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Abstract The present study explored multi-scale entropy
(MSE) analysis to investigate the entropy of resting state
fMRI signals across multiple time scales. MSE analysis was
developed to distinguish random noise from complex sig-
nals since the entropy of the former decreases with longer
time scales while the latter signal maintains its entropy due
to a “self-resemblance” across time scales. A long resting
state BOLD fMRI (rs-fMRI) scan with 1000 data points was
performed on five healthy young volunteers to investigate
the spatial and temporal characteristics of entropy across
multiple time scales. A shorter rs-fMRI scan with 240 data
points was performed on a cohort of subjects consisting of
healthy young (age 23 ± 2 years, n = 8) and aged volun-
teers (age 66 ± 3 years, n = 8) to investigate the effect of
healthy aging on the entropy of rs-fMRI. The results showed
that MSE of gray matter, rather than white matter, resem-
bles closely that of f−1 noise over multiple time scales. By
filtering out high frequency random fluctuations, MSE anal-
ysis is able to reveal enhanced contrast in entropy between
gray and white matter, as well as between age groups at
longer time scales. Our data support the use of MSE analy-
sis as a validation metric for quantifying the complexity of
rs-fMRI signals.
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Introduction

The human brain is one of the most complex informa-
tion processing systems with 10-100 billion neurons and
1014 synapses. Various neurological diseases and disorders
are known to affect the ability of the brain to function,
in multiple capacities, over multiple time scales. The abil-
ity to discern between the severities of these conditions
on the capacity of brain function is crucial to under-
standing their evolution. During the past few decades, a
variety of measures derived from the fields of nonlinear
statistics and information theory have been developed to
describe the dynamics of physiological systems (Goldberger
1996). Many of these are based on the concept of fractals
(Mandelbrot 1982). Fractal processes are characterized by
“self-resemblance” over multiple measurement scales, and
their frequency spectra typically show an inverse power-law
(f−1-like) scaling pattern (Goldberger and West 1987; He
2011; Ciuciu et al. 2012).

One of the most widely used non-linear statistics to
quantify regularity in serial data of biological systems
is approximate entropy (ApEn) introduced by Pincus in
1991 (Pincus 1991). ApEn and its variants such as Sam-
ple Entropy (SampEn) (Richman and Moorman 2000)
measure the logarithmic likelihood (or conditional prob-
ability) that runs of patterns that are close (within the
same tolerance width r) for m contiguous observations
remain close on subsequent incremental comparisons (m+
1). Higher ApEn values generally implicate that the pro-
cess is less predictable (or more complex). ApEn and
SampEn have been successfully applied to biological sig-
nals such as cardiac electric activity (ECG), heart rate,
blood pressure, respiratory patterns, brain electric activity
(EEG), mood ratings, and hormonal release, to distinguish
healthy function from disease, and to predict the onset of
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adverse health-related events (Abasolo et al. 2005; Kaplan
et al. 1991; Pincus 2006; Pincus and Keefe 1992; Ryan
et al. 1994; Schuckers and Raphisak 1999). A general
trend of decreasing complexity of physiological signals
with aging has also been reported (Lipsitz 2004; Pincus
2006).

Resting state fMRI (rs-fMRI) based on the blood-
oxygen-level-dependent (BOLD) contrast displays many
features indicative of fractal behavior such as a f−1 power
spectrum (Bullmore et al. 2004; Wang et al. 2003; Zarahn
et al. 1997). To date, however, the analysis of resting
state BOLD fMRI has been limited to conventional lin-
ear statistics such as cross-correlation and amplitude of
low frequency fluctuations (Biswal et al. 2010; Yang et al.
2007). Evidence from both task-based fMRI studies and
animal electrophysiology suggests that rs-fMRI time series
possess non-stationary properties with dynamic changes in
functional connectivity within time scales of seconds to
minutes (Chang and Glover 2010). In the investigation of
non-stationary time series, linear statistical methods such
as Fourier analysis performs poorly since it is based on a
global, location insensitive frequency representation. Based
on these theoretical grounds, we (Liu et al. 2012) and oth-
ers (Sokunbi et al. 2011), have recently explored the use
of ApEn as an index for the complexity and regularity
of BOLD fMRI time-series in healthy young and elderly
populations as well as in subjects associated with familial
Alzheimers disease (fAD). Consistent with existing studies
on the complexity of physiological signals, ApEn of BOLD
fMRI was found to decrease with normal aging as well as
deteriorating cognitive/behavioral performance (Liu et al.
2012; Sokunbi et al. 2011).

One limitation of using ApEn (or SampEn) as an index
for the complexity of rs-fMRI, however, is that the entropy
may not be directly interpreted as the degree of complexity,
since random noise yields the highest entropy but does not
represent the most complex process. In addition, experimen-
tal confounds such as thermal system noise, physiological
noise and limitations on the signal length may inject a con-
siderable amount of uncertainty at the typical time scale
or sampling rate of ∼0.5 Hz (TR ∼ 2 s) in rs-fMRI.
Multi-scale entropy (MSE) analysis (Costa et al. 2002) was
developed to exploit the fractal scaling behavior in many
complex systems by calculating the entropy of a signal at
multiple time scales. In MSE analysis, a series of entropy
values are calculated on coarse-grained time series that
are constructed by averaging the original time series over
a range of time scales. Systems with a f−1 power spec-
trum exhibit constant entropy over various time scales (due
to their fractal properties), whereas random noise shows a
marked decrease in entropy at longer time scales (as ran-
dom fluctuations are smoothed out). The primary purpose

of the present study was to explore MSE analysis to inves-
tigate the spatial and temporal characteristics of the entropy
of rs-fMRI signals across multiple time scales (0.05 Hz <

f < 0.5 Hz) in healthy subjects. The second purpose of this
study was to apply MSE analysis to investigate the healthy
aging effect on the complexity of rs-fMRI. We hypothesized
that MSE of rs-fMRI in gray matter resembles that of f−1

time series, and MSE at longer time scales shows greater
age related decline than MSE at the original time scale
of 1 (Smith et al. 2013).

Theory

MSE analysis is based on sample entropy (SampEn) which
is a variant of ApEn that is robust to the underestimation
of entropy when the match count is low (Richman and
Moorman 2000):

SampEn(m, r, N) = −log
Cm+1(r)

Cm(r)
, (1)

where m is the pattern length, r is a distance threshold, and N
is the length of the time series. Cm(r) is the correlation sum
and measures the average likelihood that m-length patterns
in data recur as a function of resolution:

Cm(r) = 1

(N −m)

N−m+1∑

i,j=0

�
(
r− ‖ umi − umj ‖

)

N −m+ 1
, (2)

where ui and uj are two patterns of length m and � is
the Heavyside function. Two patterns match if the distance
is less than a selected threshold value, r. In this study the
distance is calculated using the maximum norm, i.e. the
maximum absolute component-wise difference. The process
is repeated for m + 1-length patterns. The ratio between
these two values is the average conditional probability that
if two m-length patterns match for a given threshold r, then
they will continue to match for an additional time point.
Figure 1 illustrates the calculation of SampEn on rs-fMRI
signals at the original time scale of 1.

MSE analysis investigates the entropy of longer time
scale fluctuations by filtering out high frequency fluctua-
tions through a coarse graining procedure of the original
signal where τ -consecutive points are averaged to create a
new time series of length N/τ .

yτi = 1

τ

i+τ−1∑

i

xi (3)

where τ is the time scale.



286 Brain Imaging and Behavior (2014) 8:284–291

Fig. 1 Illustration of the calculation of SampEn of rs-fMRI at the original time scale of 1 with a pattern length of m and a threshold of r. Here
the red-blue patterns will be considered a match for m = 2, but the red-blue-green patterns will not be counted for m = 3, indicating an irregular
process

Methods and materials

Subjects

Two experiments (E1, E2) were performed to investigate the
spatiotemporal characteristics of MSE analysis of rs-fMRI
in healthy young subjects as well as the aging effect on
the complexity of rs-fMRI, respectively. Five healthy young
subjects (age 21± 2 years, 3 female, 2 male) participated in
E1, and a total of 16 healthy subjects, 8 young (age 23 ± 2
yrs, 6 males) and 8 elderly subjects (age 66±3 yrs, 5 males),
participated in E2. Written informed consents were obtained
from all participants who were screened for neurological or
psychiatric illnesses.

Data acquisition

All MRI experiments were performed on Siemens TIM Trio
3T scanners (Erlangen, Germany) using 12-channel head
coil. In E1 subjects underwent a long resting-state BOLD
fMRI scan with their eyes open, using standard gradient-
echo echo-planar imaging (EPI). Imaging parameters were -
FOV=256 mm; TR=1370 ms; matrix= [64, 64]; 1000 time
points; TE = 30 ms (10 ms was also collected for a single
volunteer); flip angle=57◦; 27 slices with 4 mm thickness.
Respiratory and pulse signals were not collected for E1.

In E2 a single-shot dual-echo gradient-echo EPI
sequence was used. Each scan with 240 acquisitions took
8 min. Ten oblique slices with 5 mm thickness and 1 mm
gap were scanned parallel to the anterior-posterior commis-
sure (AC-PC). Other parameters included - FOV = 22 cm;
matrix = [64, 64]; TR = 1000 ms (effective TR = 2000
ms); flip angle= 65◦ (Liu et al. 2012). Respiratory and pulse
signals were recorded in realtime using respiratory belt and
pulse-oximetry for E2.

In both E1 and E2 conventional T1 weighted 3D images
were acquired using an MPRAGE sequence (TR / TE /
TI = 1730 / 3.96 / 1100 ms; flip angle = 15◦; matrix =

[256, 256, 192]; voxel size = 1 × 1 × 1 mm3) for anatomic

MRI.

Data processing

The following preprocessing steps were performed for E1:

1) The fMRI data were realigned to correct for motion using

FSL’s MCFLIRT function (FMRIB, Oxford, UK), 2) the

motion effects were further reduced by regression analysis

using the 6 rigid-body motion parameters of translation dis-

placements and rotation angles across rs-fMRI time series,

3) linear trends were then regressed out. The same process

was performed for E2 but cardiac and respiratory signals

were collected and corrected for using RETROICOR. No

other regressors (e.g. white matter/CSF, or global signal)

were used.

Whole brain MSE analysis is performed voxelwise using

a custom MATLAB program. A threshold size of r = 0.3

is used in this report. To gain an understanding of the effect

of the threshold parameter, we perform the MSE analysis

for an additional threshold size r = 1.3. However, with

the exception of reduced SampEn values, no significant

changes to the results presented in this report were found.

Due to increasing pattern overlap decreasing SampEn’s sta-

tistical power, previous reports have indicated the parameter

length, m, should be set such that m∼log(N), where N is the

length of the time series. A pattern length of m = 2 is used

for both E1 (N = 1000), and E2 (N = 220). The mean vol-

ume of the motion corrected time series was co-registered

to the T1-weighted structural MRI. Whole-brain gray mat-

ter, white matter, and cerebrospinal fluid (CSF) masks were

segmented based on T1-weighted structural MRI. Average

MSE values of gray matter, white matter, and CSF were

calculated using the corresponding masks in each subject.
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Statistical analyses

Group statistics are performed with a multivariate t-test
using Hotelling’s T2-distribution. Entropy values at dif-
ferent scales become components of an ‘entropy vec-
tor’. Group statistics are based on comparing the distance
between mean entropy vectors normalized by a pooled
covariance matrix, and adjusted for multiple comparisons
within the gray matter volume. This method is preferable to
separate univariate t-tests conducted at each scale, as all data
exhibit some level of positive correlation due to the presence
of noise. To test the null hypothesis that the entropy values
are dominated by random fluctuations, MSE analysis (using
the same m = 2 and r = 0.3, 1.3 values) was performed
on ten thousand white noise time series of equal length to
the voxel time series. The same process was undergone to
test for the null hypothesis that the entropy values arise from
f−1 (‘pink’) noise time series. Pink noise time series were
generated by applying a f−1 frequency filter to a generated
white noise frequency spectrum followed by an inverse fast
Fourier transform.

Results

Spatiotemporal characteristics of MSE analysis of rs-fMRI
(E1)

Figure 2 shows the effect of motion on the group mean gray
and white matter entropy values for E1 (N = 1000) sub-
jects over multiple time scales. The increase SampEn after
motion correction for both gray and white matter point to the
presence of rhythmic motion, e.g. respiratory motion. For
comparison, entropy for Gaussian distributed uncorrelated
(white) noise and correlated (pink - f−1) noise at multiple

Fig. 2 Group average gray matter and white matter SampEn over
multiple time scales, before and after motion correction. SampEn of
Gaussian-distributed uncorrelated (white) and correlated (pink f−1)
noise are plotted for comparison

time scales are shown. At shorter time scales motion cor-
rected gray matter exhibits entropy values falling in between
f−1 and white noise, whereas motion corrected white mat-
ter shows very similar values to white noise. However,
at longer time scales (lower temporal frequencies) motion
corrected gray matter exhibits higher entropy values com-
pared to white matter. Overall, MSE of gray matter, rather
than white matter, closely resembles that of f−1 noise. We
further tested for the effect of physiological noise on the
average gray matter entropy of the young subject data sets
(E2) by regressing out cardiac and respiratory fluctuations
using RETROICOR (Glover et al. 2000), however, the effect
is very weak.

To test if the entropy difference between gray and white
matter is due at least in part to the presence of spontaneous
fluctuations in the gray matter, a TE = 10 ms, 4D data set
is collected and compared to a TE = 30 ms, 4D data set
(both with 1000 time points). Figure 3 shows that increas-
ing TE from 10 ms to 30 ms, a greater than 10 % increase in
the average gray matter entropy is seen at the highest scale,
while a smaller than 5 % increase is seen in the average
white matter entropy. This indicates that SampEn is sensi-
tive to the presence of spontaneous fluctuations and changes
thereof.

Figure 4 shows the group mean entropy images of three
slices at four different scales (τ = 1, 4, 7, and 10). The
shortest time scale, τ = 1, corresponds to the original sig-
nal. At the shortest scale the entropy is dominated by the
high frequency fluctuations from random noise. By filtering
these fluctuations out the contrast in entropy becomes much
sharper between gray and white matter at longer time scales.

Fig. 3 Test for the effect of spontaneous fluctuations on entropy.
Comparison of average SampEn for gray matter and white matter for
a single volunteer over multiple time scales at TE=10 ms and TE=30
ms. The latter is the approximate time for optimal BOLD contrast. The
inset shows the percent change in entropy as TE is increased from 10
ms to 30 ms. The displayed error bars are approximately the size of the
symbols
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Fig. 4 Group mean SampEn images for three slices, Z = 36, 48,
and 59 (bottom, middle, and top, respectively) in MNI space, of five
volunteers at scales 1, 4, 7, and 10

Aging effects on MSE of rs-fMRI (E2)

Figure 5 shows average gray matter entropy values for 8
young volunteers (age 23±2 yrs) and 8 aged volunteers (age
66 ± 3 yrs). Each group exhibits a similar drop in entropy
with increasing scale. Entropy values at low scales are sim-
ilar between the two groups on account of the dominance of
noise at short time scales. By filtering out random fluctua-
tions in rs-fMRI, the entropy difference between the young
and elderly subjects became more apparent at longer time
scales. Figure 6 shows significant differences between the
two age groups (p < 0.05, with Bonferroni correction) in
the following regions: thalamus, caudate, lingual gyrus, hip-
pocampus, supramarginal gyrus, superior temporal cortex,
and areas associated with the default mode network (mid-
dle temporal gyrus, anterior cingulate cortex, left and right
angular cortex, middle and superior frontal cortex).

Fig. 5 Average gray matter entropy for 8 young volunteers (age 23±2
years) and 8 aged volunteers (age 66 ± 3 years). Plotted error bars
are four standard errors of the respective means, p < 10−4, and
approximately the size of the symbols

Fig. 6 Increased regional MSE in young subjects. Images show
results of multivariate two sample t test comparing healthy young
subjects versus healthy aged subjects. Only clusters with 18 or more
activated voxels (p < 0.05, corrected) are shown. Decreases in MSE
in older subjects are seen in regions associated with the default mode
network: middle temporal gyrus - MTG, anterior cingulate gyrus -
ACG, left and right angular gyrus - AG, middle and superior medial
frontal cortex - MFG, SFGm. Significant decreases are also seen in
the thalamus - THAL, caudate - CD, the lingual gyrus - LING, the
hippocampus -HIPP, the supramarginal gyrus - SMG, and the superior
temporal gyrus - STG. The numbers to the top left of each image refer
to the z coordinate in MNI space

Discussion

In the present study, we explored MSE analysis of rs-
fMRI using a long scan with 1000 data points in healthy
young subjects. White and gray matter both exhibit drops
in entropy with increasing scale similar to the behavior of
white noise. However, the average entropy in gray mat-
ter exhibits slightly smaller values at the shortest timescale
but experience a significantly smaller drop than the average
white matter values with increasing scale. This increased
entropy in gray matter at higher scales resides closer to that
of f−1 noise, compared to entropy values in white mat-
ter. By filtering out high frequency random fluctuations,
the entropy contrast between gray and white matter became
apparent with the former greater than the latter at longer
time scales. In our pilot study on ApEn analysis of rs-fMRI
(i.e., MSE at the original time scale of 1), white matter
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showed significantly higher ApEn values than gray matter,
which has been attributed to a greater fraction of white noise
in white matter than in gray matter (Liu et al. 2012). Due
to sample entropy’s sensitivity to white noise, the observed
difference between gray and white matter entropy is partly
reflective of the relative differences in SNR. However, MSE
analysis reduces this sensitivity by averaging out short time
scale fluctuations. While the MSE of white matter exhibits
values closer to white noise than gray matter, it is still sta-
tistically dissimilar to white noise at longer time scales,
indicating the presence of additional fluctuations.

It has been demonstrated by Logothetis et al. (2001) that
hemodynamic responses in the BOLD signal correlate best
with local field potentials (LFT) that are thought to reflect
the weighted average of input signals on the dendrites and
cell bodies of local neurons. Therefore a higher level of
complexity or entropy value of rs-fMRI is expected in gray
matter than white matter, given the distribution of dendrites
and cell bodies of neurons in gray matter. We sought to
determine if the white matter - gray matter difference in
entropy arises from the presence of spontaneous fluctua-
tions. We compare the average entropies for a single subject
collected at two echo times, 10 ms and 30 ms. The lat-
ter TE manifests greater BOLD effects than the former TE.
At long time scales the average entropy at TE = 30 ms
exhibits larger values over those calculated for TE = 10 ms,
while the reverse holds true at small time scales. We further
investigated the effect of motion and physiological noise on
the average gray and white matter entropy. An increase in
entropy is seen for all scales for both gray and white matter,
possibly arising from a decrease in rhythmic behavior, with
gray matter exhibiting approximately double the increase
of white matter due. Our data suggest that MSE analysis
is effective in smoothing out high frequency random fluc-
tuations and thereby revealing the inherent complexity of
spontaneous neuronal activities in rs-fMRI.

At longer time scales, MSE analysis showed greater age
related decline in the average gray-matter complexity of
resting state BOLD fMRI compared to the original time
scale of 1 (Fig. 5). Using a multivariate t test, increased
activity in younger versus older subjects (p < 0.05, cor-
rected) is seen in the default mode network containing the
middle temporal cortex, the superior and middle frontal
cortex, anterior cingulate cortex, and bilateral activation in
the angular cortex. This is consistent with previous reports
(Damoiseaux et al. 2008), using an ICA based approach
to measure activity. Additionally, the MSE analysis results
presented here show decreased activation in the older sub-
jects in the hippocampus, an area involved with episodic
memory processing, consistent with ICA and event-related
results (Greicius et al. 2004; Daselaar et al. 2006). Large
regions of decreased MSE activation in the older group are

seen in the thalamus and caudate, areas involved in learn-
ing and memory. Interestingly, a recent report has shown
decreased diffusion and increased fractional anisotropy in
the basal ganglia with age (Wang et al. 2010). Our results
are consistent with a recent study that explored MSE anal-
ysis on rs-fMRI data of 99 healthy elderly and 56 younger
subjects (Yang et al. 2013). MSE of BOLD signals from
default mode network (DMN) areas were found to be pos-
itively correlated with cognitive functions and negatively
correlated with aging. It has been suggested that normal
human aging is associated with a loss of complexity in
a variety of fractal-like anatomic structures and physio-
logical processes (Lipsitz 2004; Pincus 2006). Techniques
employing fractal-based analyses have shown aging to be
associated with a loss of complexity in blood pressure, res-
piratory cycle, stride interval, and postural sway dynamics
(Goldberger et al. 2002; Kaplan et al. 1991; Peng et al.
2002). Further, aging may degrade cortical and sub-cortical
connections through cell loss, synaptic degeneration, blood
flow reduction, neurochemical alteration as well as central
nervous system reorganization (Craik and Salthouse 2000).
Taken together, age-related changes may facilitate the ero-
sion of both local and long-range connections in the brain,
decreasing the complexity of spontaneous brain activity.
The age related decline in MSE of rs-fMRI at longer time
scales, observed in the present study, is therefore consistent
with past findings. This result also supports the validity of
MSE analysis for detecting aging effects on the complexity
of rs-fMRI in the presence of confounding random noise.

One limitation of the MSE analysis is that the length of
each coarse-grained time series is equal to the length of the
original time series divided by the scale factor. Therefore,
coarse-grained procedures in MSE with large scale factors
may result in short data length and subsequently unreliable
entropy estimation. As suggested by prior studies, the esti-
mation of ApEn requires signal lengths of 10m to 20m (m:
pattern length) (Richman and Moorman 2000). Multiband
EPI is a recent technical advance of fMRI by performing
parallel imaging in the form of multiband radiofrequency
excitation, in conjunction with k-space under-sampling in
the phase-encode direction (Feinberg et al. 2010; Moeller
et al. 2010). Up to 16-fold acceleration (×4 multiband,
×4 phase under-sampling) can be achieved allowing whole
brain fMRI with high spatial (a few mm3) and/or temporal
resolutions (TR ≤ 1 s). It is expected that multiband EPI
will accelerate rs-fMRI and increase the signal length by
at least 4-fold (TR ∼ 500 ms) compared to standard EPI
(TR = 2 ∼ 3 s ), allowing more reliable MSE analysis. This
is an important direction to pursue in further development
of MSE analysis of rs-fMRI.
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Conclusion

Multi-scale entropy analysis is a promising nonlinear sta-
tistical approach for assessing the complexity of rs-fMRI
signals across multiple time scales. By filtering out high
frequency random fluctuations, MSE analysis was able to
reveal enhanced contrast in entropy between gray and white
matter, as well as between age groups.
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