreys Bayes factor (Savage-Dickey)
evidence weight over NCM over DUM over CXM

No-conflict model (NCM) −30.55 0.36 1 2.77 (2.81) 0.72 (0.80)
Destructive updating model (DUM) −31.57 0.13 0.36 (0.36) 1 0.26 (0.28∗)

Coexistence model (CXM) −30.22 0.51 1.39 (1.25) 3.86 (3.51∗) 1
∗ Derived through transitivity: 2.81 × 1/0.80 = 3.51.

as “odds that would interest a gambler, but would be hardly worth more than a passing
mention in a scientific paper” (Jeffreys, 1961, pp. 256-257). In other words, the Bayes
factors are consistent with the intuitive visual assessment of the posterior distributions: the
data do not allow us to draw strong conclusions.

We should stress that Bayes factors apply to a comparison of any two models, re-
gardless of whether or not they are structurally related or nested (i.e., where one model is a
special, simplified version of a larger, encompassing model). As is true for the information
criteria and minimum description length methods, Bayes factors can be used to compare
structurally very different models, such as for example REM (Shiffrin & Steyvers, 1997) ver-
sus ACT-R (Anderson et al., 2004), or the diffusion model (Ratcliff, 1978) versus the linear
ballistic accumulator model (Brown & Heathcote, 2008). In other words, Bayes factors can
be applied to nested and non-nested models alike. For the models under consideration,
however, there exists a nested structure that allows one to obtain the Bayes factor through
a computational shortcut.

The Savage-Dickey approximation to the Bayes factor for comparing

nested models. Consider first the comparison between the no-conflict model MNCM and
the destructive updating model MDUM. As shown above, we can obtain the Bayes factor
for MNCM versus MDUM by computing the marginal likelihoods using importance sampling.
However, because the models are nested we can also obtain the Bayes factor by considering
only MDUM, and dividing the posterior ordinate at d = 0 by the prior ordinate at d = 0.
This surprising result was first published by Dickey and Lientz (1970), who attributed it to
Leonard J. “Jimmie” Savage. The result is now generally known as the Savage-Dickey den-
sity ratio (e.g., Dickey, 1971; for extensions and generalizations see Chen, 2005; Verdinelli
& Wasserman, 1995; Wetzels, Grasman, & Wagenmakers, 2010; for an introduction for psy-
chologists see Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010; a short mathematical
proof is presented in O’Hagan & Forster, 2004, pp. 174-177).6 Thus, we can exploit the
fact that MNCM is nested in MDUM and use the Savage-Dickey density ratio to obtain the
Bayes factor:

BFNCM,DUM =
m(y | MNCM)
m(y | MDUM)

=
p(d = 0 | y, MDUM)
p(d = 0 | MDUM)

. (11)

The Savage-Dickey density ratio test is visualized in Figure 7; the posterior ordinate
at d = 0 is higher than the prior ordinate at d = 0, indicating that the data have increased

6Note that the Savage-Dickey density ratio requires that when d = 0 the prior for the common parameters
p, c, and q is the same for MDUM and MNCM. That is, p(p, c, q | d = 0, MDUM) = p(p, c, q | MNCM).
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Figure 7 . Illustration of the Savage-Dickey density ratio test. The dashed and solid lines
show the prior and the posterior distribution for parameter d in the destructive updating
model. The black dots indicate the height of the prior and the posterior distributions at
d = 0.

the plausibility that d equals 0. This means that the data support MNCM over MDUM.
The prior ordinate equals 1, and hence BFNCM,DUM simply equals the posterior ordinate at
d = 0. A nonparametric density estimator (Stone, Hansen, Kooperberg, & Truong, 1997)
that respects the bound at 0 yields an estimate of 2.81. This estimate is close to 2.77, the
estimate from the importance sampling approach.

The Savage-Dickey density ratio test can be applied similarly to the comparison be-
tween the no-conflict model MNCM versus the coexistence model MCXM, where the critical
test is at s = 0. Here the posterior ordinate is estimated to be 0.80, and hence the Bayes fac-
tor for MCXM over MNCM equals 1/0.80 = 1.25, close to the Bayes factor obtained through
importance sampling, BFCXM,NCM = 1.39.

With these two Bayes factors in hand, we can immediately derive the Bayes factor for
the comparison between the destructive updating model MDUM versus the coexistence model
MCXM through transitivity, that is, BFCXM,DUM = BFNCM,DUM × BFCXM,NCM. Alternatively,
we can also obtain BFCXM,DUM by directly comparing the posterior density for d = 0 against
that for s = 0:

BFCXM,DUM = BFNCM,DUM × BFCXM,NCM

=
p(d = 0 | y, MDUM)
p(d = 0 | MDUM)

×
p(s = 0 | MCXM)

p(s = 0 | y, MCXM)

=
p(d = 0 | y, MDUM)
p(s = 0 | y, MCXM)

,

(12)

where the second step is allowed because we have assigned uniform priors to both d and s,
so that p(d = 0 | MDUM) = p(s = 0 | MCXM). Hence, the Savage-Dickey estimate for the
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Bayes factor between the two non-nested models MDUM and MCXM equals the ratio of the
posterior ordinates at d = 0 and s = 0, resulting in the estimate BFCXM,DUM = 3.51, close
to the importance sampling result of 3.86.

Comparison of Model Comparisons

We have now implemented and performed a variety of model comparison methods for
the three competing MPT models introduced by Wagenaar and Boer (1987): we computed
and interpreted the Akaike information criteria (AIC), Bayesian information criteria (BIC),
the Fisher information approximation of the minimum description length principle (FIA),
and two computational implementations of the Bayes factor (BF).

The general tenor across most of the model comparison exercises has been that the
data do not convincingly support one particular model. However, the destructive updating
model is consistently ranked the worst of the set. Looking at the parameter estimates, it is
not difficult to see why this is so: the d parameter of the destructive updating model (i.e.,
the probability of destroying memory through updating) is estimated at 0, thereby reducing
the destructive updating model to the no-conflict model, and yielding an identical fit to the
data (as can be seen in the likelihood column of Table 2). Since the no-conflict model counts
as a special case of the destructive updating model, it is by necessity less complex from a
model selection point of view—the d parameter is an unnecessary entity, the inclusion of
which is not warranted by the data. This is reflected in the inferior performance of the
destructive updating model according to all measures of generalizability.

Note that the BF judges the support for NCM to be ‘anecdotal’ even though NCM
and DUM provide similar fit and have a clear difference in complexity—one might expect
the principle of parsimony to tell us that, given the equal fit and clear complexity difference,
there is massive evidence for the simpler model, and the BF appears to fail to implement
OccamâĂŹs razor here. The lack of clear support of the NCM over the DUM is explained
by the considerable uncertainty regarding the value of the parameter d: even though the
posterior mode is at d = 0, much posterior variability is visible in the middle panel of Fig. 6.
With more data and a posterior for d that is more peaked near 0, the evidence in favor of
the simpler model would increase.

The difference between the no-conflict model and the coexistence model is less clear-
cut. Following AIC, the two models are virtually indistinguishable—compared to the co-
existence model, the no-conflict model sacrifices one unit of log-likelihood for two units
of complexity (one parameter). As a result, both models perform equally well under the
AIC measure. Under the BIC measure, however, the penalty for the number of free pa-
rameters is more substantial, and here the no-conflict model trades a unit of log likelihood
for log(N) = 6.33 units of complexity, outdistancing both the destructive updating model
and the coexistence model. The BIC is the exception in clearly preferring the no-conflict
model over the coexistence model. The MDL, like the AIC, would have us hedge on the
discriminability of the no-conflict model and the coexistence model.

The BF, finally, allows us to express evidence for the models using standard proba-
bility theory. Between any two models, the BF tells us how much the balance of evidence
has shifted due to the data. Using two methods of computing the BF, we determined that
the odds of the coexistence model over the destructive updating model almost quadrupled
(BFCXM,DUM ≈ 3.86), but the odds of the coexistence model over the no-conflict model
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barely shifted at all (BFCXM,NCM ≈ 1.39). Finally, we can use the same principles of proba-
bility to compute Jeffreys weights, which express, for each model under consideration, the
probability that it is true, assuming prior indifference. Furthermore, we can easily recom-
pute the probabilities in case we wish to express a prior preference between the candidate
models (for example, we might use the prior to express a preference for sparsity, as was
originally proposed by Jeffreys, 1961).

Concluding Comments

Model comparison methods need to implement the principle of parsimony: goodness-
of-fit has to be discounted to the extent that it was accomplished by a model that is overly
complex. Many methods of model comparison exist (Myung et al., 2000; Wagenmakers
& Waldorp, 2006), and our selective review focused on methods that are popular, easy-
to-compute approximations (i.e., AIC and BIC) and methods that are difficult-to-compute
“ideal” solutions (i.e., minimum description length and Bayes factors). We applied these
model comparison methods to the scenario of three competing MPT models introduced
by Wagenaar and Boer (1987). Despite collecting data from 562 participants, the model
comparison methods indicate that the data are somewhat ambiguous; at any rate, the data
do not support the destructive updating model. This echoes the conclusions drawn by
Wagenaar and Boer (1987).

It is important to note that the model comparison methods discusses in this chapter
can be applied regardless of whether the models are nested. This is not just a practical
nicety; it also means that the methods are based on principles that transcend the details of
a specific model implementation. In our opinion, a method of inference that is necessarily
limited to the comparison of nested models is incomplete at best and misleading at worst.
It is also important to realize that model comparison methods are relative indices of model
adequacy; when, say, the Bayes factor expresses an extreme preference for model A over
model B, this does not mean that model A fits the data at all well. Figure 8 shows a classic
but dramatic example of the inadequacy of simple measures of relative model fit.

Because it would be a mistake to base inference on a model that fails to describe
the data, a complete inference methodology features both relative and absolute indices of
model adequacy. For the MPT models under consideration here, Wagenaar and Boer (1987)
reported that the no-conflict model provided “an almost perfect fit” to the data.7

The example MPT scenario considered here was relatively straightforward. More com-
plicated MPT models contain order-restrictions, feature individual differences embedded in
a hierarchical framework (Klauer, 2010; Matzke et al., in press), or contain a mixture-model
representation with different latent classes of participants (for application to other models
see Scheibehenne, Rieskamp, & Wagenmakers, 2013; Frühwirth–Schnatter, 2006). In theory,
it is relatively easy to derive Bayes factors for these more complicated models. In practice,
however, Bayes factors for complicated models may require the use of numerical techniques
more involved than importance sampling. Nevertheless, for standard MPT models the Beta
mixture importance sampler appears to be a convenient and reliable tool to obtain Bayes
factors. We hope that this methodology will facilitate the principled comparison of MPT

7We confirmed the high quality of fit in a Bayesian framework using posterior predictives (Gelman &
Hill, 2007), results not reported here.
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Anscombe’s Quartet

Figure 8 . Anscombe’s Quartet is a set of four bivariate data sets whose basic descriptive
statistics are approximately identical. In all cases, mean of X is 9, variance of X is 11, mean
of Y is 7.5, variance of Y is 4.1, and the best fitting linear regression line is yest

i = 3+ 0.5xi,
which explains R2 = 66.6% of the variance in Y . However, in two of the four cases, the
linear regression is clearly a poor account of the data. The relative measure of model fit
(R2) gives no indication of this radical difference between the data sets, and an absolute
measure of fit (even one as rudimentary as a visual inspection of the regression line) is
required. (Figure downloaded from Flickr, courtesy of Eric-Jan Wagenmakers.)

models in future applications.

Glossary

Akaike’s information criterion (AIC) A quantity that expresses the generalizability of
a model, based on the likelihood of the data under the model and the number of free
parameters in the model.

Akaike weights A quantity that conveys the relative preference among a set of candidate
models, using AIC as a measure of generalizability.

Anscombe’s quartet A set of four bivariate data sets whose statistical properties are vir-
tually indistinguishable until they are displayed graphically, and a canonical example
of the importance of data visualization.

Bayes factor (BF) A quantity that conveys the degree to which the observed data sway
our beliefs towards one or the other model. Under a-priori indifference between two
models M1 and M2, the BF expresses the a-posteriori relative probability of the two.

Bayesian information criterion (BIC) A quantity that expresses the generalizability
of a model, based on the likelihood of the data under the model, the number of free
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parameters in the model, and the amount of data.

Fisher information approximation (FIA) One of several approximations used to com-
pute the MDL.

Goodness-of-fit A quantity that expresses how well a model is able to account for a given
set of observations.

Importance sampling A numerical algorithm to efficiently draw samples from a distri-
bution by factoring it into an easy-to-compute function over an easy-to-sample from
density.

Jeffreys weights A quantity that conveys the relative preference among a set of candidate
models, using BF as a measure of generalizability.

Likelihood principle A principle of modeling and statistics which states that all informa-
tion about a certain parameter that is obtainable from an experiment is contained in
the likelihood function of that parameter for the given data. Many common statistical
procedures, such as hypothesis testing with p-values, violate this principle.

Minimum description length (MDL) A quantity that expresses the generalizability of
a model, based on the extent to which the model allows the observed data to be
compressed.

Monte Carlo sampling A general class of numerical algorithms used to characterize (i.e.,
compute descriptive measures) an arbitrary distribution by drawing large numbers of
random samples from it.

Nested models Model M1 is nested in Model M2 if there exists a special case of M2

that is equivalent to M1.

Overfitting A pitfall of modeling whereby the proposed model is too complex and begins
to account for irrelevant particulars (i.e., random noise) of a specific data set, causing
the model to poorly generalize to other data sets.

Parsimony A strategy against overfitting, and a fundamental principle of model selection:
all other things being equal, simpler models should be preferred over complex ones;
or: greater model complexity must be bought with greater explanatory power. Often
referred to as Occam’s razor.

Rissanen weights A quantity that conveys the relative preference among a set of candi-
date models, using FIA as a measure of generalizability.

Savage-Dickey density ratio An efficient method for computing a Bayes factor between
nested models.

Schwartz weights A quantity that conveys the relative preference among a set of candi-
date models, using BIC as a measure of generalizability.



MODEL COMPARISON 25

References

Akaike, H. (1973). Information theory as an extension of the maximum likelihood principle.
In B. N. Petrov & F. Csaki (Eds.), Second international symposium on information
theory (pp. 267–281). Budapest: Akadémiai Kiadó.

Akaike, H. (1974a). A new look at the statistical model identification. IEEE Transactions
on Automatic Control, 19, 716–723.

Akaike, H. (1974b). On the likelihood of a time series model. The Statistician, 27, 217–235.
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004).

An integrated theory of the mind. Psychological Review, 111, 1036–1060.
Andrieu, C., De Freitas, N., Doucet, A., & Jordan, M. I. (2003). An introduction to MCMC

for machine learning. Machine Learning, 50, 5–43.
Ardia, D., Baştürk, N., Hoogerheide, L., & van Dijk, H. K. (2012). A comparative study of

Monte Carlo methods for efficient evaluation of marginal likelihood. Computational
Statistics and Data Analysis, 56, 3398–3414.

Batchelder, W. H., & Riefer, D. M. (1980). Separation of storage and retrieval factors in
free recall of clusterable pairs. Psychological Review, 87, 375–397.

Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review of multinomial
process tree modeling. Psychonomic Bulletin & Review, 6, 57–86.

Batchelder, W. H., & Riefer, D. M. (2007). Using multinomial processing tree models to
measure cognitive deficits in clinical populations. In R. W. J. Neufeld (Ed.), Advances
in clinical cognitive science: Formal modeling of processes and symptoms (pp. 19–50).
Washington, DC: American Psychological Association.

Berger, J. O. (2006). Bayes factors. In S. Kotz, N. Balakrishnan, C. Read, B. Vidakovic,
& N. L. Johnson (Eds.), Encyclopedia of statistical sciences, vol. 1 (2nd ed.) (pp.
378–386). Hoboken, NJ: Wiley.

Berger, J. O., & Berry, D. A. (1988). Statistical analysis and the illusion of objectivity.
American Scientist, 76, 159–165.

Berger, J. O., & Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and
prediction. Journal of the American Statistical Association, 91, 109–122.

Berger, J. O., & Wolpert, R. L. (1988). The likelihood principle (2nd ed.). Hayward (CA):
Institute of Mathematical Statistics.

Bernardo, J. M., & Smith, A. F. M. (1994). Bayesian theory. New York: Wiley.
Brown, S. D., & Heathcote, A. (2005). Practice increases the efficiency of evidence accumu-

lation in perceptual choice. Journal of Experimental Psychology: Human Perception
and Performance, 31, 289–298.

Brown, S. D., & Heathcote, A. J. (2008). The simplest complete model of choice reaction
time: Linear ballistic accumulation. Cognitive Psychology, 57, 153–178.

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A
practical information–theoretic approach (2nd ed.). New York: Springer Verlag.

Busemeyer, J. R., & Diederich, A. (2010). Cognitive modeling. Thousand Oaks, CA: Sage.
Chechile, R. A. (1973). The relative storage and retrieval losses in short–term memory as

a function of the similarity and amount of information processing in the interpolated
task. Unpublished doctoral dissertation, University of Pittsburgh.

Chechile, R. A., & Meyer, D. L. (1976). A Bayesian procedure for separately estimating



MODEL COMPARISON 26

storage and retrieval components of forgetting. Journal of Mathematical Psychology,
13, 269–295.

Chen, M.-H. (2005). Computing marginal likelihoods from a single MCMC output. Statistica
Neerlandica, 59, 16–29.

Chen, M.-H., Shao, Q.-M., & Ibrahim, J. G. (2002). Monte Carlo methods in Bayesian
computation. New York: Springer.

Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes:
A parallel distributed processing account of the Stroop effect. Psychological Review,
97, 332–361.

D’Agostino, R. B., & Stephens, M. A. (1986). Goodness-of-fit techniques. Marcel Dekker
Inc.

Dickey, J. M. (1971). The weighted likelihood ratio, linear hypotheses on normal location
parameters. The Annals of Mathematical Statistics, 42, 204–223.

Dickey, J. M., & Lientz, B. P. (1970). The weighted likelihood ratio, sharp hypotheses
about chances, the order of a Markov chain. The Annals of Mathematical Statistics,
41, 214–226.

Dutilh, G., Vandekerckhove, J., Tuerlinckx, F., & Wagenmakers, E.-J. (2009). A diffusion
model decomposition of the practice effect. Psychonomic Bulletin & Review, 16,
1026–1036.

Erdfelder, E., Auer, T.-S., Hilbig, B. E., Aßfalg, A., Moshagen, M., & Nadarevic, L. (2009).
Multinomial processing tree models: A review of the literature. Zeitschrift für Psy-
chologie, 217, 108–124.

Frühwirth–Schnatter, S. (2006). Finite mixture and Markov switching models. New York:
Springer.

Gamerman, D., & Lopes, H. F. (2006). Markov chain Monte Carlo: Stochastic simulation
for Bayesian inference. Boca Raton, FL: Chapman & Hall/CRC.

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical
models. Cambridge: Cambridge University Press.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequences (with discussion). Statistical Science, 7, 457–472.

Gill, J. (2002). Bayesian methods: A social and behavioral sciences approach. Boca Raton
(FL): CRC Press.

Good, I. J. (1985). Weight of evidence: A brief survey. In J. M. Bernardo, M. H. DeGroot,
D. V. Lindley, & A. F. M. Smith (Eds.), Bayesian statistics 2 (pp. 249–269). New
York: Elsevier.

Grünwald, P. (2000). Model selection based on minimum description length. Journal of
Mathematical Psychology, 44, 133–152.

Grünwald, P. (2007). The minimum description length principle. Cambridge, MA: MIT
Press.

Grünwald, P., Myung, I. J., & Pitt, M. A. (Eds.). (2005). Advances in minimum description
length: Theory and applications. Cambridge, MA: MIT Press.

Hammersley, J. M., & Handscomb, D. C. (1964). Monte Carlo methods. London: Methuen.
Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The power law repealed: The case

for an exponential law of practice. Psychonomic Bulletin & Review, 7, 185–207.
Heathcote, A., & Hayes, B. (2012). Diffusion versus linear ballistic accumulation: Different



MODEL COMPARISON 27

models for response time with different conclusions about psychological mechanisms?
Canadian Journal of Experimental Psychology, 66, 125–136.

Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model
averaging: A tutorial. Statistical Science, 14, 382–417.

Jefferys, W. H., & Berger, J. O. (1992). Ockham’s razor and Bayesian analysis. American
Scientist, 80, 64–72.

Jeffreys, H. (1961). Theory of probability (3 ed.). Oxford, UK: Oxford University Press.
Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical

Association, 90, 773–795.
Klauer, K. C. (2010). Hierarchical multinomial processing tree models: A latent–trait

approach. Psychometrika, 75, 70–98.
Klauer, K. C., & Kellen, D. (2011). The flexibility of models of recognition memory:

An analysis by the minimum-description length principle. Journal of Mathematical
Psychology, 55 (6), 430–450.

Lee, M. D., & Wagenmakers, E.-J. (in press). Bayesian modeling for cognitive science: A
practical course. Cambridge: Cambridge University Press.

Lewandowsky, S., & Farrell, S. (2010). Computational modeling in cognition: Principles
and practice. Thousand Oaks, CA: Sage.

Lewis, S. M., & Raftery, A. E. (1997). Estimating Bayes factors via posterior simulation with
the Laplace–Metropolis estimator. Journal of the American Statistical Association,
92, 648–655.

Liang, F., Paulo, R., Molina, G., Clyde, M. A., & Berger, J. O. (2008). Mixtures of g priors
for Bayesian variable selection. Journal of the American Statistical Association, 103,
410–423.

Loftus, E. F., Miller, D. G., & Burns, H. J. (1978). Semantic integration of verbal infor-
mation into a visual memory. Journal of Experimental Psychology: Human Learning
and Memory, 4, 19–31.

Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review,
95, 492–527.

Logan, G. D. (1992). Shapes of reaction–time distributions and shapes of learning curves:
A test of the instance theory of automaticity. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 18, 883–914.

Logan, G. D. (2002). An instance theory of attention and memory. Psychological Review,
109, 376–400.

Lunn, D., Jackson, C., Best, N., Thomas, A., & Spiegelhalter, D. (2012). The BUGS
book: A practical introduction to Bayesian analysis. Boca Raton (FL): Chapman &
Hall/CRC.

Ly, A., Verhagen, J., & Wagenmakers, E.-J. (in preparation). A tutorial on the fisher
information matrix.

MacKay, D. J. C. (2003). Information theory, inference, and learning algorithms. Cam-
bridge: Cambridge University Press.

Matzke, D., Dolan, C. V., Batchelder, W. H., & Wagenmakers, E.-J. (in press). Bayesian
estimation of multinomial processing tree models with heterogeneity in participants
and items. Psychometrika.



MODEL COMPARISON 28

Myung, I. J. (2000). The importance of complexity in model selection. Journal of Mathe-
matical Psychology, 44, 190–204.

Myung, I. J., Forster, M. R., & Browne, M. W. (2000). Model selection [Special issue].
Journal of Mathematical Psychology, 44 (1–2), –.

Myung, I. J., Navarro, D. J., & Pitt, M. A. (2006). Model selection by normalized maximum
likelihood. Journal of Mathematical Psychology, 50, 167–179.

Myung, I. J., & Pitt, M. A. (1997). Applying Occam’s razor in modeling cognition: A
Bayesian approach. Psychonomic Bulletin & Review, 4, 79–95.

O’Hagan, A. (1995). Fractional Bayes factors for model comparison. Journal of the Royal
Statistical Society B, 57, 99–138.

O’Hagan, A., & Forster, J. (2004). Kendall’s advanced theory of statistics vol. 2B: Bayesian
inference (2nd ed.). London: Arnold.

Pauler, D. K. (1998). The Schwarz criterion and related methods for normal linear models.
Biometrika, 85, 13–27.

Pitt, M. A., & Myung, I. J. (2002). When a good fit can be bad. Trends in Cognitive
Sciences, 6, 421–425.

Pitt, M. A., Myung, I. J., & Zhang, S. (2002). Toward a method of selecting among
computational models of cognition. Psychological Review, 109, 472–491.

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using
Gibbs sampling. In K. Hornik, F. Leisch, & A. Zeileis (Eds.), Proceedings of the 3rd
international workshop on distributed statistical computing. Vienna, Austria.

Raftery, A. E. (1995). Bayesian model selection in social research. In P. V. Marsden (Ed.),
Sociological methodology (pp. 111–196). Cambridge: Blackwells.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.
Rickard, T. C. (1997). Bending the power law: A CMPL theory of strategy shifts and the

automatization of cognitive skills. Journal of Experimental Psychology: General, 126,
288–311.

Riefer, D. M., & Batchelder, W. H. (1988). Multinomial modeling and the measurement of
cognitive processes. Psychological Review, 95, 318–339.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 445–471.
Rissanen, J. (1987). Stochastic complexity. Journal of the Royal Statistical Society B, 49,

223–239.
Rissanen, J. (1996). Fisher information and stochastic complexity. IEEE Transactions on

Information Theory, 42, 40–47.
Rissanen, J. (2001). Strong optimality of the normalized ML models as universal codes and

information in data. IEEE Transactions on Information Theory, 47, 1712–1717.
Rouder, J. N., Lu, J., Morey, R. D., Sun, D., & Speckman, P. L. (2008). A hierarchical

process dissociation model. Journal of Experimental Psychology: General, 137, 370–
389.

Scheibehenne, B., Rieskamp, J., & Wagenmakers, E.-J. (2013). Testing adaptive toolbox
models: A Bayesian hierarchical approach. Psychological Review, 120, 39–64.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.
Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition memory: REM—retrieving

effectively from memory. Psychonomic Bulletin & Review, 4, 145–166.



MODEL COMPARISON 29

Silver, N. (2012). The signal and the noise: The art and science of prediction. London:
Allen Lane.

Singmann, H., & Kellen, D. (in press). MPTinR: Analysis of multinomial processing tree
models with R. Behavior Research Methods.

Smith, J. B., & Batchelder, W. H. (2010). Beta–MPT: Multinomial processing tree models
for addressing individual differences. Journal of Mathematical Psychology, 54, 167–
183.

Stone, C. J., Hansen, M. H., Kooperberg, C., & Truong, Y. K. (1997). Polynomial splines
and their tensor products in extended linear modeling (with discussion). The Annals
of Statistics, 25, 1371–1470.

Townsend, J. T. (1975). The mind–body equation revisited. In C. Cheng (Ed.), Philo-
sophical aspects of the mind–body problem (pp. 200–218). Honolulu, USA: Honolulu
University Press.

Verdinelli, I., & Wasserman, L. (1995). Computing Bayes factors using a generalization of
the Savage–Dickey density ratio. Journal of the American Statistical Association, 90,
614–618.

Vrieze, S. I. (2012). Model selection and psychological theory: A discussion of the differ-
ences between the Akaike information criterion (AIC) and the Bayesian information
criterion (BIC). Psychological methods, 17, 228.

Wagenaar, W. A., & Boer, J. P. A. (1987). Misleading postevent information: Testing
parameterized models of integration in memory. Acta Psychologica, 66, 291–306.

Wagenmakers, E.-J., & Farrell, S. (2004). AIC model selection using Akaike weights.
Psychonomic Bulletin & Review, 11, 192–196.

Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian hypoth-
esis testing for psychologists: A tutorial on the Savage–Dickey method. Cognitive
Psychology, 60, 158–189.

Wagenmakers, E.-J., & Waldorp, L. (2006). Model selection: Theoretical developments and
applications [Special issue]. Journal of Mathematical Psychology, 50 (2), –.

Wagenmakers, E.-J., Wetzels, R., Borsboom, D., & van der Maas, H. L. J. (2011). Why
psychologists must change the way they analyze their data: The case of psi. Journal
of Personality and Social Psychology, 100, 426–432.

Wetzels, R., Grasman, R. P. P. P., & Wagenmakers, E.-J. (2010). An encompassing prior
generalization of the Savage–Dickey density ratio test. Computational Statistics &
Data Analysis, 54, 2094–2102.

Wu, H., Myung, J. I., & Batchelder, W. H. (2010). Minimum description length model
selection of multinomial processing tree models. Psychonomic Bulletin & Review, 17,
275–286.




