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Abstract

     This paper introduces a new type of nonlinear model, the min-max model, and

analyzes the properties for a pair of series. Stability conditions of this system are given

for the nonlinearly integrated bivariate series. Under these stability conditions, the

difference of the two series has a threshold-type nonlinearity. One can construct a

threshold error correction model from min-max processes. Neglected nonlinearity tests

are applied, to the univariate series and to the system, to detect nonlinearity, and it turns

out that the tests using the system have better power. We apply the min-max model to

U.S. Treasury bill and commercial paper interest rates. The spread of these interest rates

shows a threshold-type nonlinearity, and this model outperforms a linear model in terms

of its predictability out-of-sample.

Keywords: Min-max process, Nonlinear error correction model, Neglected nonlinearity,
Threshold
_____________
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1. Introduction

A new class of non-linear models is introduced, with concentration on the

bivariate process. The process has some theoretical interest, as the univariate series

contains weak evidence of nonlinearity but this evidence becomes strong when the

bivariate system is considered. The bivariate system can be linearly cointegrated but with

a nonlinear error-correction model. The bivariate process will be generated by

x x a y bt t t x t+ += + + +1 1max( , ) ,α β ε (1.1)

y x c y dt t t y t+ += + + +1 1min ( , ) ,γ δ ε (1.2)

where εx,t , εy,t are independent and i.i.d. with variances σx
2 and σy

2 respectively. Although

usually the max-min pair will be used, pairs such as max-max or min-min could be

considered equally well, which gives the title m-m. All such pairs are related using the

rules A3 provided in the Appendix. Thus the min in (1.2) could be replaced by max(γ*xt +

c*, δ*yt + d*) where γ* = -γ, c* = -c, δ* = -δ, d* = -d. It might be noted that linear equations

can be obtained by taking b = -∞ , c = ∞ .

A form of particular interest has α = β = γ = δ = 1 and is called the “integrated m-

m process”, having ,

x x a y bt t t x t+ += + + +1 1max( , ) ,ε (1.3)

y x c y dt t t y t+ += + + +1 1min ( , ) ,ε (1.4)

This is the bivariate version of a system discussed by Olsder and Delft (1991) but with

added stochastic terms. To see how this system works in at least one case, suppose that

a < 0, d > 0. Without the yt term in the max component of (1.3), xt would be a random

walk with downward drift, but the yt term may hold up xt+1 to a higher set of values,

whereas in (1.4) the reverse holds. Thus, the two series are closely intertwined and the
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marginal processes E[xt+1|xt-j, j>0] and E[yt+1|yt-j, j>0] are inclined to have quite different

properties from the joint process.

Some examples are given later which show that m-m models provide better fits

out-of-sample than linear models. In addition, m-m models are shown to exhibit strictly

non-linear behavior which linear models cannot duplicate. Figures 1(a) and 2(a) show

realizations of 200 observations from series (1.3) and (1.4), with (a, b, c, d) taking values

(-0.5, 0.3, 0.3, 0.5), and (-0.01, -0.3, 0.3, -0.1) respectively. In all realizations, the

distributions of {εxt} and {εyt} are taken to be N(0,1) although this distribution has no

particular relevance. It should be noted that even if the series {xt} and {yt} appear not to

be stationary (see Figure 1(a) or 2(a)) the series {xt-yt} may be stationary with thresholds

(see Figure 1(b) or 2(b)) with some conditions depending on (a, b, c, d).

These examples are nonlinear processes because the max component of series

{xt+1} sometimes chooses yt+b and the min component of series {yt+1} sometimes

chooses xt+c. The timing of nonlinear data generation can be analyzed; if one can

forecast the timing of nonlinear operation or relate it to the level of zt (≡ xt-yt). Figure 1(b)

shows the timing at which the max operation of (1.3), upper circle, (or min operation of

(1.4), lower circle) chooses yt+b (or xt+c). It is seen that the nonlinearity largely occurs

when zt is in the lower regime, which will be explained in detail in section 3. Figure 2(b)

shows this phenomenon more clearly.

2. Equilibrium Values

A particular form of equilibrium will be considered. If there are no further

stochastic shocks and if the process converges to constant values, so that xt →  x, yt →  y,
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when does convergence occur and what values of x, y will be found? Starting with (1.1)

and (1.2) with no shocks, if convergence has occurred, one gets

  x x a y b= + +max( , )α β (2.1)

y x c y d= + +min ( , )γ δ (2.2)

which gives

0 1= − + − +max(( ) , )α βx a y x b (2.3)

0 1= − + − +min ( , ( ) )γ δx y c y d (2.4)

and this can be written as

0 1= − +max( , )X Y X fβφ θ (2.5)

0 2= − +min ( , )Y X Y fγθ φ (2.6)

where

and 

X x a Y y d

f a d b
f d a c

= − + = − +
= − = −
= − +
= − +










− −

( ) , ( )

( ) , ( )

α δ
θ α φ δ

θ βφ
φ γθ

1 1

1 11 1

1

2

(2.7)

First consider the case |α| < 1, |δ| < 1. The equilibrium possibilities are

(i) if f1 ≤ 0, f2 ≥ 0, X = 0, Y = 0

(ii) if βf2 + f1 ≤ 0, f2 < 0, X = 0, Y = f2 / φ = f2 (δ-1) > 0

(iii) if γf1 + f2 ≥ 0, f1 > 0, X = f1 / θ = f1(α-1) < 0, Y = 0

(iv) (X, Y) given by βφY - θX + f1 = 0, γθX - φY + f2 = 0, provided X ≤ 0, Y ≥ 0. In

the special case a=b=c=d=0 which gives f1 = f2 = 0, this equilibrium only

exists if β = γ -1.

If α > 1, then xt will be explosive, as if xt > 0
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xt+1 > xt

and so there will be no equilibrium.

For the integrated model, given by (1.3), (1.4) if there is an equilibrium then

x x a y b
y x c y d

= + +
= + +

max( , )
min ( , ) (2.8)

which can be written as

0
0

= +
= − −

max( , )
max ( , )

a z b
d z c (2.9)

where z = y - x, using rules A1 and A3. It can be seen that there is no equilibrium if a > 0,

-d > 0 as the two sides of the equations cannot equate. If a ≤ 0, -d ≤ 0, then the

equilibrium occurs if z + b = 0 and z - c = 0, which requires that b = -c. Thus the

integrated system only has an equilibrium if a ≤ 0, d ≥ 0, b = -c in which case the

equilibrium is y = x +c

If there is a shock and then no further shocks, when does convergence occur and

what values of x, y will be found? If the dynamic path of zt hits the zone (b-c-max(a-c,b-

d), max(a-c,b-d)), then xt and yt start to oscillate, and so does zt. Otherwise they converge

to constant values. Note that even if the process oscillates, it may be stable under a broad

conception of stability. Regardless of the behavior of the process around the equilibrium,

these series display a convergent behavior back toward the equilibrium if the deviation

from the equilibrium is large.

Figures 4(a) and (b) show the oscillation case and stable case, which depend on

the size of the shocks, i.e., εx0 = 1.0 for (a) and εx0 = 1.5 for (b). Because of the

discreteness of the data, the size of the shock will determine whether the process

oscillates or not. For reference, 1(c) and (d) show the case for a stationary m-m process.
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From the discussion of the equilibrium, this process does not have any equilibrium if α >

1 or δ > 1. Figure (c) shows the case of equilibrium and convergence back to it and figure

(d) shows no equilibrium case, so there are no convergent properties in the series.

3. The Integrated System

Fact: If the processes {xt} and {yt} are generated by the equations (1.3) and (1.4),

then these are “nonlinearly integrated” processes.

Proof: We can show this fact by induction. Assume xt = yt = 0 for all t < 0 and

εx,t, εy,t are independent and i.i.d. with variances σx
2 and σy

2 respectively. It suffices to

show that {xt} has a nonlinearly integrated property.





+<+++
+≥+++

=

+++=

−−−

−−−

−−

byaxifyb

byaxifxa
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TTTTx
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,
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ε
ε

ε

If we do backward-induction one more step,

( )

L=






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


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TTTTTTxTx

TTTTTTxTx

TxTyTTTxTTT
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221121,,

,1,221,22

,

,

,

,

),min(,),max(max

εε
εε
εε
εε

εεε

and so forth, until the starting values are reached. Then one can calculate the mean and

variance of xT.

E x pa qb rc sdT[ ] = + + + ,

Var x p q r sT x y[ ] ( ) ( )= + + +σ σ2 2 ,

where p + q + r + s = T and p, q, r, s are non-negative integers.
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There exists δ such that ( ) 0,min 22 >≥ δσσ yx , so

)()()(][ 22 TOTsrqpxVar yxT =≥+++= δσσ n

These processes are cointegrated in the usual sense even though they come from

nonlinearly integrated processes. The bivariate integrated system (1.3), (1.4) can be

rewritten as

∆ x a z b at t x t+ += + − + − +1 10max( , ) ,ε (3.1)

∆ y d z c dt t y t+ += + + − +1 10min ( , ) ,ε (3.2)

using rule A1, where zt = xt - yt . Using rule A3 and subtracting (3.2) from (3.1) gives

∆ z a d b a z d c zt t t t+ += − + − − + − − +1 10 0( ) max( , ) max ( , ) η (3.3)

where ηt+1 = εx,t+1 - εy,t+1. It is seen that, if zt is stationary, then (3.1), (3.2) make up a

nonlinear error-correction system, which implies that xt, yt will be I(1) and linearly

cointegrated. For ease of presentation, to consider the properties of zt, only the case b = -c

will be analyzed in detail. Writing wt = zt - b and initially assuming d < -a then (3.3) gives

three regions:

Region (i): wt < d, then w wt t t+ += − +1 1η ,

 so in this region w is Iπ(1), that is unit root at frequency π.

Region (ii): d < wt < -a, w dt t+ += − +1 1η ,

so that wt is I(0) in this region, and

Region (iii): -a < wt, ∆ w a dt t+ += − +1 1η

so that wt is I(1) in this region. Using the equilibrium condition for this system, which

includes a ≤ 0 and d ≥ 0, it is seen that a-d is negative, so wt+1 is a random walk with

downward drift in region (iii). It is seen that if wt becomes too small, i.e. negative, and so
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is found in region (i), it is likely to change sign and thus go into another region. If wt

becomes large, it will be in region (i) and the downward drift will take it into another

region. If it is in region (ii), when it is stationary, whether or not it stays there will depend

on the width of this region compared to the standard deviation of ηt+1. Overall as

simulations show, wt will appear to be I(0), if the equilibrium constraints hold. The three

regions change places if the assumption d < -a is replaced by d > -a.

Figures 1(f) and 2(f) illustrate the plots of the autocorrelations of xt, yt and zt.

When d-a has a large positive value, the autocorrelation of zt is declining very quickly as

in Figure 1(f). However when d-a has a small positive value or is negative, so that the

stability condition is violated, then the autocorrelation of zt is declining slowly or is very

similar with the autocorrelations of xt and yt, which appear to have long memory. Figure

1(d) shows the shape of the functional form of the cointegrated series against its lagged

value when using simulated data. Under the equilibrium constraint it clearly shows

different slopes with different level of lagged value of zt.

If the equilibrium constraints do not hold, so that a-d > 0, for example, zt is

clearly not I(0). Adding zt to both sides of (3.3) gives

z a d z z b a z d ct t t t t+ += − − + − + − +1 1( ) max( , ) max ( , ) η

so that

z a d zt t t+ +≥ − + +1 1( ) η

If a-d > 0, zt will be growing faster than the random walk with positive drift

~ ( ) ~z a d zt t t+ += − + +1 1η , so that zt is I(1). Thus xt, yt will be I(1) but not cointegrated

which are shown in Figures 2.
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Formal theorems and proofs of the conditions on the parameter {a, b, c, d} for the

process { zt} to be ergodic are as follow.

Theorem 1: The process { zt }, defined by (3.3), is ergodic if a-d < 0.

Proof: We can rewrite (3.3) as

[Upper Regime] : z a d zt t t+ += − + +1 1( ) η if z b a d ct > − −max ( , )

[Lower Regime] : z b c zt t t+ += − − +1 1( ) η if z b a d ct < − −min ( , )

If -∞  < b-a, d-c < +∞ , then the third condition of Theorem 2.11 of Chan, Petruccelli, Tong

and Woolford (1985) implies that a-d < 0 is sufficient and necessary condition for the

process {zt} to be ergodic process n

Theorem 2: If [ ] ∞<η k
t ||E  for some integer k ≥ 1 and the parameters {a, b, c, d}

of (3.3) satisfy Theorem 1, the invariant probability distribution for the process {zt} has a

finite k-th moment and the model is geometrically ergodic.

Proof: See the proof of Theorem 2.3 of Chan, Petruccelli, Tong and Woolford

(1985) n

So far the cointegration vector is assumed to be (1,-1). This could be relaxed to a

general case by using a linear transformation on the variable xt to λxt +α. Let α+′λ= xx ,

still one can get a cointegrating relation between x and y but now the cointegration vector

is (λ,-1) rather than (1,-1).

                                                       
1Theorem 2.1 of Chan, Petruccelli, Tong and Woolford (1985) follows as below. For any integer l, let ∞  =
r0 < r1 < …  < rl = +∞  and define ( ) ( ) ttt aZkkZ ++= − 1,1,0 φφ , if kt RZ ∈− 1 , where ],( 1 kkk rrR −≡ . 1≤ k ≤ l.
The process {Zt} is ergodic if only if one of the following conditions holds:
(a) ( ) ( ) ( ) ( ) 111111111 <φφ=φ<φ l,,,l,,, ,  (b) ( ) ( ) ( ) 01011111 >φ<φ=φ ,,l,,,

(c) ( ) ( ) ( ) 01011111 <φ=φ<φ ,,l,,, ,  (d) ( ) ( ) ( ) ( )100011111 ,l,,l,,, φ<<φ=φ=φ
(e) ( ) ( ) ( ) ( ) ( ) ( ) 010101111011 >φφ+φ<φ=φφ ,l,l,,,,l,,
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+
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t,ytt
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)dy,cx(min

)dy,cx(miny

so the cointegrated series of this system has the following form,

11 ++ η′+′−′+′−′′+′−−′=′ ttttt )cd,z(max)ab,zmax(z)da(z

where ttt yxz −′λ=′ , t,yt,xt ε−λε=η′ .

The process with an equilibrium constraint produces error-correction models that

are similar to, but different from, the cointegration model which was considered by Balke

and Fomby (1997). They have a threshold model, with a pull toward the center from each

outer region but with xt, yt being random walks in the center region. Because the

cointegrating relationship of m-m processes is linear, standard time series analyses used

for linear cointegration will be valid asymptotically for the analysis of cointegration

between m-m proceses. The nonlinearity of cointegration regression does not affect the

order of integration of xt, yt and zt. So we can apply conventional cointegration testing

method to m-m processes.

4. The Stationary System

The system now to be considered is (1.1), (1.2) with 0 < α < 1, 0 < δ < 1 and a =

b = c = d = 0. Some graphical examples are given as Figure 3 with (α, β, γ, δ) taking

values (0.7,1.3,1.3,0.7) for the stationary series (panel a), and for comparison (1.01,0.3,

0.3,1.01) which produces an explosive series (panel c). The univariate series of panel (a)
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does not show any clear nonlinearity. This will be tested in section 7 using single series

and the system by comparing the power of various statistics. In terms of the equilibrium

results of section 2, it follows that if f1 = f2 = 0 then the equilibrium is x = y = 0. Let µx,

µy be E[x], E[y], the unconditional means respectively from (1.1), then

E x E x[ ] [ ]> α , if β ≠  0 (4.1)

where > means that the strict inequality holds for some time periods, i.e., it is assumed

that αxt < βyt for some t. It follows that µx > 0. Similar assumptions, including γ ≠  0 will

give µy < 0. A formal theorem and proof is as follows.

Theorem 3: If  |α| < 1, |δ| < 1 then E(xt) > 0 , E(yt) < 0

Proof: Set f(x,y) be the joint density of (X,Y) then

E X Y y y x y dx x x y dx

y x y dx x x y dx x x y dx

x x y dx s y dsdx

y

y

y y

xy

[max( , )| ] ( | ) ( | )

( | ) ( | ) ( | )

( | ) ( | )

= +

= + −

= +

− ∞

∞

− ∞ − ∞

∞

− ∞

− ∞

∞

− ∞− ∞

∫ ∫
∫ ∫ ∫

∫ ∫∫

f f

f f f

f f

E X Y E E X Y y

x x y dx y dy s y dsdx y dy

x x dx s y dsdx dy

xy

xy

[max( , )] [ [max( , )| ]]

( ( | ) ) ( ) ( ( | ) ) ( )

( ) ( , )

=

= +

= +
− ∞

∞

− ∞

∞

− ∞− ∞− ∞

∞

− ∞

∞

− ∞− ∞− ∞

∞

∫∫ ∫∫∫
∫ ∫∫∫

f f f f

f f

Y Y

X

By the same method,

 E X Y y y dy x t dt dy dx
yx

[min( , )] ( ) ( , )= −
− ∞

∞

− ∞− ∞− ∞

∞∫ ∫∫∫f fY

If xt, yt are strictly stationary and |α| < 1, |δ| < 1, then

E x E x y E

E x s y dsdxdy

s y dsdx dy

t t t x t

t

xy

xy

[ ] [max( , )] [ ]

[ ] ( , )

( , ) ( )

,+ +

− ∞− ∞− ∞

∞

− ∞− ∞− ∞

∞

= +

= +

= − >

∫∫∫
∫∫∫

1 1

1 0

α β ε

α

α

αβ

αβ

f

f
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E y E x y E

E y x t dt dy dx

x t dt dy dx

t t t y t

t

yx

yx

[ ] [min( , )] [ ]

[ ] ( , )

( , ) ( )

,+ +

− ∞− ∞− ∞

∞

− ∞− ∞− ∞

∞

= +

= −

= − − <

∫∫∫
∫∫∫

1 1

1 0

γ δ ε

δ

δ

δγ

δγ

f

f

as required n

To consider measures of the temporal properties of this process, as

x x yt t t x t+ += +1 1max( , ) ,α β ε (4.2)

it follows that E x x E xt t t[ ] [ ]+ >1
2α  since E[εx,t+1 xt] = 0 and assuming that βyt > αxt for

some t. Substituting in (4.1) gives

x x y yt t t x t t x t+ + + += + +2 1 1 2max( (max( , ) ), ), ,α α β ε β ε

and this suggests that E x x E xt t t[ ] [ ]+ >2
2 2α  and generally

E x x E xt k t
k

t[ ] [ ]+ > α 2 (4.3)

Note that these do not directly involve autocovariances, as these quantities are not

centered at the mean. If ρk is the kth autocorrelation then a little algebra from (4.3) gives

ρ αk
kc c> −1 2

where c1 = E[xt
2]/var(xt

2), c2 = µx
2/var(xt

2).

The values of ρk for m-m processes are illustrated in Figure 3(b) and (d), the plot

against k are shown for xt and yt. Figure 3(b) shows for stationary m-m case with

0<α,δ<1, the autocorrelations are declining very quickly, but when α,δ>1 in Figure 3(d),

each individual series are explosive series with slowly declining autocorrelations.
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5. Estimation

Conventional estimation techniques of parameters cannot be directly applied to a

min-max system because of the discontinuity of min-max functions. Olsder and Delft

(1991) suggested three algorithms to solve the min-max problem. One of their methods

makes an exponential transformation of a min-max system into one to which the

conventional analysis can be applied. In order to calculate the parameters of (1.1) and

(1.2), an exponential approximation for large s is used:

x
s

e et
s x a s y b

x t
t t

+
+ +

+= + +1 1

1
log[ ]( ) ( )

,
α β ε (5.1)

y
s

e et
s x c s y d

y t
t t

+
− + − +

+= − + +1 1

1
log[ ]( ) ( )

,
γ δ ε (5.2)

In Olsder and Roos (1988) it has been shown that the exponential behavior of (5.1) and

(5.2) as s→ ∞  leads exactly to Equation (1.1) and (1.2). The advantage of (5.1) and (5.2)

is that conventional analysis, such as nonlinear least squares or maximum likelihood, can

be used.

In the simulation study, we will control the value of s by the capacity of the

computer. Each table of simulation study or empirical analysis will report the value of s

that were used in the estimation procedure.

6. Linearity Testing of m-m processes

The bivariate system of m-m processes is intertwined as mentioned before,

however the individual series might have quite different properties. It may not be easy to

detect nonlinearity from single series, whilst the system or cointegrated series shows
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nonlinearity clearly. This section discusses a simulation study of nonlinearity tests using

single series and the system and compares the performance of each test.

We compare several testing methods for the null of linearity against the

alternative of neglected nonlinearity. There are many tests, some of which are discussed

in Granger and Teräsvirta (1993) and in Lee, White and Granger (1993). As mentioned

by Granger (1995), they are all based on an assumption that the series are stationary or, in

practice, at least short memory in mean. These test are clearly going to work poorly with

trending, I(1) or extended memory variables. The test will be biased against rejection of

the null hypothesis of no nonlinearity. It is clear that many of the standard tests for

linearity cannot be directly applied to I(1) or extended memory variables.

Granger (1995) suggested testing for the null of linearity of the ECM by

regressing the residuals from a cointegrating regression on their lagged values and a

nonlinear function, and then performing a LM type test. A similar approach is

implemented by Corradi, Swanson and White (1997) who regress the first difference of

the data on the lagged value of the cointegrating vector and a nonlinear function under

the maintained hypothesis of cointegration. The following two DGPs are compared,

( ) tttttt eW,ZgWZX +∆+∆β+δ+µ=∆ −− 11 (6.1)

tttt eWZX 00100 +∆β+δ+µ=∆ − (6.2)

where ( )′= ttt y,xX , ( )′== −− p,...,j,y,xW jtjtt 0  and xt, yt are all I(1). There exists a

constant A such that ttt yAxz −= is I(0) or at least mean reverting. Tests of linearity can

be conducted by comparing the nonlinear specification (6.1) to the linear form (6.2) by

performing the regression

( ) tttttot W,ZgWZe ε+∆+∆β+δ+µ= −−−− 1111111 (6.3)
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and doing an LM test based on R2.

The following methods2 are used to find nonlinearity. The neural network test for

neglected nonlinearity uses a single hidden layer network augmented by connections

from input to output. The network output is then3

( )∑
=

γ′ψβ+θ′=
q

j
jtjtt x~x~y

1

The hypothesis is that the optimal network weight βj, has βj
* = 0, j = 1,...,q. A Lagrange

multiplier test leads to testing ( ) 0=Ψ t
*
tt yeE , where ( ) ( )( )′Γ′Γ′≡Ψ qttt XX ~,...,~

1 ψψ ,

( )q,...,ΓΓ=Γ 1  is chosen a priori, independently of Xt and θ′−= tt
*
t X~ye . A relevant

statistic is

( )qenŴenM d
n

t

*
tt

/
n

n

t

*
tt

/
n

2

1

211

1

21 χ →




 ψ

′





 ψ= ∑∑

=

−−

=

−  as n→ ∞ .

To avoid collinearity one can choose q* < q principal components of ψ t that are not

collinear with Xt, denoted ψ t
*. A test statistic is

Neural = ( )*qnR d 22 χ → ,

where R2 is the uncentered squared correlation from a regression of θ′−= ˆX~yê ttt  on

t
*
t X~,Ψ . The Keenan test is based on the correlation of θ′−= ˆX~yê ttt  and ( )22 θ′= ˆX~f tt . A

test statistic is

Keenan = ( )
( ) ( )221

22

1

−−
−−νν′

ε′εε′ε′ −

pn,F~
pnˆˆ

êˆˆˆˆê

                                                       
2 We select the tests which have better power from the simulation study of Lee et al. (1993)
3 In performing neural network test the logistic c.d.f ( ) ( )[ ]11 −λ−+=λψ exp  is used.
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where p is the number of explanatory variables, λ′−=ε ˆX~fˆ ttt
2  and δε−=ν ˆˆêˆ ttt . λβ ˆ,̂

and δ̂ are least square estimates from linear regressions. The Tsay test is very similar in

form to the Keenan test. Let Pt include p(p+1)/2 cross-product terms of the components

of Xt, of the form yt-jyt-k, k≥j, j,k=1,… ,p, λ′−=ε ˆX~Pˆ ttt  and δε−=ν ˆˆêˆ ttt , then

Tsay = ( )
( ) ( )1

1

1

−−−
−−−νν′

ε′εε′ε′ −

mpn,mF~
mpnˆˆ

mêˆˆˆˆê , where m=p(p+1)/2.

The Ramsey RESET test is a generalization of the Keenan test. Using one step ahead

forecast, ft ,

t
k

tkttt fc...fcX~y ν++++θ′= 2
2

The null hypothesis is c2 = …  = ck = 0. The test statistic is ( )122 −χ → knR d  where R2

is determined from a linear regression of θ′−= ˆX~yê ttt  on t
k

tt X~,f,...,f 2 . Forming the

principal components of ( k
tt f,...,f 2 ), choosing the p* largest, and then regressing tê on

these and tX~  gives R2 statistics with

RESET = ( )*pnR d 22 χ → .

The White dynamic information matrix test is based on the covariance of the conditional

score function. The loglikelihood of a linear model ( )2,0~,~ σθ NeeXy tttt +′= , is

( ) ( ) 22
2σθ′−−σ=σθ ˆX~ylog-constant,,Xflog tttt

so that with ( )σθ̂~
ttt Xyu ′−=  the conditional score function is

( ) ( ) ( )′−′=∇= − 1,,,,log,, 21
tttttttt uXuuXfXs σσθσθ
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The dynamic information matrix test is ( )qm̂Ĵm̂n d
nnn

21 χ →′ −  where ∑−= tn m̂nm̂ 1 ,

1−′= ttt ssvecSm̂ , S is a nonstochastic selection matrix, and q is the dimension of mt






 ′



 ′





 ′−′= ∑∑∑∑

=

−
−

=

−

=

−

=

−
n

t
tt

n

t
tt

n

t
tt

n

t
ttn msnssnsmnmmnJ

1

1
1

1

1

1

1

1

1 ˆˆˆˆˆˆˆˆˆ

Equivalent test statistics are

( )qnRWHITE d 221 χ →=

with R2 of the regression of the constant unity on the tt sm ˆ,ˆ .

( )qnRWHITE d 222 χ →=

with R2 of the regression of tû on the tt kX ˆ,~ , with ttt ukm ˆˆˆ = . The McLeod and Li test

uses the squared residuals from a linear model and applies a standard Ljung-Box

Portmanteau test for serial correlation. The test statistic is

McLeod = 
( ) ( )m
in
ir̂)n(n d

m

i

2

1

2

2 χ →
−

+ ∑
=

where ( ) ( )( ) ( )∑∑
+=+=

− σ−σ−σ−=
m

kt
t

m

kt
ktt ˆêˆêˆêkr̂

1

222

1

2222 , ∑
=

−=σ
n

t
tênˆ

1

212

Simulation Design: The stationary and integrated m-m processes were generated

from (1.1), (1.2), (1.3) and (1.4). For the analysis of a single series of the integrated

process, the series were differenced to produce stationary sequences. For the analysis of

integrated m-m processes, a cointegrating regression or error correction model using a

known cointegrating vector (1,-1), will be investigated in the simulation. Throughout εxt

and εyt are drawn form N(0,1). (i) Integrated m-m processes: (a, b, c, d) taking values

(-1,0.7,-0.7,0.5), (-0.1,-1,1,0.1) and (0.01,0.4,0.1,0.04). (ii) Stationary m-m processes: (α,
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β, γ, δ) taking values (0.7,1.3,1.3,0.7) and (0.7,-0.5,-0.5,0.3). For all the simulations, the

information set for univariate series x is Xt = xt-1 or Xt = (xt-1, xt-2)′ and for z, Xt = zt-1. For

the bivariate case, the information set of x is Xt = (xt-1, yt-1)′.

The results of the simulation can be summarized as follows. Table 6.2 shows the

results of the simulation using an integrated m-m system.

(1) Using univariate series, each test has less power if more lags are adopted in the test.

This suggests that a univariate series from an m-m model has less obvious evidence

of nonlinearity. Tests using differences of single series have less power than tests

using ECM or cointegrated series

(2) MM3 is more likely to appear linear than MM1 or MM2 since b is small and c is big.

In MM3, c is not well identified because the min operator chooses the y series in most

cases, thus series y looks like a linear process.

(3) An error correction model can improve the power of tests, but tests using a

cointegrated series have the best power in the most cases. To improve the power it is

necessary to add the other series or the spread to detect the nonlinearity. If one does

not consider the spread, but uses the other series in a bivariate model, it can not

improve the power as much as tests using cointegrated series.

(4) Overall the Neural network test has good power in many case.

Table 6.3 shows the simulation results of a stationary m-m model. In these results

the benefit of the bivariate model is clear. Tests using univariate series can not improve

the power even though we change the information set. However if the other series was

also used in the test (XB of MM4 and MM5), then the powers were increased, especially

for the Neural and Tsay tests.
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8. Application

There could be several interesting practical examples of m-m processes. The

transaction cost might be an example of these processes. When economic agents make

decisions, they will take no action if transaction costs are larger than the benefits from

that action.

Another interesting application is a nonlinear error correction model relating a

pair of interest rates of different risk or different maturity periods. Suppose that these

interest rate are I(1), with their spread being I(0) as found in Hall, Anderson and Granger

(1992). Now consider how transaction costs might affects spread movement. A nonlinear

error correction model provides an appropriate framework for this. Economic theory

predicts that arbitrage and corresponding yield adjustment will occur only when the

interest rate is 'sufficiently far' from equilibrium rate in the market, to imply a net gain to

investors after transaction costs. This can be modeled as an "on/off" threshold error

correction process. The threshold is determined by transaction costs, which deter

responding to small deviation from equilibrium. One could also argue that there are two

types of player in the market, the seller who want the rates to be maximized and the buyer

who want the rates minimized, which thus makes the m-m model appropriate.

Data description: We examine data on the interest rates of Commercial Paper (6-

months) and Treasury Bill (3-months) which reflect the risky and safe rates, using

monthly observations from January 1970 to October 1997. (In-sample=1970:01~1989:12

(240 observations), out-of-sample=1990:01~1997:10 (94 observations)).

To learn about the basic structure of the data, initially a non-parametric analysis

was conducted. Figure 5(c) shows the scatter plot between changes in the dependent



20

variable and the lagged cointegrating residual when the non-parametric kernel regression

(bandwidths chosen using the leave-one-out cross validation function) is employed to

estimate the ECM employing the variables in the linear ECM. Even though the scatter

plot for changes in the commercial paper rate against the lagged value of spread, Figure

5(d), does not show any particular nonlinear property, because of the nonlinearity of

spread, the linear ECM is a poor approximation. An interpretable parametric form to

model this nonlinearity is readily apparent. The threshold ECM can be estimated since

the slope coefficient of the lagged zt-1 is zero around the origin, and unity with negative

intercept when zt-1 has a large value. However the plot of the univariate series, Figure

5(d), shows little evidence of nonlinearity.

Linearity tests find statistically significant evidence for each of the differences of

Treasury bills and commercial paper interest rates and the spread (see Table 6.4).

Virtually all of the tests except the neural network tests that use one principal component

found evidence of nonlinearity of the individual series. The interest rate of Treasury bills

shows less clear evidences of nonlinearity. This result will be confirmed by the results

from estimation of m-m model. This rate is driving the rate of Commercial paper and is

less affected by the spread between the two rates. Linearity tests using the ECM model

show similar results with the tests using differenced series. All of the tests except Neural,

RESET with one principal component, and Keenan, reject the null hypothesis of linearity

strongly. These tests suggest that each individual series of interest rates has nonlinearity

and also the spread has a strong nonlinearity.

As a basic model, (1.3) and (1.4), Case I produces the estimated results. The

problem of this model is that the min operator of the equation (1.4) never selects series Xt
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within this sample period. This means the parameter c of the equation (1.4) is not

identified in this sample. To correct this problem one can use a modified m-m model by

linearizing (1.3), i.e., let c = +∞ .4 Case II shows the results of estimation and comparison

using the partially linearized m-m model.

Another possible modification is a mixture of the integrated and stationary m-m

models which allows partial adjustment for the spread in the error correction model of

(3.1) and (3.2),

1,1 ),0max( ++ +−+−+=∆ txtt abzax εα (3.1′)

1,1 ),0(min ++ +−++=∆ tytt dczdy εβ (3.2′)

where 0 < α, β ≤ 1. After a brief explanation of this model we will attempt to estimate

this model using our empirical data. The x and y series are generated by the system,

( ) 1,1 ),max(1 ++ ++++−= txtttt byaxxx εααα (1.3′)

( ) 1,1 ),(min1 ++ ++++−= tytttt dycxyy εβββ (1.4′)

If α = β = 1, this system is exactly the same as the integrated m-m processes, (1.3) and

(1.4). If α ≤ 0 or β ≤ 0, then this system is not stable. Case III considers this modification

with linearization of the min function.

                                                       
4 If c = + ∞ , then

11 ++ ε++= t,ytt dyy (1.4′)
Using a similar method as (3.3), we could get

11 0 ++ η+−−+−=∆ ttt )zab,max()da(z (3.3′)
It is seen that if zt is stationary, then (1.3), (1.4′) are a nonlinear error-correction system. (3.3′) gives two
regions:

(i) zt ≥ b-a, then 11 ++ η++−= ttt zdaz ,
so that zt is I(1) in this region.

(ii) zt < b-a, then 11 ++ η+−= tt dbz ,
so in this region zt is I(0). If a-d is negative, so zt is a random walk with downward drift in region (i). It is
seen that if zt is in region (ii), when it is stationary. Overall, zt will appear to be I(0), as simulation shows, if
the equilibrium constraints hold.
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The specified models are estimated by nonlinear least-squares. This section

presents estimated equations, and in the spirit of Granger and Anderson (1978) we also

report the ratio of the residual variance of the m-m model to that of the corresponding

VAR(3) model chosen by AIC. It is seen that the error variance of m-m model is a little

larger than that of the VAR(3) model. s2/sL
2; s is the residual standard deviation of the m-

m model and sL is the corresponding statistic for the VAR(3) model. In general we need

to restrict our consideration to nonlinear models for which this ratio is less than 0.9, so as

to avoid models that may be spurious. In our nonlinear model, this ratio is very close to

one for all of the cases, which suggests that the two models are virtually the same

explanation for the in-sample period. But it turns out that our nonlinear model is better

for predictability in the out-of-sample period.

Table 8.1 contains some diagnostics associate with these models. Residuals are

tested against fourth-order ARCH using the LM test of Engle (1982), and checked with

the Jarque-Bera normality test. The skewness and excess kurtosis of the residuals are also

reported.

Table 8.1. Test statistics and p-values of fourth-order ARCH and Jarque-Bera normality
tests, and skewness, excess kurtosis measure of residuals from the estimated nonlinear
models and the ratio of the residual variance to VAR(3) model

ARCH(4) Test Jarque-Bera Test Skewness Excess kurtosis s2/sL
2

Case II
eq. 1   50.3 (0.00)   507.3 (0.00) -1.04    9.95 1.0628
eq. 2   66.6 (0.00)   444.2 (0.00) -1.11    9.40 1.0236
Case III
eq. 1    49.5 (0.00)   482.9 (0.00) -0.86     9.89 1.0026
eq. 2    62.3 (0.00)   439.5 (0.00) -1.04     9.41 1.0148
Note: The values in parenthesis are p-values

Another way of evaluating the estimated nonlinear model is post-sample

forecasting, although the insight to be gained depends on what happens in the time series



23

during the prediction period. If the prediction period does not contain a clear close

between the CP and T-bill rate, i.e., spread in a lower regime, then the linear and

nonlinear forecast will be similar, unless the specification of the m-m model is totally

inadequate. The forecasts were made without re-estimating the model during the

prediction period. In all cases the MSFE of the one-step-ahead forecasts were calculated.

Plots of actual and predicted series by m-m and VAR models of Figure 6 suggest that the

m-m model is better than the VAR model when nonlinear operation is working, i.e., max

chooses yt series or min chooses xt series. That means an m-m model can predict more

accurately when the spread is very small, i.e., when it lies in a lower regime.

The diagnostic statistics that are presented in Table 8.1 show clear evidence of an

ARCH effect in the residuals and it is true for the VAR model. The next two tables will

show diagnostic tests and forecastability of m-m models which is including GARCH

(1,1). For the comparison, we estimate VAR(3) with a GARCH(1,1) specification.

Table 8.2. Mean squared forecast errors

CASE  II CP 6-months T-bills 3-months   Spread
M-M   0.0408   0.0305   0.0098
VAR   0.0761   0.0493   0.0111
SD statist -4.7973 -4.0953 -1.0525
CASE  III
M-M   0.0611   0.0360   0.0133
VAR   0.0761   0.0493   0.0111
SD statist -4.9704 -4.0044  -3.9850
The SD statistics is the test in Granger and Newbold (1986, pp. 278-280) which is based
on the correlation coefficient, r, of the sum and differences of the forecast errors. The null
hypothesis is r=0, and the null distribution is based on the well-known approximation

that ( )1,0~
1
1

log
2

1
N

r
rn







−
+−

, where n is ex-post sample size.

# of lags of VAR model by BIC : p = 3
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Table 8.3. Test statistics and p-values of fourth-order ARCH and Jarque-Bera normality
tests, and skewness, excess kurtosis measure of residuals from the estimated nonlinear
models and the ratio of the residual variance to VAR(3) model

ARCH(4) Test Jarque-Bera Test Skewness Excess kurtosis s2/sL
2

Case II′
eq. 1 0.6773 (0.954) 0.0350 (0.983) 0.0134 2.9456 0.9989
eq. 2 2.6833 (0.612) 3.3259 (0.190) 0.1656 3.4887 1.0002
Case III′
eq. 1 0.8154 (0.937) 0.3399 (0.844) 0.0800 3.1017 0.9986
eq. 2 2.7262 (0.605) 2.7845 (0.249) 0.1528 3.4455 1.0011
Note: The values in parenthesis are p-values

The estimated values of a, d of all models satisfy the stability condition of

Theorem 1, but the difference is very small, 0.0200 in case I, 0.0449 in case II′, and

0.5650 in case III′. This implies that the shock to spread could be persistent within the

short period. Considering the forecastability out-of-sample, the m-m model outperforms

the VAR model for the series of commercial paper rate. Since the Treasury bills rate

shows less nonlinearity compared to other series the m-m and VAR models have virtually

the same predictive power for this series. However, the commercial paper rate and spread

show very clear nonlinearity, the m-m model can outperform VAR.

Table 8.4. Mean squared forecast error

CASE  II′ CP 6-months T-bills 3-months   Spread
M-M   0.0379   0.0281   0.0096
VAR   0.0444   0.0314   0.0088
SD statist -2.1203 -1.7912   1.0293
CASE  III′
M-M   0.0388   0.0269   0.0087
VAR   0.0444   0.0314   0.0088
SD statist -2.4832 -2.1948  -0.5654
# of lags of VAR model by BIC : p = 3

In case III′, the estimated value of α, 0.2737, is less than unity, which means a

partial adjustment for the deviation of spread. The number of max operators which are
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choosing the y variable increases from 56 of Case II′ to 235, and the difference of a, d is

very small, -0.5650, but still negative. Considering forecastibility out-of-sample the m-m

model outperforms for the commercial paper series, and does marginally better for the

Treasury bill and spread series.

Table 8.5. Mean squared forecast error

(1) CP 6-months T-bills 3-months   Spread
M-M 0.0155 0.0130 0.0014
VAR 0.0229 0.0163 0.0027
SD statist -5.2184 -3.3913 -5.3356
(2)
M-M 0.0152 0.0140 0.0027
VAR 0.0198 0.0173 0.0021
SD statist -3.2923 -3.1357 2.1936
(3)
M-M 0.0146 0.0128 0.0032
VAR 0.0193 0.0156 0.0030
SD statist -2.9963 -2.5597 0.5236
(4)
M-M 0.0169 0.0137 0.0032
VAR 0.0217 0.0164 0.0032
SD statist -2.7326 -2.4847 0.1378
(5)
M-M 0.0224 0.0152 0.0082
VAR 0.0215 0.0150 0.0061
SD statist 0.5630 0.2282 4.3068
# of lags of VAR model by BIC : p = 3
---------------------------
  t-1      t*     t+1      t+2 * nonlinear operation at t
  (1)    (2)     (3)       (4)
---------------------------
(1) MSFE when nonlinear operation of m-m function is working (spread <b-a)
(2) MSFE of 1-step forecast right after knowing that nonlinear operation of m-m function was working
(3) MSFE of 1-step forecast of 1 month after that nonlinear operation of m-m function was working
 (4) MSFE of 1-step forecast of 2 month after that nonlinear operation of m-m function was working
 (5) MSFE when spread is above lower bound (b-a)
MSE ratio (s2/sL

2) when (spread <b-a): eq1=1.0280, eq2=1.0249
MSE ratio (s2/sL

2) when (spread <b-a): eq1=0.9929, eq2=0.9946

This m-m model has linear specification before the nonlinear operation is

working. If we focus on these events when nonlinear operations are working, then we

would get stronger support of the m-m model compared to overall sample period
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comparison. In Figures 6, prediction errors of m-m and VAR models using Case II′ are

useful in assessing the benefits of the m-m model. It is seen that the movement of spread

in the lower regime area is much better explained by the m-m model than by the VAR(3)

model. The following table 8.5 shows forecast comparisons around these events. And for

the reference, we reported the s2/sL
2 values, which do not show much difference between

different regimes.

9. Conclusions

The purpose of this paper has been to introduce a nonlinear model motivated by

economic agents’ minimizing or maximizing behavior. It turns out this system can have

an error correction model with thresholds, which can account for the presence of a fixed

cost of adjustment. This model would appear to have potential applicability when this

type of nonlinear behavior is thought to be important and the system has equilibrium even

though each individual series is not stationary. To simplify our argument we have

considered only either an integrated or stationary bivariate m-m process, not mixtures of

two processes. However, as mentioned briefly in section 8, a mixture of these two

processes would be a natural extension and have interesting properties, which were not

fully investigated in this paper. Another underlying assumption is that the cointegration

vector is known. In the actual data with an unknown cointegration vector, except the

spread of interest rates, we need to estimate the cointegrating relationship. Even though

Balke and Fomby (1997) partly investigated this problem, there are still open questions,

such as how to estimate a nonlinear cointegration and how to test for this.
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Appendix

Some rules for max, min operators

A1 max(X+a, Y+a) = a + max(X,Y)

A2 max(αX, αY) = α max(X, Y) if α > 0

A3 min(-X, -Y) = - max(X, Y)

which is an example, with α = -1 of A4

A4 max(αX, αY) = α min(X, Y) if α < 0

A5 max(max(a1, a2), max(a3, a4)) = max(a1, a2, a3, a4)

A6 max(a1, a2) + max(a3, a4) = max(a1 + a3, a1 + a4, a2 + a3, a2 + a4)
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Table 6.1. Critical Values (5%) for Univariate Models

Test Univariate 1 Univariate 2 Bivariate 1
NEURAL   5.60   (5.99)   5.53   (5.99)   5.84   (5.99)
KEENAN   3.69   (3.84)   3.66   (3.84)   3.53   (3.84)
TSAY   3.69   (3.84)   2.51   (2.37)   2.56   (2.37)
WHITE1 10.27   (9.49) 16.56  (15.51) 18.23  (16.92)
WHITE2 10.17   (9.49) 15.14  (15.51) 16.52  (16.92)
MCLEOD 31.35  (31.41) 31.14  (31.41) 31.24  (31.41)
RESET1   3.42   (3.84)   3.55   (3.84)   3.61   (3.84)

(i) The first numbers in columns of univariate 1 and univariate 2 are simulated critical
values from AR(1), ttt yy ε+= − 16.0 , and the first number in columns of bivariate 1 from
VAR(1), ttt ex.x += − 160 , ttt yy ε+= − 16.0 with 200 sample size and 6000 replications.
(ii) The second number in parenthesis is the asymptotic critical value.
(iii) Univariate 1 denotes a univariate model with lag 1, Univariate 2 denotes a univariate
model with lag 2 and Bivariate 1 denotes a bivariate model with lag 1.
(iv) We choose q=10 and q*=2 largest principal components (excluding the first principal
components). The input to hidden unit weights Γij were randomly drawn from uniform
distribution on [-2,2]. The variables Xt, Yt are rescaled onto [0,1]. For the White dynamic
information matrix tests, 11

2
−−

− ′σ=′ ttttt uuX~X~m  were constructed without any identical
columns to secure full rank of mt matrix. For RESET1 k=5, p*=1, RESET2 k=10, p*=2.
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Table 6.2. Power for integrated min-max processes

                           MM1                           MM2                           MM3
TEST  ∆X1 ∆X2 ∆XB ECM    Z  ∆X1 ∆X2 ∆XB ECM    Z  ∆X1 ∆X2 ∆XB ECM    Z
NEURAL  37.2

(38.9)
 13.8
(16.1)

 92.7
(93.4)

 100
(100)

 100
(100)

 11.3
(12.7)

  9.1
(11.1)

 18.3
(19.1)

 85.5
(87.1)

 95.0
(95.2)

 7.2
(8.2)

 5.8
(7.5)

 8.0
(8.8)

 43.9
(46.0)

 50.4
(51.7)

KEENAN  45.7
(47.0)

 44.3
(46.9)

 97.2
(97.5)

 100
(100)

 100
(100)

 11.1
(11.4)

  9.2
(10.1)

 21.1
(23.6)

 62.1
(63.1)

 76.5
(77.1)

 6.3
(6.6)

 5.5
(6.4)

 8.1
(9.6)

 20.8
(21.3)

 21.5
(21.5)

TSAY  45.7
(47.0)

 44.6
(41.0)

 95.2
(94.2)

 100
(100)

 100
(100)

 11.1
(11.4)

 10.8
 (9.3)

 23.4
(19.3)

 62.1
(63.1)

 76.5
(77.1)

 6.3
(6.6)

 7.3
(6.6)

11.0
(8.8)

 20.8
(21.3)

 21.5
(21.7)

WHITE1  65.5
(60.5)

 31.4
(25.9)

 98.8
(97.8)

 98.4
(97.8)

 100
(100)

 10.8
 (8.3)

  9.6
 (6.7)

 16.2
(11.3)

 41.4
(37.5)

 81.4
(78.5)

 7.2
(5.2)

 8.2
(6.0)

10.3
(7.3)

 15.7
(12.6)

 25.8
(22.8)

WHITE2  64.6
(66.6)

 30.0
(31.6)

 98.9
(97.8)

 97.9
(98.4)

 100
(100)

 11.5
(12.8)

  8.1
 (9.1)

 16.8
(18.6)

 50.2
(51.9)

 87.1
(87.5)

 6.9
(7.5)

 6.7
(7.6)

 6.9
(8.4)

 19.3
(20.0)

 34.0
(34.7)

MCLEOD   6.4
 (6.5)

   5.8
 (6.4)

 14.0
(14.1)

 16.5
(16.5)

 64.1
(64.3)

  6.2
 (6.2)

  6.2
 (6.6)

  6.0
 (6.2)

 6.1
(6.2)

 15.1
(15.2)

 6.4
 (6.4)

 5.6
(6.2)

 5.7
(5.8)

  5.1
 (5.1)

  9.1
 (9.1)

RESET1  19.9
(23.7)

 25.6
(28.9)

 64.6
(66.8)

 99.5
(99.5)

 99.3
(99.4)

  7.9
(10.1)

  8.5
 (9.1)

 17.6
(18.4)

 75.3
(77.1)

 44.9
(48.2)

 6.1
(6.9)

 4.9
(5.8)

 6.4
(7.6)

 34.1
(37.2)

 12.2
(15.5)

Power using 5% asymptotic critical values is shown, and size-corrected power using simulated critical value is shown in parenthesis.
Sample size = 200. Replications = 1000.
MM1: a=-1,b=0.7,c=-0.7,d=0.5, MM2: a=-0.1,b=-1,c=1,d=0.1, MM3: a=0.01,b=0.4,c=0.1,d=0.04,
∆X1, ∆X2 denote an equation of differenced Xt using AR(1) or AR(2)
∆XB denotes a bivariate AR(1) model for differenced Xt

ECM denotes an error correction equation of Xt without any lags of ∆Xt , ∆Yt
Z uses a cointegrated series with (1,-1)
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Table 6.3. Power for stationary min-max processes

           MM4            MM5
TEST   X1   X2  XB   X1   X2  XB
NEURAL   8.5

 (9.5)
  5.4
 (6.6)

 90.3
(90.8)

 44.6
(47.8)

 16.9
(19.7)

 82.2
(83.2)

KEENAN   7.9
 (8.1)

  5.5
 (6.2)

  4.7
 (6.0)

 52.5
(54.2)

 44.7
(46.4)

 14.1
(16.7)

TSAY   7.9
 (8.1)

 15.3
(13.5)

 97.8
(97.2)

 52.5
(54.2)

 19.6
(20.8)

 82.9
(80.0)

WHITE1  21.6
(17.6)

 11.0
 (7.7)

 44.2
(36.9)

 40.4
(33.6)

 73.3
(67.9)

 52.8
(44.5)

WHITE2  19.8
(21.0)

  8.2
 (9.4)

 44.1
(46.7)

 38.0
(39.6)

 66.9
(68.7)

 49.3
(51.6)

MCLEOD   4.4
 (4.6)

  4.1
 (4.4)

  5.2
 (5.4)

  4.6
 (4.6)

  4.1
 (4.5)

  5.3
 (5.3)

RESET   5.1
 (6.2)

  4.3
 (4.9)

  6.9
 (7.3)

  4.3
 (5.6)

  3.5
 (4.6)

  5.1
 (5.6)

Power using 5% critical values simulated with AR(1) is shown.
Sample size = 200. Replications = 1000.
MM4: α=0.7, β=1.3, γ=1.3, δ=0.7, MM5: α=0.7, β=-0.5, γ=-0.5, δ=0.3
X1 and X2 denote an equation of Xt using AR(1) or AR(2)
XB denotes a bivariate AR(1) model for Xt.
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Table 6.4. Tests on interest rates of T-bill, CP and spread

Test  Treasury bill   Commercial
       paper

 ECM : T-bill   ECM : CP       Spread

NEURAL1 SB= 0.6919
HB= 0.5298

0.0054
0.0054

0.0787
0.0583

0.0000
0.0000

0.0217
0.0217

NEURAL2 SB= 0.0053
HB= 0.0053

0.0001
0.0001

0.0002
0.0002

0.0000
0.0000

0.0363
0.0363

NEURAL3 SB= 0.0000
HB= 0.0000

0.0000
0.0000

0.0002
0.0002

0.0000
0.0000

0.0000
0.0000

NEURAL4 SB= 0.0000
HB= 0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

NEURAL5 SB= 0.0000
HB= 0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

KEENAN        0.0005 0.0669 0.0001 0.0292 0.0681
TSAY        0.0000 0.0000 0.0000 0.0000 0.0000
WHITE1        0.0000 0.0000 0.0000 0.0000 0.0000
WHITE2        0.0000 0.0000 0.0000 0.0000 0.0000
MCLEOD        0.0000 0.0000 0.0000 0.0000 0.0000
RESET1        0.0450 0.6035 0.0000 0.0000 0.0000
RESET2           0.0005 0.0026 0.0000 0.0000 0.0000
(1) Treasury Bill, AR(9) determined by BIC; Commercial Paper, AR(8); Spread, AR(7)
(2) ECM of T-bill and CP with 2 lags
(3) Number of principal components of NEURALi = i, i=1,2,...,5.
(4) Number of principal components in RESET1 = 1, RESET2 = 2
(5) SB denotes Simple Bonferroni and HB Hochberg Bonferroni
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CASE I: Forecast comparison between M-M and VAR

(1) In-sample (1970:01~1989:12, 240 observations),
     Out-of-sample (1990:01~1997:10, 94 observations).
(2) xt = 6-months Commercial Paper; yt = 3-months Treasury Bill.

I. M-M Model I: Unrestricted form

)1061.0()0479.0(
ˆ)3432.0,0166.0max( 11 xtttt uyxx ++−= −−

R2 = 0.940, D/W = 1.99, Sum of Squared residuals = 116.10

)1388.0()(

ˆ)1485.0,0000.5min( 11

− −
+++= −− ytttt uyxy

R2 = 0.947, D/W = 2.00, Sum of Squared residuals = 92.73

s = 40
# of (the max operation selects yt+b) = 40
# of (the min operation selects xt+c) = 0

II. Test statistics and p-values of ARCH(4) and Jarque-Bera normality tests

ARCH(4) Test Jarque-Bera Test Skewness Excess kurtosis s2/sL
2

eq. 1 50.28 (0.000) 507.27 (0.000) -1.0415 9.9545 1.0628
eq. 2 66.57 (0.000) 442.28 (0.000) -1.1104 9.4047 1.0236
Note: The values in parenthesis are p-values

III. Mean squared forecast error

CP 6-months T-bills 3-months   Spread
M-M   0.0408   0.0305   0.0098
VAR   0.0761   0.0493   0.0111
SD statist -4.7973 -4.0953 -1.0526
# of lags of VAR model by BIC : p = 3
The SD statistics is the test in Granger and Newbold (1986, pp. 278-280) which is based
on the correlation coefficient, r, of the sum and differences of the forecast errors. The null
hypothesis is r=0, and the null distribution is based on the well-known approximation

that ( )1,0~
1
1

log
2

1
N

r
rn







−
+−

, where n is ex-post sample size.
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CASE II′: Forecast comparison between M-M and VAR

(1) In-sample (1970:01~1989:12, 240 observations),
     Out-of-sample (1990:01~1997:10, 94 observations).
(2) xt = 6-months Commercial Paper; yt = 3-months Treasury Bill.

I. M-M method : Restricted form

)0716.0()0689.0(
ˆ)3984.0,0038.0max( 11 xtttt uyxx ++−= −−

R2 = 0.879, D/W = 1.86, Sum of Squared residuals = 234.00

)0302.0(

ˆ0411.01 yttt uyy ++= −

R2 = 0.866, D/W = 2.03, Sum of Squared residuals = 234.28









ε
ε

+













−
−

+











=








−

−

−

−

yt

xt

yt

xt

yt

xt

yt

xt

u
u

u
u

u
u

ˆ
ˆ

ˆ
ˆ

)11.0(29.0)09.0(16.0
)12.0(17.0)11.0(06.0

ˆ
ˆ

)11.0(41.0)10.0(06.0
)013(26.0)13.0(31.0

ˆ
ˆ

2

2

1

1

( ) ( ) ( )1187.00857.00078.0
4532.05462.00173.0 1

2
−++= xtxtxt hh ε

( )( ) ( )1286.01379.00103.0

3686.05774.00185.0 1
2

−++= ytytyt hh ε

s = 40
# of (the max operation selects Yt+b) = 56
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CASE III′: Forecast comparison between M-M and VAR

(1) In-sample (1970:01~1989:12, 240 observations),
     Out-of-sample (1990:01~1997:10, 94 observations).
(2) xt = 6-months Commercial Paper; yt = 3-months Treasury Bill.

I. M-M method: Restricted form

( )
)1303.0()0926.0()4419.0(

2737.0ˆ,ˆ)1951.0ˆ,5282.0ˆmax(ˆ1 111 =α++α−α+α−= −−− xttttt uyxxx

R2 = 0.879, D/W = 1.87, Sum of Squared residuals = 233.94

)0290.0(

ˆ0368.01 yttt uyy ++= −

R2 = 0.866, D/W = 2.02, Sum of Squared residuals = 234.49

( ) ( )
( ) ( )

( ) ( )
( ) ( ) 








ε
ε

+













−
−

+











=








−

−

−

−

yt

xt

yt

xt

yt

xt

yt

xt

u
u

u
u

u
u

ˆ
ˆ

ˆ
ˆ

11.028.010.015.0
11.024.010.013.0

ˆ
ˆ

11.041.010.005.0
15.019.015.039.0

ˆ
ˆ

2

2

1

1

( )( ) ( )1076.00870.00079.0
4008.05818.00170.0 1

2
−+ε+= xtxtxt hh

( ) ( ) ( )1317.01375.00099.0

3751.05786.00174.0 1
2

−+ε+= ytytyt hh

s = 50
# of (the max operation selects  αyt+b) = 235
















