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Abstract 
One-half mile has become the accepted distance for gauging a transit station’s catchment 

area in the U.S.  It is the de facto standard for planning TODs (transit oriented developments) in 
America. Planners and researchers use transit catchment areas not only to make predictions about 
transit ridership and the land use and socioeconomic impacts of transit, but also to prescribe 
regulations, such as the relaxation of restrictive zoning, or carve out TOD financial plans. This 
radius is loosely based on the distance that people are willing to walk to transit, but this same 
reasoning has been used to justify other transit catchment areas. Using station-level variables 
from 1,449 high-capacity American transit stations in 21 cities, we aim to identify whether there 
is clear benchmark between distance and ridership that provides a norm for station-area planning 
and prediction. For the purposes of predicting station-level transit ridership, we find that 
different catchment areas have little influence on a model’s predictive power. This suggests that 
transit agencies should use the easiest and most readily available data when estimating direct 
demand models. For prescribing land-use policy, by contrast, the evidence is less clear. 
Nevertheless, we find some support for using a quarter-mile catchment area for jobs around 
transit and a half-mile catchment for population. While these distances will likely vary from 
place to place and depending on the study purpose, they are a good starting point for considering 
transit-oriented policy or collecting labor-intensive data, such as surveys, about transit-adjacent 
firms or households.  
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INTRODUCTION 
One-half mile has become the accepted distance for gauging a transit station’s catchment 

area in the U.S.  It is the de facto standard for the planning of TODs (transit oriented 
developments) in America. The Center for Transit Oriented Development provides a web 
interface with maps and data on 3,776 existing and 833 proposed American transit stations. They 
aggregate publicly available data on population, demographics, and employment using quarter 
and half-mile radii transit sheds. The half-mile radius is the default and a partner organization, 
Reconnecting America, has even named its blog Half-Mile Circles. This radius is loosely based 
on the distance that people are willing to walk to transit, but this same reasoning has been used to 
justify other transit catchment areas. Planners and researchers use transit catchment areas not 
only to make predictions about transit ridership and the land use and socioeconomic impacts of 
transit, but also to prescribe regulations, such as the relaxation of restrictive zoning, or carve out 
TOD financial plans.  
  A particularly intimate relationship has evolved between the half-mile circle and TOD 
planning. One-half mile corresponds to the distance over which someone from the edge of the 
circle can reach a station within 10 minutes walking at 3 mph. At a little more than 500 acres in 
size, the area within the half-mile ring represents the spatial extent of most TOD planning.  
Indeed, the principal justification for TOD is the promise of increasing ridership – notably, 
getting motorists to switch to trains and buses (1).  Is there empirical evidence that demonstrates 
one-mile to be a norm – i.e., the appropriate catchment for station-area planning and policy-
making?   

In this paper, we run regression equations that predict the average of weekday boardings 
and alightings at 1,449 high-capacity American transit stations using a variety a radial transit 
catchment areas.  Our aim is to see, statistically at least, whether there is clear benchmark 
between distance and ridership that provides a norm for station-area planning.  We find strong 
evidence that, for the purposes of estimating station-level transit ridership, changing the radius 
has very little influence on a model’s predictive power. A quarter-mile radius explains variation 
in transit ridership across the United States just as well as a half-mile radius, which itself 
performs similarly to a three-quarter mile radius. This suggests that transit agencies should use 
the easiest and most readily available station-area data when estimating direct demand models. 
For making causal inferences or developing land-use policy, we find some support for using a 
quarter-mile catchment area when looking at jobs around transit stations and a half-mile 
catchment when looking at population. While these distances will likely vary from place to place 
and depending on the study purpose, they are a good starting point for considering transit-
oriented policy or collecting labor-intensive data, such as surveys, about transit-adjacent firms or 
households.  

 
TRANSIT STATION CATCHMENT AREAS 

The distance of origins and destinations from transit stations has a strong influence on 
whether people use transit to get to and from them. In a recent meta-analysis of the influence of 
the built environment on travel behavior, Ewing and Cervero (2) found that a one percent 
decrease in household’s distance to transit corresponded with a 0.29 percent increase in transit 
use. Cervero (3) found that Californians living within one half mile (0.8 kilometers) of a transit 
station were four time more likely to use transit than those living between one half mile and three 
miles (4.8 kilometers) of transit and that dense jobs around destination stations significantly 
influenced the likelihood of transit use. In another Californian study, Cervero (4) found that 52.3 
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percent of previous automobile commuters switched to transit after moving within a half mile of 
transit stations. Where individual-level studies do not include a variable accounting for proximity 
to transit, transit access times capture the effect. Both stated preference surveys and observed 
behavior indicate that time spent walking is significantly more onerous than time spent in a car 
or transit vehicle (5, 6). Researchers have also found that many light, commuter, and heavy rail 
investments have significant impacts on surrounding land uses and property values (7, 8, 9, 10, 
11, 12, 13, 14). Bus rapid transit investments have also influenced land use and land values 
around stations (15, 16).  

Transit catchment areas are broadly based on an understanding of how far people are 
willing to walk to take transit. In addition to supporting the half-mile radius, the same general 
explanation has also been used to justify using quarter-mile (17) and two-fifths-of-a-mile (18) 
catchment areas (0.40 and 0.64 kilometers). Looking at 17 transit agencies with light rail service, 
O’Sullivan and Morral (19) found transit walking distance guidelines that ranged from 300 to 
900 meters (0.19 to 0.56 miles). Given that road networks do not emanate radially from transit 
stations, some researchers define transit catchment areas based on road network distances (20, 
21). Willingness-to-walk also varies by person, trip purpose, gender, age, land use, safety, 
weather, and the cost and availability of parking. Furthermore, there is no reason to expect that 
the impacts of a transit investment are limited to the average or even maximum walking distance. 
Many transit users access stations by car, bike, or bus. The half-mile transit catchment area, 
whether radial or network-based, is more an artifact of historical precedent than a statistical or 
analytical construct. In the case of individual- or parcel-level data, land use changes or 
probability of using transit can be measured partly as a function of actual distance between a 
household or office and a station. When data are aggregated within geographic areas, however, 
researchers generally must choose what area falls within a transit stations primary zone of 
influence. When data, computing power, and Geographic Information System (GIS) software are 
readily available, it is relatively simple to estimate a variety of models, using different 
assumptions about transit catchment areas. For example, several recent station-level direct 
demand models use multiple transit catchment bands to estimate transit ridership (22, 23). 
Similarly, studies on land use change and property values can divide treatment effects into 
various catchment bands (16).   

When collecting primary data, as in a survey of households living near transit or site 
inspections, simplifying ridership predictions, as in direct demand models, or using the 
geography outside of the primary impact area as a statistical control, it is useful to have a better 
understanding of what distance delimits a transit catchment area. While this distance is likely to 
vary across locations and study purposes, current practice often assigns the catchment area 
somewhat arbitrarily. Through an analysis of station-level transit ridership in American cities, we 
hope to contribute to general knowledge about what catchment areas are most appropriate for 
what kinds of studies.  This follows the work of others who have used statistical fits over 
different distance bands to set spatial benchmarks, such as for the planning of jobs-housing 
balances (24). 

 
RESEARCH APPROACH AND DATASET 

We collected data on 832 heavy rail, 589 light rail, and 36 bus rapid transit stations and 
their surroundings from twenty American transit agencies. We then estimated several dozen 
station-level direct demand models of transit ridership. Using direct demand models—essentially 
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a statistical regression based on observed ridership—is a simple alternative to full-blown travel 
models to predict transit ridership on transit stations, corridors, and systems (25). 

The advantages of direct demand models stem from the ease of estimating them using 
data that are readily available to transit agencies.  A personal computer equipped with basic GIS 
software and statistical analysis software and access to the internet are the only critical 
prerequisite materials.  For early stage transit scenario testing this means that a large number of 
potential transit alignments or alternatives can be tested with a relatively light investment of 
effort.  These models not only provide order of magnitude ridership potential with greater ease 
than by using traditional regional transportation planning models, but they may also have 
superior predictive power in certain respects (26). Direct demand models are also attractive for 
transit planning purposes since the pedestrian scale dynamics that are considered to be important 
in determining transit ridership are often too fine grained to show up in regional travel models 
(25).  By focusing on an area defined within a radius or access distance of a transit station, direct 
demand models reflect actual land use characteristics in the specific area most likely to be most 
influential in determining actual transit ridership. They are also the areas where land use is most 
likely to be influenced by transit. By relying on direct demand modeling, we were able to collect 
data on the majority of non-commuter-rail fixed guideway transit in the United States. This gives 
us greater confidence in making generalizations about other American transit systems. 

We compiled average weekday ridership, station park-and-ride spots, transit schedules, 
and bus connections from the online documents, websites, and unpublished records for the 20 
different transit agencies included in the study. Station-level ridership is the average of weekday 
alightings and boardings, or one or the other, when transit agencies were unable to provide both 
counts. The majority of counts came from September 2009. Several agencies, however, could not 
provide counts for this month, and we instead relied on the most recent non-summer figures or 
average annual weekday ridership. While seasonality and annual trends influence ridership, there 
is no reason to believe that this variation is correlated with any of the other variables we include. 
Any differences will be captured by the error term and city-level dummy variables, resulting in 
slightly larger standard errors, but not in biased estimates. 

We combined these data with spatial point files from the National Transit Atlas Database 
and individual transit agencies. Using these points, we generated cropped one-quarter mile bands 
of transit-station catchment areas with assigned Zip-code-level job counts from the US Census’ 
2007 County Business Patterns and Esri’s 2007 block-group population estimates (26, 27). We 
found these data to fit our models better than 2000 Census population counts. Figure 1 shows the 
quarter-mile catchment bands for several stations in Boston, MA. We opted to use cropped area, 
since they better reflect a station’s catchment area, relative to the location of other stations, and 
also tend to provide better model fits (28, 23). While we also cropped station-area based on 
network distances for several systems, we opted to rely on a radial based approach for two 
reasons. First, the majority of direct demand models rely on a radial area. Second, the network 
calculations add significantly to the data collection efforts with little to no benefit in terms of 
predictive power. Many stations are surrounded by parks, paths, and parking lots which provide 
pedestrian access but do not show up in available road network files. Adding these manually is 
labor-intensive and counterintuitive to the direct demand models objective of simplifying 
predictions. 

Table 1 provides descriptive statistics and sources for the variables included in the 
analysis. While we also tested and included system-level and metropolitan-area statistics, 
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because they provided superior model fits, we used city-level dummy variables to capture these 
larger system effects.  
 
TABLE 1 Variables Included in Ridership Models 
	
  	
   Mean	
   St.	
  Dv.	
   Min.	
   Max.	
   Year	
   Source	
  
Average	
  of	
  weekday	
  
boardings/alightings	
  

6,020	
   11,318	
   46	
   189,507	
   2009	
   (a)	
  

Frequency	
  (trains	
  during	
  AM	
  peak	
  
hour)	
  

23	
   19	
   4	
   269	
   2009	
   (a)	
  

Park-­‐and-­‐ride	
  spaces	
  	
   187	
   518	
   0	
   5,821	
   2009	
   (a)	
  
Regional	
  Rail	
  Connection	
  Dummy	
   0.06	
   0.24	
   0	
   1	
   2009	
   (a)	
  
Bus	
  lines	
  servings	
  station	
  area	
   3.49	
   4.50	
   0	
   35	
   2009	
   (a)	
  
Terminal	
  station	
  dummy	
   0.10	
   0.30	
   0	
   1	
   2009	
   (a)	
  
Airport	
  station	
  dummy	
   0.01	
   0.11	
   0	
   1	
   2009	
   (a)	
  
Linear	
  distance	
  (yards)	
  to	
  central	
  
business	
  district	
  	
  

9,944	
   8,026	
   0	
   51,283	
   2009	
   (a)	
  

Linear	
  distance	
  (yards)	
  to	
  nearest	
  
station	
  

1,042	
   980	
   19	
   15,514	
   2009	
   (a)	
  

Population	
  within	
  0.25	
  miles	
   3,687	
   4,318	
   0	
   28,237	
   2007	
   (b)	
  
Population	
  in	
  0.25-­‐to-­‐0.50-­‐mile	
  band	
   3,930	
   4,068	
   0	
   36,322	
   2007	
   (b)	
  
Population	
  in	
  0.50-­‐to-­‐0.75-­‐mile	
  band	
   2,877	
   3,560	
   0	
   39,782	
   2007	
   (b)	
  
Population	
  in	
  0.75-­‐to-­‐1.0-­‐mile	
  band	
   2,362	
   3,221	
   0	
   25,639	
   2007	
   (b)	
  
Jobs	
  within	
  0.25	
  miles	
   2,463	
   5,673	
   0	
   86,102	
   2007	
   (c)	
  
Jobs	
  in	
  0.25-­‐to-­‐0.50-­‐mile	
  band	
   2,091	
   4,073	
   0	
   64,216	
   2007	
   (c)	
  
Jobs	
  in	
  0.50-­‐to-­‐0.75-­‐mile	
  band	
   1,341	
   2,448	
   0	
   46,950	
   2007	
   (c)	
  
Jobs	
  in	
  0.75-­‐to-­‐1.0-­‐mile	
  band	
   977	
   1,397	
   0	
   16,428	
   2007	
   (c)	
  
Observations	
   1449	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
Notes.	
  (a)	
  Transit	
  agencies	
  and	
  GIS	
  calculations,	
  (b)	
  Esri	
  2007	
  population	
  block	
  group	
  estimates	
  and	
  GIS	
  
calculations;	
  (c)	
  U.S.	
  Census	
  Zipcode	
  County	
  Business	
  Patterns	
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FIGURE 1 Cropped Station Catchment Areas 

 
 

FINDINGS  
Our first set of models test the predictive power of direct demand models using different 

radial catchment areas. Each increment increases in one quarter mile bands and excludes 
geographic areas that are closer to another transit station. Each model includes the full list of 
station controls from table 1, as well as modal and city dummy variables to capture variation 
across mode types and specific cities. Table 2, which models different radii population counts, 
includes a full range job counts in quarter-mile-catchment bands out to 1.5 miles (2.4 
kilometers). Table 3 reverses the jobs and population counts to see if the best predictive 
catchment area differs for jobs and population counts. We ran both sets of models using ordinary 
least squares regressions with standard errors clustered by city. Northern New Jersey cities were 
clustered together and given the same city-level dummy.  

The most notable finding is that the chosen station catchment area has little to no 
influence on the predictive power of the models. For the six radii catchment areas, the adjusted r-
square ranges from 0.742 to 0.746 for population and from 0.723 to 0.745 for jobs. This suggests 
that, for the purposes of direct demand modeling, discussions about the appropriate walking 
distance or type of catchment area (radial, diamond, or network) are largely irrelevant. 
Nevertheless, the best fitting models are the half-mile and three-quarter-mile radii for population 
counts and, more noticeably, the quarter-mile radius for job counts. The declining parameter 
estimates with increasing radius distance follow expectations. An additional person within a 
quarter mile of a station correlates with 0.338 more average weekday trips; within one half-mile, 
0.249 more. 
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TABLE 2 Ordinary Least Squares Regressions of the Influence of Catchment-  
Area Population on the Average of Weekday Boardings and Alightingsa 
	
  	
   (1)	
   (2)	
   (3)	
   (4)	
   (5)	
   (6)	
  
Population	
  within	
  
0.25	
  miles	
  

0.338***	
   	
   	
   	
   	
   	
  
(6.02)	
   	
   	
   	
   	
   	
  

Population	
  within	
  
0.50	
  miles	
  

	
   0.249***	
   	
   	
   	
   	
  
	
   (4.62)	
   	
   	
   	
   	
  

Population	
  within	
  
0.75	
  miles	
  

	
   	
   0.183**	
   	
   	
   	
  
	
   	
   (3.52)	
   	
   	
   	
  

Population	
  within	
  
1.00	
  miles	
  

	
   	
   	
   0.146**	
   	
   	
  
	
   	
   	
   (3.00)	
   	
   	
  

Population	
  within	
  
1.25	
  miles	
  

	
   	
   	
   	
   0.122*	
   	
  
	
   	
   	
   	
   (2.67)	
   	
  

Population	
  within	
  
1.50	
  miles	
  

	
   	
   	
   	
   	
   0.104*	
  
	
   	
   	
   	
   	
   (2.38)	
  

Observations	
   1449	
   1449	
   1449	
   1449	
   1449	
   1449	
  
Adjusted	
  R-­‐squared	
   0.7402	
   0.7463	
   0.7463	
   0.7454	
   0.7445	
   0.7436	
  
Notes:	
  (a)	
  For	
  a	
  list	
  of	
  the	
  included	
  control	
  variables,	
  see	
  Table	
  1.	
  The	
  regression	
  also	
  
includes	
  six	
  job	
  count	
  variables	
  in	
  quarter-­‐mile	
  bands	
  out	
  to	
  1.5	
  miles.	
  	
  	
  
(b)Robust	
  clustered	
  t	
  statistics	
  in	
  parentheses;	
  (c)	
  *	
  p<0.05,	
  **	
  p<0.01,	
  	
  ***	
  p<0.001	
  

 
TABLE 3 Ordinary Least Squares Regressions of the Influence of Catchment-  
Area Jobs on the Average of Weekday Boardings and Alightingsa 
	
  	
   (1)	
   (2)	
   (3)	
   (4)	
   (5)	
   (6)	
  
Jobs	
  within	
  0.25	
  
miles	
  

0.685***	
   	
   	
   	
   	
   	
  
(4.25)	
   	
   	
   	
   	
   	
  

Jobs	
  within	
  0.50	
  
miles	
  

	
   0.421***	
   	
   	
   	
   	
  
	
   (4.88)	
   	
   	
   	
   	
  

Jobs	
  within	
  0.75	
  
miles	
  

	
   	
   0.342***	
   	
   	
   	
  
	
   	
   (4.80)	
   	
   	
   	
  

Jobs	
  within	
  1.00	
  
miles	
  

	
   	
   	
   0.317***	
   	
   	
  
	
   	
   	
   (4.29)	
   	
   	
  

Jobs	
  within	
  1.25	
  
miles	
  

	
   	
   	
   	
   0.301***	
   	
  
	
   	
   	
   	
   (3.89)	
   	
  

Jobs	
  within	
  1.50	
  
miles	
  

	
   	
   	
   	
   	
   0.287**	
  
	
   	
   	
   	
   	
   (3.55)	
  

Observations	
   1449	
   1449	
   1449	
   1449	
   1449	
   1449	
  
Adjusted	
  R-­‐squared	
   0.7448	
   0.7405	
   0.7333	
   0.7287	
   0.7255	
   0.7225	
  
Notes:	
  (a)	
  For	
  a	
  list	
  of	
  the	
  included	
  control	
  variables,	
  see	
  Table	
  1.	
  The	
  regression	
  also	
  
includes	
  six	
  population	
  count	
  variables	
  in	
  quarter-­‐mile	
  bands	
  out	
  to	
  1.5	
  miles.	
  	
  	
  
(b)Robust	
  clustered	
  t	
  statistics	
  in	
  parentheses;	
  (c)	
  *	
  p<0.05,	
  **	
  p<0.01,	
  	
  ***	
  p<0.001	
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To assess how jobs and population concentrations at different distances from transit 
influence ridership and to try to determine an optimal catchment-area radius, we reran the 
models including counts in quarter mile bands out to one mile. What one is looking for is a 
precipitous drop in coefficients from one distance band to the next – i.e., a clear inflection point 
or step function that can serve as a benchmark.  
  Model 1 in Table 4 includes all catchment bands for job and population counts.  For 
population counts, the quarter-mile and quarter-to-half-mile bands are highly significant and 
provide reasonable and expected results. The quarter-mile counts for jobs also provide 
reasonable, significant, and expected results. More distant bands, however, result in some 
unexpected signs and parameter estimate magnitudes. For example, it is somewhat unexpected 
that the half-to-three-quarter-mile band is insignificant, while the three-quarter-to-one-mile band 
has an expected sign and magnitude for population counts. The model, however, suffers from 
high multicollinearity. Variance inflation factors (VIF) for job and population counts range from 
2.55 to 8.18. While there is no strict rule on acceptable VIF scores, scores above 5, combined 
with irregular parameter estimates suggest that the model is over-fitting the data and that bands 
should be dropped. Models 2 through 4 drop additional bands to evaluate the impacts on the 
model. The quarter-mile band provides the best model fit for job counts and, when included with 
other bands, is the most statistically significant. The case for the best population count band is 
less clear. Three of the bands are statistically significant in the first model. However, based on 
the insignificance of the third band in model 1 and the results of Table 2, there is some limited 
evidence that the half-mile band performs best. Model 4 includes the first two distance bands for 
population. The parameter estimates are statistically different, but surprisingly higher for the 
second band than the first. A chi-squared test of the model’s power when assuming the estimates 
are equal, however, suggests that it is appropriate to combine the two into a single parameter, the 
half-mile radius (Model 5). 

 
TABLE 4 Ordinary Least Squares Regressions of the Influence of Catchment-  
Area Jobs and Population on the Average of Weekday Boardings and Alightingsa 
	
  	
   (1)	
   (2)	
   (3)	
   (4)	
   (5)	
  
Population	
  within	
  0.25	
  miles	
   0.209**	
   0.214**	
   0.196**	
   0.201**	
   -­‐	
  

(0.0684)	
   (0.0689)	
   (0.0617)	
   (0.0609)	
   	
  
Population	
  in	
  0.25-­‐to-­‐0.50-­‐mile	
  
band	
  

0.258***	
   0.244***	
   0.286***	
   0.322***	
   -­‐	
  
(0.0590)	
   (0.0602)	
   (0.0595)	
   (0.0561)	
   	
  

Population	
  in	
  0.50-­‐to-­‐0.75-­‐mile	
  
band	
  

-­‐0.0109	
   0.0626	
   -­‐	
   -­‐	
   -­‐	
  
(0.0848)	
   (0.0763)	
   	
   	
   	
  

Population	
  in	
  0.75-­‐to-­‐1.0-­‐mile	
  
band	
  

0.117*	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  
(0.0543)	
   	
   	
   	
   	
  

Jobs	
  within	
  0.25	
  miles	
   0.634**	
   0.633**	
   0.616**	
   0.680***	
   0.681***	
  
(0.186)	
   (0.186)	
   (0.177)	
   (0.157)	
   (0.159)	
  

Jobs	
  in	
  0.25-­‐to-­‐0.50-­‐mile	
  band	
   0.0471	
   0.0685	
   0.132	
   -­‐	
   -­‐	
  
(0.111)	
   (0.109)	
   (0.0682)	
   	
   	
  

Jobs	
  in	
  0.50-­‐to-­‐0.75-­‐mile	
  band	
   0.249*	
   0.132	
   -­‐	
   -­‐	
   -­‐	
  
(0.106)	
   (0.100)	
   	
   	
   	
  

Jobs	
  in	
  0.75-­‐to-­‐1.0-­‐mile	
  band	
   -­‐0.316**	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  
(0.106)	
   	
   	
   	
   	
  



Guerra, Erick, Robert Cervero, and Daniel Tischler                                                             Page 9 
 

Population	
  within	
  0.50	
  miles	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   0.269***	
  
	
   	
   	
   	
   (0.0465)	
  

Observations	
   1449	
   1449	
   1449	
   1449	
   1449	
  
Adjusted	
  R-­‐squared	
   0.746	
   0.746	
   0.746	
   0.745	
   0.745	
  
Notes:	
  (a)	
  For	
  a	
  list	
  of	
  the	
  included	
  control	
  variables,	
  see	
  Table	
  1;	
  
(b)Robust	
  clustered	
  t	
  statistics	
  in	
  parentheses;	
  (c)	
  *	
  p<0.05,	
  **	
  p<0.01,	
  	
  ***	
  p<0.001	
  

 
 In addition to linear specifications, direct demand models are often estimated using a 
power function. This models the log of the dependent variable against the log of all continuous 
dependent variables. To avoid taking the log of zero, we added marginally to continuous 
independent variables. Table 5 presents the results of the preferred linear model against a log-
linear and log-log specification. It also provides parameter estimates for the control variables. 
The log-log model fits the data best and furthermore corrects an unexpected sign from the linear 
model; we expect ridership to decrease rather than increase as a function of distance from the 
central business district. We also reran the models from tables 2, 3, and 4 using a log-log 
specification. We prefer, however, to report the linear estimations since multicollinearity was 
even more problematic with power functions; VIF scores ranged from 4 to 14 with all bands 
included.  
 
TABLE 5 Ordinary Least Squares Regressions of the Average  
Of Weekday Transit Station Boardings and Alightings  
	
  	
   (1)	
   (2)	
   (3)	
  
	
  	
   Linear	
   Log-­‐linear	
   Log-­‐log	
  
Population	
  within	
  0.50	
  
miles	
  

0.269***	
   0.0000342***	
   0.0922*	
  
(5.79)	
   (15.17)	
   (2.27)	
  

Jobs	
  within	
  0.25	
  miles	
   0.681***	
   0.0000266***	
   0.198***	
  
	
   (4.29)	
   (6.60)	
   (3.88)	
  
Frequency	
  (trains	
  during	
  
AM	
  peak	
  hour)	
  

360.7***	
   0.0208***	
   0.875***	
  
(6.73)	
   (6.02)	
   (17.70)	
  

Park-­‐and-­‐ride	
  spaces	
   1.092**	
   0.000279***	
   0.0136***	
  
	
   (3.33)	
   (4.33)	
   (4.20)	
  
Regional	
  Rail	
  Connection	
  
Dummy	
  

4113.6*	
   0.177*	
   0.296**	
  
(2.13)	
   (2.21)	
   (3.37)	
  

Bus	
  lines	
  servings	
  station	
  
area	
  

162.9**	
   0.0640***	
   0.0375***	
  
(3.44)	
   (8.33)	
   (7.79)	
  

Terminal	
  station	
  dummy	
   1482.9***	
   0.0731	
   0.340**	
  
	
   (4.26)	
   (0.91)	
   (3.59)	
  
Airport	
  station	
  dummy	
   3000.6**	
   0.687***	
   0.755***	
  
	
   (3.78)	
   (5.08)	
   (3.98)	
  
Linear	
  distance	
  (yards)	
  to	
  
central	
  business	
  district	
  	
  

0.108*	
   -­‐0.0000145***	
   -­‐0.0204*	
  
(2.40)	
   (-­‐4.82)	
   (-­‐2.74)	
  

Linear	
  distance	
  (yards)	
  to	
  
nearest	
  station	
  

0.195	
   0.00000969	
   0.00971	
  
(1.38)	
   (0.31)	
   (0.40)	
  

Light	
  rail	
  dummy	
  	
   -­‐2861.8*	
   -­‐1.064***	
   -­‐1.098***	
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   (-­‐2.83)	
   (-­‐5.68)	
   (-­‐9.69)	
  
Bus	
  rapid	
  transit	
  dummy	
   -­‐6505.0***	
   -­‐1.553***	
   -­‐1.876***	
  
	
   (-­‐17.72)	
   (-­‐6.05)	
   (-­‐13.13)	
  

City-­‐level	
  dummy	
  variables	
   Yes	
   Yes	
   Yes	
  

Constant	
   -­‐6179.9**	
   7.408***	
   3.907***	
  
	
   (-­‐3.15)	
   (74.47)	
   (7.23)	
  
Observations	
   1449	
   1449	
   1449	
  
Adjusted	
  R-­‐squared	
   0.745	
   0.789	
   0.798	
  
Notes:	
  (a)Robust	
  clustered	
  t	
  statistics	
  in	
  parentheses;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
(b)	
  *	
  p<0.05,	
  **	
  p<0.01,	
  	
  ***	
  p<0.001	
  

  
To test the robustness of our estimates and provide additional evidence for the large and 

growing literature on the influence of job and population concentrations around transit, we ran 
several additional model specifications. Table 6 provides parameter estimates of the influence of 
jobs and population around transit, ranging respectively from 0.20 to 0.47 and 0.09 to 0.345. 
Model 1, the preferred model from Table 5, includes variables on transit technology and service 
frequency. While these factors likely generate transit ridership, they are also influenced by 
demand. Service variables, as shown in models 1 and 2, appear to exert a strong and statistically 
significant influence on station-level transit ridership. At an elasticity of over 0.80, our estimates 
of the influence of service levels on ridership are within the range of previous estimates, but 
higher than average (29).  

Agencies, however, only build high capacity subway or run frequent service where 
demand is high. Removing these endogenous variables nearly doubles the estimated impact of 
jobs and population on transit ridership. The true elasticity likely lies within the bounds of the 
parameter estimates from models 1 and 3. Since coefficients of log-log models represent 
elasticities, the results also show that ridership is more strongly influenced by jobs within ¼ mile 
than population within ½ mile.  While TOD planning tends to focus on residences, these results 
reinforce the findings of others that non-residential development can have an even bigger impact 
on transit ridership (30, 3, 31). This suggests that transit-oriented development policies focus on 
jobs, in addition to housing.  

Finally, we remove the city-level dummy variables. This significantly reduces the 
predictive power of the models and again increases the importance of jobs and population on 
ridership. This indicates that, in a national model of transit ridership, system-level variation is as 
important, or more important, than station-level variation. Some cities have developed driving or 
transit cultures over time, or have other attributes, such as more significant parking constraints, 
that lead to higher or lower ridership. It is important to note, however, that the signs and 
magnitudes of these effects are sensitive to which variables are included in the model. They 
absorb the average effects of all excluded but relevant predictor variables. For example, when 
modal dummy variables are included, Portland has higher ridership than would otherwise be 
expected. However, when not accounting for Portland’s light rail technology, ridership levels are 
lower than otherwise expected.  New Jersey Transit systems have lower ridership than otherwise 
predicted in all models, while Washington D.C. subway has higher than expected ridership. 
Contrary to what one might expect, high concentrations of jobs and people around transit do a 
good job of predicting New York City transit ridership; there does not appear to be some 
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excluded variable that drives the city’s high ridership. Although we tested several system-level 
attributes that influence ridership, these did not provide better fits than the city-level dummy 
variables. 
 
TABLE 6 Log-Log Ordinary Least Squares Direct Models of U.S. Transit Ridership  

	
  	
   (1)	
   (2)	
   (3)	
   (4)	
   (5)	
  
Population	
  within	
  0.50	
  miles	
   0.0922*	
   0.140**	
   0.137**	
   0.147**	
   0.345***	
  

	
  
(2.27)	
   (2.99)	
   (3.15)	
   (3.00)	
   (5.18)	
  

Jobs	
  within	
  0.25	
  miles	
   0.198***	
   0.257***	
   0.374**	
   0.370**	
   0.466***	
  

	
  
(3.88)	
   (3.89)	
   (3.73)	
   (3.78)	
   (4.61)	
  

Park-­‐and-­‐ride	
  spaces	
   0.0136***	
   0.0137***	
   0.0145**	
   -­‐	
   -­‐	
  

	
  
(4.20)	
   (4.06)	
   (3.09)	
  

	
   	
  Regional	
  Rail	
  Connection	
  Dummy	
   0.296**	
   0.292*	
   0.446**	
   -­‐	
   -­‐	
  
(3.37)	
   (2.67)	
   (3.62)	
  

	
   	
  Bus	
  lines	
  servings	
  station	
  area	
   0.0375***	
   0.0401***	
   0.0479***	
   -­‐	
   -­‐	
  

	
  
(7.79)	
   (5.68)	
   (8.60)	
  

	
   	
  Terminal	
  station	
  dummy	
   0.340**	
   0.359***	
   0.322***	
   -­‐	
   -­‐	
  

	
  
(3.59)	
   (3.96)	
   (4.26)	
  

	
   	
  Airport	
  station	
  dummy	
   0.755***	
   0.788***	
   0.753**	
   -­‐	
   -­‐	
  

	
  
(3.98)	
   (3.90)	
   (3.31)	
  

	
   	
  Linear	
  distance	
  (yards)	
  to	
  central	
  
business	
  district	
  	
  

-­‐0.0204*	
   -­‐0.0256*	
   -­‐0.0343*	
   -­‐	
   -­‐	
  
(-­‐2.74)	
   (-­‐2.46)	
   (-­‐2.16)	
  

	
   	
  Linear	
  distance	
  (yards)	
  to	
  nearest	
  
station	
  

0.00971	
   0.0932*	
   0.0589	
   -­‐	
   -­‐	
  
(0.40)	
   (2.47)	
   (1.22)	
  

	
   	
  Frequency	
  (trains	
  during	
  AM	
  
peak	
  hour)	
  

0.875***	
   0.817***	
   -­‐	
   -­‐	
   -­‐	
  
(17.70)	
   (13.24)	
  

	
   	
   	
  Light	
  rail	
  dummy	
  (1=LRT)	
   -­‐1.098***	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  

	
  
(-­‐9.69)	
  

	
   	
   	
   	
  BRT	
  dummy	
  (1=BRT)	
   -­‐1.876***	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  
	
  	
   (-­‐13.13)	
   	
  	
   	
  	
   	
  	
  

	
  City-­‐level	
  	
  dummy	
  variables	
   	
  	
   	
  	
   	
  	
   	
  	
  
	
  Baltimore	
   -­‐0.203*	
   -­‐0.922***	
   -­‐1.197***	
   -­‐1.383***	
   -­‐	
  

Boston	
   -­‐0.0115	
   -­‐0.629***	
   -­‐0.367***	
   -­‐0.730***	
   -­‐	
  
Buffalo	
   0.388**	
   -­‐0.689***	
   -­‐1.044***	
   -­‐1.191***	
   -­‐	
  
Chicago	
   -­‐0.506***	
   -­‐0.491***	
   -­‐0.347***	
   -­‐0.605***	
   -­‐	
  
Dallas	
   0.279*	
   -­‐0.814***	
   -­‐0.908***	
   -­‐0.961***	
   -­‐	
  
Denver	
   -­‐0.0396	
   -­‐1.113***	
   -­‐1.211***	
   -­‐1.271***	
   -­‐	
  
Los	
  Angeles	
   0.303**	
   -­‐0.785***	
   -­‐0.695***	
   -­‐0.776***	
   -­‐	
  
Miami	
   -­‐0.765***	
   -­‐0.792***	
   -­‐0.835***	
   -­‐0.747***	
   -­‐	
  
Minneapolis	
   0.432**	
   -­‐0.607***	
   -­‐0.733***	
   -­‐1.071***	
   -­‐	
  
New	
  York	
   0.0935	
   -­‐0.0107	
   0.289*	
   -­‐0.106	
   -­‐	
  
Newark/Jersey	
  City	
   -­‐0.914***	
   -­‐1.965***	
   -­‐1.970***	
   -­‐2.197***	
   -­‐	
  
Phoenix	
   -­‐0.0278	
   -­‐1.115***	
   -­‐1.303***	
   -­‐1.443***	
   -­‐	
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Portland	
   0.327*	
   -­‐0.675***	
   -­‐0.702***	
   -­‐1.066***	
   -­‐	
  
Sacramento	
   0.635***	
   -­‐0.403***	
   -­‐0.879***	
   -­‐1.352***	
   -­‐	
  
San	
  Diego	
   0.295*	
   -­‐0.788***	
   -­‐1.004***	
   -­‐1.308***	
   -­‐	
  
San	
  Francisco	
   0.0560	
   -­‐0.0151	
   0.157*	
   0.330***	
   -­‐	
  
San	
  Jose	
   -­‐0.681***	
   -­‐1.751***	
   -­‐2.188***	
   -­‐2.440***	
   -­‐	
  
St.	
  Louis	
   0.557**	
   -­‐0.481***	
   -­‐0.737***	
   -­‐0.879***	
   -­‐	
  
Trenton	
   -­‐0.503**	
   -­‐1.546***	
   -­‐1.977***	
   -­‐2.156***	
   -­‐	
  
Washington	
  D.C.	
   0.459***	
   0.500***	
   1.026***	
   0.300***	
   -­‐	
  
Constant	
   3.907***	
   2.750**	
   4.606***	
   4.778***	
   1.812	
  
Observations	
   1449	
   1449	
   1449	
   1449	
   1449	
  
Adjusted	
  R-­‐squared	
   0.798	
   0.734	
   0.667	
   0.577	
   0.334	
  
Notes:	
  (a)Robust	
  clustered	
  t	
  statistics	
  in	
  parentheses;	
  (b)	
  *	
  p<0.05,	
  **	
  p<0.01,	
  	
  ***	
  p<0.001	
  

 
 
CONCLUSION 

Our results strongly indicate that, for purposes of predicting ridership, little is gained 
from using a particular station catchment area or type over another. The marginal gains from 
using a quarter-mile or half-mile circle are quite small. The benefits from using a diamond shape 
or network path will be equally small. As a result, direct demand modelers would do well to use 
whatever catchment is most readily available or easily calculated. The case for the correct 
catchment area, however, is far from clear. That said, when testing quarter-mile radial bands, we 
find some indication that the quarter-mile catchment area works best for predicting ridership as a 
function of jobs, while the half-mile radius works best for population. This is far from definitive 
and researchers should continue to test the appropriate boundaries when possible. If, however, a 
researcher lacks the data or resources to model multiple catchment areas or needs to choose an 
area from which to conduct surveys on transit-adjacent firms or households, our research 
provides some evidence that firms should be chosen from within a quarter-mile radius and 
households within a half-mile. 
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