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Some Further Results on Exact Consumer's Surpius

By W. Michael Hanemann*

In his recent paper Jerry Hausman argues that the enormous interest
aroused by Robert Willig's paper on approximations to the compensating and
equivalent variations for a single price change has tended to obscure the
fact that in many cases exact measures of these welfare concepts can
readily be obtained. In particular, he derives exact formulas for the
compensating variation implied by an ordinary demand function which
(1) exhibits constant price and income elasticities, (ii) is linear in
price and income, or (iii) is quadratic in prices and also in income. Using
some examples he argues that these exact measures may differ by an order of
magnitude from conventional Marshallian measures of consumer's surplus or
deadweight less. I made similar points in my own paper and developed the
same formulas for the compensating variation in cases (i) and (ii). Here I
will present formulas for some other demand functions, not menticned by
Hausman, which are commonly used in empirical demand analysis. These will
be compared with the corresponding formulas for Marshallian consumer’'s

surplus. Before presenting these results, however, I will review Hausman's
T E

approach and explain its relation to the standard exposition of iniegrability
thaory,
I. Imtegrability Tochnlgues
Let xi(p5 vi, =1, .. .,, Wbe a knowy 2t of ordinary deca? Tunctions,
cere pois a vector of N (non-normalized) prices and v 1s moncey incovie. I
waume that these domand functions are each homogeneous of degros zovo in

srices and income and sarisfy the adding-u» condition, Epixi = v, “he standard



textbook accounts of integrability — for example, Angus Deaton and John
Muellbauer, pp. 49-50-— emphasize the role of the system of N partial

differential equations

g m . ;
(13 “—5—= xi(p, m) i=1, ..., 0

wvhose solution, the income compensation function, u{p), satisfies the initial
condition u(p¥*) = y*. The income compensation function is the key tool of
integrability thecory. From it one can construct the indirect utility function,
vi{p, v), and the expenditure function, e(p, u), in terms of which the
compensating and equivalent variations are defined, asz well as the direct
utility function, u(x).

However, because the ordinary demand functions xi(p, y) possess the
homogeneity and adding-up properties, the system of equations (1) can be

reduced to an equivalent system of (N- 1) partial differential equations

Moo, - L _
2y aﬂiwxi("ﬁ,m) i=1, ..., §N-1 .

Here ;i(ﬁ, wy, =1, ..., N-1 are normalized ordinary demand functions; their

arguments are the (N-1) relative prices, L pi/pN’ i=1, ..., N-1, and

H

relative income, w £ v/p,.. The solution of (2), denoted u{w), satisfies the

iN

initial condition Ti(=*) = w*., From it one can construct the normalized

indireer utility functlon, v(w, w), and the nornclized expenditure funscrion,

o 1

o{s, u). The pairs of functions plp), uly) and ={(p, u), e{n,u) sabis ; Euler's

reintion for homogensous [unctions: ulp) = p, ;(pl/px, ey D, ifﬁ“} and
R . { N Y

eln, uy = ® E(plfPNQ C ey melpr’ u)., Thu:, as an alternative o

Py
solving the system (1) znd obtaining e(p, u) directly, one can solve [hn

systes (2) and then apply Fuler's relatien.

Some mathematical integrability conditions are required in order tfor the



systems (1) and {2) to possess a solution. These invelve a regularity
conditien on the demand functiong and the symmetry of the Slutsky terms.
In the case of the system (2}, the regularity and symmetry apply to the

normalized demand functions

(3) R, AR W, B
ELPS T T B Liy=1t eno, N1

In the case of system (1), the regularity and symmetry apply to the
non-normalized demand functions, xi(ps v). Given that pNI>O, the one set
of conditions implies the other. There are also what Leonid Hurwicz calls
economic iptegrability conditions on the systems (1) and (2) which ensure
that the underlying utility function is quasi-concave. These involve the
negative semi-~definiteness of the Slutsky terms. In the case of the system

{(2) the conditions are

9%, _ox
4) [l [ i = J -
{4) 3'“1 +oxg 5 <0 i 1, «« .3 N=1,

For the special case where N= 2, however, the mathematical integrability
problem can always be solved without imposing any conditions on the demand
functions besides regularity, homogeneity and the adding-up property. This
was pointed out by Paul Samnelsonrin the context of the integrability of
the indirect normalized demand functions, which invelves a systewm of partial

o

differential equationse dual to (2). In the context of direct ioreoprability

it can be seen in twe wavs., Any palr of non-veormalized ordinas, dumand
cunetions possessing the homogenelity and adding-up provervtics sl sardsfy
the non~normalizaed Siuosky symmetry condition {see Donald Katzo--, p. 68),
‘herefore, the poir of partial diffeventinl cquations in (1} =usr possess

z solution. Alrervnatively, when N= 2 the syvstem (2) collapses to o single
prdinary differential equation; the regularity condition en the normalized

demand funcrion X}{E¥

» W) ensures that this differential equuiion possesses



a solution. Thus, when N=2 the utility function can always be recoversd
from the ordinary demand functiens either by solving the system cof two
partial differential equations (1) or by solving the single ordinary differ-
ential equation (Z) and applying euler's reiation.z Textbook examples

of integrability for the case where N=2, such as Karl-Coran Maler,

pp. 123-25, generally adopt the first approach. The second approach, which
iz somewhat simpler, is the one that Hausman adopts. The distinction
between these two approaches is only implicit in his paper because he

sers me 1, which leads the normalized and non-normalized expenditure
functions to coincide. 1 emphasize it explicitly here in order to explain
how the single ordinary differential equation which appears in his paper
relates to the system of partiai differential equations which appears

in other accounts of integrability theory.
TI. New Results on Exact Consumar’'s Surplus

It follows from the foregeing that, when N= 2, exact formulas for the
compensating and equivalent wariations can readily be obtained for many
ordinary demand functicons besides those discussed in Hausman's paper. Here
I will consider four demand functions which are commonly found in empirical
studies as alternatives to the linear and log-linear forms discusgsed by

{ausman. The first ic the semi-log form

Omtl%n du + vz

{3} ; w W
1( i) ‘)
where z o 1ls a vector of soocloeconomic variables, The economic intosgrability
condition dmplies the vcoutviction that
() at S, (v, v <0,

The ordinary differential equation corresponding to (2) has the sclution

i



awép(ﬁi) = _(§}€3GHE+ Yz._ Sc

where ¢ is the constant of integration. Taking this as the uriliiy index,
one obtains the normalized indivect utility function

~6w o0 T Y2

(7) v 1

w) = ¢ o= o-e e

¥
! ¢ o
and the normalized expenditure functien

1
§

=

gemﬁ Yz

e(m,, u) =% In[ ~-Gu ~ p

1

By Euler's relation the non-normalized expenditure function is

Py
(8) e(@l, Pys W) =7 n [ ~ du

_ gea(pxlpz) Yz

This can be used to calculate the exact compensating and equivalent variations
associated with a change in one or both prices. Suppose that the individual's
income is yD and the price of the first good changes from p? to pi while the
price of the second good stays constant at pg, which is the case considered
by Hausman. From (7) the individual's original utility level is
(9 W =509, 0D = —e Y y:i._p_g i ﬁﬂ(p?/?g} T
8

Combining {(8) and (9), the compensating variation for this price change is

(10) cv = e(pi, pgs o9 - 50
pY &%) 8 ") v vz _ 8 o il + v 0
- - infe 2 4 2 SyiEy - U SR ] -y
o 6
6
I 1 2 r_:@ ,0 - 1 H
5 et a (3&1 Xl} + i}
vhore x; = xl(?i, L, _\’Q), t =0, 1. For this price change the cocventional

Marshallian measuve of consumer’s soarplus is the quantity 4, deiined as



0 0
(i) A= o ¥1(Py» Pys ¥)dD)
Py
1
Py 0 0,0
= [ " explalp/py) + 80y /p)) + vz ]dp,
0
Py
pD
. P21 0
3 (zl xl).

Substituting this intoe {(10) yields the following relation between the exact

compensating variation and the conventional Marshallian measure

¢ A
(12) cv = -2 nl1 -5 1.
§ P,

Two alternative demand functions which differ from the semi-log form
in that the price elasticity and the income elasticity respectively are

constant are

(13) X, (), W) = ﬁ?eaw toyz
§1(Wl, w) = ey + Yzwé, & # 1.

The respective economic integrability conditions are

{15) a + ﬁﬂlxl{ﬁl, w) <0

Ta the case of the desond function (13), ivtegration of the ordiva .y
¢ifferential equation corresponding to (2) yi2lds
(373 B(n,, w) = ot Inl-fu ~(oye 7
i iy 4 7 l‘f—{j{}'(l 2 1
ence,
P2 ¢ T+ay
D R TR — I ¢ Y2
e(plﬂ st L (S Q,z}[ GL& (1?’9} \pl/pz} & ]e



For the price change described above

pO pOXG N plxl
.2 & 171 171
(18) = -F In [y ) * 1]
Py
whereas
. W_Em_ 11 00
(1%) A= ghg ¥ TR

Therefore the relationship between the compensating variation and the
Marshallian measure dis given by (12). For the demand function (14},

integration of the ordinary differential equation corresponding to (2) yields

1

1-6

-4, aw +Yz]

(20) ary, W o= fu+ (2He™M

Hence
1

1- 1- - -
e(vyy by w = Lupy” & 4 EIGpl oMty 1-d

Accordingly, the compensating variation for the price change is

0 1
(21) v = x) - x) 1] 170 )
whereas the Marshallian measure is
pO
2 0
(22) = Xy ).
Therefore the two measures are related by
L
G, - 8
(23) v =y it =t et T
' ¥
which is in fact the general formula dervived by Robert Willis for the case
¢f a demand funcricn with a constant noa-unitary income elasticity 4

Lastly censider the following modification eof the linear dewmand function

(74} x {n

1 wy o= afnw, b 8w b oyz

L’ i



for which the economic integrability condition is given by (15). Integration

of the ordinary differential equation corresponding to (2) vields

+~%e35ﬂiﬁi(wéﬁ1}

(25) ”é(ﬁi, u) = ue

where Ei(-) is the exponential-integral fumction.S Hence

P
e(Pl, pzs u) = ?2u95(p1/p2) - (“”é%)(aiﬁ Pl - o in p2 + yz)

ap
2 6 ,
+—~E-e (pl/p2> El(—ﬁpl/pz}.

The resulting formula for the compensating variation is

0
P 1,0, 1,0
(26) v = = {x) exp {(5%)(pi NIRRT ae®(P1/P2) [(By/Py) 8ty

P 0, 0 t
2 (py/p5)
where the integral could be evaluated by the methods described in Milton
Abramowitz and Irene Stegum, Chapter 5. By contrast, the Marshallian

consumer’s surplus for this demand function is given by

11 00 1 §;
(27) A = (PIXI - pixl} - a(pl - ?l}.

I1T. Conclusions and a Caveat

In this paper I have extended Hausman's results on the derivation of
vxact welfare measures for single price changes to some additicnal demand
Functions. The demaund {unctions discussed bhere and in Hausman’a_papar
prozably account for wont of the formulations emploved in empivlcnl demand
srudies. However othoc functional forms can in primciple be trestad in a
#imilary manner, and s.ve more general results can be obtained. Yov example,
Just as Willig shows that for apy demand funciion of the form gl{ris w) =

. 8 , . o .
3{73)w the telarior beorween the compensating variation and the conventlional



Marshallian consumer's surplus is given by (23), so too it can be shown that
for any demand function of the form El(ﬁl, w) = a(ﬂl)eﬁw this relation is
given by (12).6 Other general classes of demand functions may have the
property that the ordinary differential eguation corresponding to (2) has

a known solution. Examples include El{ﬁl, w) = a(?{l}w2 + b(ﬁi)w + e{my,
which leads to Riccati's equation, and El(ﬁl, w) = a(ﬁl)w + b(ﬁl}wé, which
leads to Bernoulli's equation. In many cases the solution to the differen-
tial equation will be available in closed form. In other cases, or where
the demand function has a more complex form, the differential equation must
be solved by numerical integration. It is in these cases that Willig's
approximation results are most valuable. His formulas provide z first-ordex
approximation to the income corpensation function associated with an
arbitrary demand function;7 they can be applied even when the exact income
compensation functioﬁ would otherwise have to be obtained by numerical
integration.

The method described above can also be employed when there are two
goods (N = 2) and both prices change, or when N » 2 and only one price changes.
As Hausman points out, the latter case can be treated by invoking Hicks"
comp;site commodity theorem which reduces the multivariate utility function

u(xi, s e ey XN) to an equivalent bivariate utility function u*(xl, Xc)’ where

X, T X, + Zg(pi/pz)xi‘ The general case where N > 7 and two or more prices
change is much harder to treat by the methods described above, since thon

the syvometry conditions (3) reprasent a nontrivial constraint on the solotion
of the aystem of partial differential equations {Z). In principle ocuos pay

be able te apply Willig's avproximations to a sequsnce of single prics
changes, as he suggested in his original unpublishsd technical report.

However, it must be emphasizoed that 1f the ordiowcy demand functicas &0 vot

satlsfy the symmetry conditions, they cannot bhe shown £o be generated by A



1c

conventional utrility maximization process.

It is alsc important that the negative semi-definiteness conditions (4)
be satisfied, although they are sometimes overlooked by practitioners of
demand analysis. This applies whether one is dealing with a single price
change or multiple price changes, and with exact welfare measures or Willig's
approximations. If these conditions are violated over some or all of the
price-income space in question, the exact or approximate welfare measures
that one obtains are meaningless. To see this consider the single price
change mentioned abeve,g There is logically an upper bound on the compensa-
tion required to offset the effects of this price change, namely the extra
amount of money that would be needed tc buy the original gquantity of good 1
at the new price

0,1 0
{28) cv j_xl(pl - pl).

Thig restriction is, in fact, the Laspeyres upper bound on the true cost-of-
living index rewritten in a slightly unfamiliar form.g If the compensated
demand function for good | slopes downwards the restriction will be satis~
fied, since the compensating variation is simply the area under this compen-
sated demand function between the prices pi and pg. However, if the negative
semi~definiteness condition (4} is vieolated, the compensated demand function
has a positive slope, In that case, whether one calculates the compensating
variation by the exact method described above or by Willig's approximation,
it will viclate the restricticn in {28). This should be borne in mind

before one engages in applied welfare analysis based un empirical ordinary

demand functions.
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FOOTHOTES

*University of California, Berkeley.
I am assuming that ?N >0. The equivalence of (1} and (2) iz mentioned
by Leonid Hurwicz, pp. 204-05.
zﬂote that the demand functions must still satisfy the negative semi-

definiteness condition (4).

BIﬂ practice this function would usually be estimated by ordinary least

squares in the form: fin X, = am + 8w+ vz.
4See Willig’s equation (15). Note that the same formula applies to
the log-linear demand function discussed by Hausman, gl(ﬁl, w) = eyzﬁ% wén

5

It is not possible, however, to obtain a closed form solution to the
ordinary differential equation (2) generated by the alternative variant of
the linear demand function Ql(ﬁl, w) = QT + &inw + vz.

6

For this class of demand functions, integration of the ordinary

differential equation corresponding to (2) yields

0
P 1 Q, 0
eﬁpip Pga UO) - YO = “jg'inli - 6{E;a(ﬂ1)e6(y /pQ)dﬁl].

L

Making a change of variable from ﬁl to Py produces the general formula (12).
7See his equation (19}, in particular.

8. . . ;
Fssentially the same argument applies to more general price changes.

gln the present cont.xwt, the Laspeyres vwooher bound would conventionally
be written in the form
i O {x, H G G G
Sy e Y P T Ro%p
o - e G 00
Y PpEp TPy
. . . . . 0 . 0 .
Multinlying both sides by vy~ and then subtrocting vy from both sides,
0 - 00

reverbering that y = Lyl vields (28).





