
UC Berkeley
Research Reports

Title
Crane Double Cycling in Container Ports: Affect on Ship Dwell Time

Permalink
https://escholarship.org/uc/item/9qp7p7jq

Authors
Goodchild, Anne V.
Daganzo, Carlos F.

Publication Date
2005-04-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9qp7p7jq
https://escholarship.org
http://www.cdlib.org/

Institute of Transportation Studies
University of California at Berkeley

July 2005
ISSN 0192 4095

RESEARCH REPORT
UCB-ITS-RR-2005-5

Crane Double Cycling in Container Ports: Effect on Ship Dwell Time

Anne V. Goodchild and Carlos F. Daganzo

Crane Double Cycling in Container Ports:
Effect on Ship Dwell Time

Anne V. Goodchild, Carlos F. Daganzo
Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720,

{anne_g@berkeley.edu, daganzo@ce.berkeley.edu}

Loading ships as they are unloaded (double-cycling) can improve the efficiency of a quay
crane and thus container port. This paper describes the double-cycling problem, and presents
two solution algorithms and simple formulae to estimate reductions in the number of
operations, and operating time.

The problem is formulated as a scheduling problem. Small problems can be solved to
optimality with a standard numerical solver, but problems of typical size are computationally
burdensome and terminated after 10 hours with optimality gaps larger than 50%. A formula
for an improved lower bound to the optimal solution is developed and shows the optimality
gaps are actually below 2.5% in all cases.

The paper presents a greedy algorithm that can obtain solutions in seconds. A formula for
an upper bound to the greedy algorithm’s performance can be used to accurately predict crane
performance.

The problem is extended to include an analysis of double-cycling when ships have deck
hatches. Results are presented for many simulated vessels, and compared to empirical data
from a real-world trial. The paper demonstrates that analytical methods can be used in
addition to numerical methods to provide greater insight. More importantly, the paper
demonstrates that double-cycling can create significant efficiency gains.

Key words: logistics, freight transportation, terminal operations, container port terminal

Introduction
The volume of goods moved by container through the US transportation system has grown
dramatically over the last 15 years, but our infrastructure has not. This has led to significant
freight congestion at transportation terminals, and greater interest in freight from
governmental planning agencies. Strategies are required that aid the movement of freight
through the system, and specifically through terminals. Quay cranes are the most expensive
single unit of handling equipment in port container terminals, and because of this, one of the
key operational bottlenecks at ports is quay crane availability (Crainic and Kim 2004). By
improving quay crane utilization, ports can reduce ship turn-around time, improve port
productivity and improve throughput in the freight transportation system. This work
addresses the key bottleneck to port productivity; quay crane utilization.

Double-cycling is a technique that can be used to improve the utilization of quay cranes
by converting empty crane moves into productive ones. Instead of using the current method,
where all relevant containers are unloaded before any are loaded (single-cycling), containers
are loaded and unloaded simultaneously (see Fig. 1). This allows the crane to carry a
container while moving from the apron to the ship (one move) as well as from the ship to the
apron; doubling the number of containers transported in a cycle (or two moves). This crane
efficiency improvement can be used to reduce ship turn-around time and therefore improve
port throughput, and address the capacity problem.

In their efforts to increase productivity, ports have undertaken various projects such as
renovating and adding terminals, constructing and expanding intermodal facilities, and
implementing new IT infrastructure (Mangelluzzo 2005). Because crane productivity is so
important, ports have also invested in various crane utilization improvement strategies. For
example, dual hoist cranes have been developed that separate the crane’s cycle into two
subcycles that can be operated independently. These are currently in use at many ports,
including Rotterdam and Norfolk. Operational changes are of interest because they provide
benefits at less cost. The concept of double-cycling is recognized by some in the industry
(Ward 2005), (Yau 2003), and its potential to improve efficiency is intuitively understood.
Although small scale trials have been undertaken at San Pedro and Tacoma, as well as at ports
in Asia and Europe, a broad implementation of double cycling has not occurred. There are
several reasons for this. First, small scale trials have understated the benefits of double
cycling which, as we will show, increase with the number of containers. Second, the lack of
implementation tools that detail the necessary operational changes leave some operators
doubting that the benefits will overcome the operational costs. Third, the absence of a
rigorous analysis of the benefits of double cycling leaves the question of its impact on crane
operations open. This paper aims to address this final point by providing a quantitative
analysis of the impact of double cycling on crane efficiency. We emphasize this point
through comparison with empirical data.

To address point two, we will assume the ship’s loading plans are given. Creating vessel

loading plans is a complicated process, with many competing objectives. Shipping lines use
software tools to create loading plans that accommodate vessel stability requirements,
placement constraints on hazardous materials, refrigerated containers, above, and below deck
storage, and may include strategies to minimize the number of cycles necessary to unload
containers at subsequently visited ports. From these tools, a sequence of operations is
generated for the crane operator and foreman (who directs landside operations). When

considering the benefits of double cycling, this paper assumes that existing planning tools
have been used to create a loading plan, as is current practice, and that this loading plan has
made no accommodations for double cycling. We therefore consider changes only to the
crane’s sequence of operations. In practice, this would be determined at a planning stage, and
the crane operator would be given a sequence of operations to carry out, in the same way they
are when performing single-cycle operations. This way we may demonstrate that double-
cycling is feasible and beneficial without disrupting current operations.

Although no academic research has addressed the problem of double cycling, a significant

amount of research has addressed other problems of port design and operation. Port research
typically focuses on strategic design planning issues such as the number of berths (Schonfeld
and Sharafeldien 1985), the size of storage space (Kim and Kim 2002), and the number of
various pieces of equipment to install (Vis et al 2001). Operational planning and control
problems include berth scheduling (Park and Kim 2003), quay-crane scheduling (Daganzo
1989), stowage planning and sequencing (Christiansen et al 2004), storage space planning
(Castilho and Daganzo 1993), and dispatching of yard cranes and prime movers (Kim and Bae
1999). To date, most of this work utilizes queueing theory and stochastic models (Daganzo
1990), simulation (Lai and Leung 2000), and classical operations research techniques such as
routing, network, and scheduling problems (Kim and Kim 2002).

In the next section, a framework is set for analysis of the problem. The section also
includes an example that is used to illustrate the problem’s basic properties. In Section 2 a
scheduling formulation, and the results from its implementation with a numerical solver are
presented. A lower bound to the problem is developed in Section 3. Section 4 presents a new
algorithm and bounds its results. The problem is extended to accommodate ships with deck
hatches in Section 5. Section 6 presents the results of simulated vessel loadings and
unloadings, tools to convert benefits from cycles to time, and compares time-savings to
empirical results. The paper concludes with a discussion.

1. Modeling Framework
The layout of containers on a ship can be modeled as a 3-dimensional matrix. Containers are
stacked on top of one another, and arranged in rows. One row stretches across the width of
the ship. Large container vessels today typically hold 20 stacks of containers across the width
of the ship, and up to 20 stacks along the length of the ship (40-foot equivalent units). Of
course, we expect these figures to increase with the penetration of Malacca-max carriers.
Figure 2 gives a top and side view of a typical vessel (although the number of container stacks
is not representative).

The complete operating cycle of the crane can be broken down into the following
components;

a) locking to or unlocking from a container,
b) lengthwise motion along the ship,
c) horizontal motion across the ship,
d) vertical motion.

It is important to point out that the number of locking and unlocking operations is not affected
by double cycling. The same number of containers will need to be picked up and put down

with single or double cycling. In this research we will assume that dockside containers are
ready for loading when required, and containers being unloaded can be quickly removed from
the immediate area. In the initial analysis it will be assumed that ships lack hatch-coverings,
or doors on the deck that separate above-deck and below-deck storage. This assumption will
be relaxed in Section 5.

Consider the case where a ship arrives in port with a set of containers on board to be

unloaded and a loading plan for containers to be loaded. The loading plan indicates the
placement of containers on the ship. Given are uc and lc, the number of containers to be
unloaded and loaded, respectively, in each stack labeled c. Figure 3 is an example problem
that will be used for illustrative purposes. A rehandle is a container than must be moved to
access containers below it, but will then be stowed again before the ship departs. Note that if
any rehandles are necessary, these are included in the total number of loads and unloads.
Note that this will over-estimate the amount of work necessary to unload and load a set of
containers because the container is considered moved from the vessel to the shore and back to
a location on the vessel. In Fig. 3, uA = 3 and lA = 2.

The set of stack labels, c, is called S. An ordering of these stacks can be described by a
permutation function, Π. A permutation is a one-to-one correspondence between the set of n
∈ {1,…, N} and c ∈ S such that Π(n) = c, or n = Π-1(c). For example, in Fig. 3, the set of
stack labels S = {A, B, C, D} a permutation of these is {B, A, C, D} given by the function Πe
where Πe(1) = B, Πe(2) = A, Πe(3) = C, and Πe(4) = D.

If we consider the time it takes to unload and load a ship to be a measure of crane
productivity, then the goal of double cycling is to reduce the total turn-around time. A proxy
for this is the number of cycles. We will discuss time-savings in section 7. The number of
cycles necessary to complete loading and unloading will be represented by the variable w.
We will consider double cycling whithin one row of the ship. We will complete unloading
and loading of one row before moving the crane lengthwise along the ship to the next row.
Thus we will not require the crane to move laterally along the ship within one cycle. We will
restrict our attention to special cases of the generic double-cycling method described below:

• Choose an unloading permutation, Π′ . Unload all containers in the first stack of the
permutation, then all containers in the second stack of the permutation, proceed in this
fashion until all stacks have been unloaded.

• Choose a loading permutation, Π, and load the stacks in that order. Load all
containers in the first stack, then in the second, etc.. Loading can start in any stack as
soon as it is empty or it contains just containers that should not be unloaded at this
port. Once loading has begun in a stack, continue loading until that stack is complete.

Figure 4(a) is a queueing diagram for a single-cycling operation where the stacks of Fig. 3

are handled in the order {A,B,C,D} both for loading and unloading. Time is expressed in
cycles. Note that loading operations must wait until cycle w = 10, when unloading is finished.
The process requires w = 20 cycles.

If we double-cycle, we can still plot the unloading curve on the same diagram. Now,
using the same sequence for unloading and loading, Π′= Π = {A,B,C,D}, we can shift the

loading curve to the left as far as possible without overlapping the unloading curve. Figure
4(b) shows the maximum shift. Loading can start as early as w = 4 and the process would
require only 14 cycles. The same number of cycles is obviously obtained if we start loading
each stack as early as possible, as in Fig. 4(c). This introduces some delay as the loading
operations must wait one cycle for the unloading operations to be completed in stack B, but
does not change the completion time.

With single-cycling one cycle is required for every container. With double-cycling,
however, the number of cycles will depend on the sequence. Fig. 4(d) shows that if the
loading and unloading sequence is {B,A,C,D}, then the completion time is w = 13.

In the next section we formulate the problem of determining Π′ and Π as a mixed integer
program and discuss the results of its implementation using a numerical solver.

2. Scheduling Approach
The problem is formulated as a job shop scheduling problem where jobs are equated with the
loading or unloading of stacks and the crane operates as two machines . Since all work on
loading and unloading is assumed to be continuous, we just look for the job completion times.
Start times are identified from the known job durations. We use the following notation:

uc - number of containers to unload in stack c ∈ S
lc - number of containers to load in stack c ∈ S
Xc - completion time, i.e. cycles, of unloading c ∈ S
Yc - completion time of loading c ∈ S
w - total completion time
Xkj - binary variable to track ordering of unloading jobs (1 if j ∈ S is unloaded after k ∈
 S and 0 otherwise)
Ykj - binary variable to track ordering of loading jobs (1 if j ∈ S is loaded after k ∈ S and
 0 otherwise)
M - a large number

The scheduling problem (SP) is to minimize the completion time of all jobs subject to

constraints that uniquely identify the permutations Π and Π′ , and a feasible set of job start
and end times. It is assumed that the process starts at time zero. The formulation is:

minimize w
subject to w ≥ Yc ∀c ∈ S, (1a)
 Yc – Xc ≥ lc ∀ c ∈ S, (1b)
 Xk – Xj + MXkj ≥ uk ∀j,k ∈ S, (1c)
 Xj – Xk + M(1-Xkj) ≥ uj ∀j,k ∈ S, (1d)
 Yk – Yj + MYkj ≥ lk ∀j,k ∈ S, (1e)
 Yj – Yk + M(1-Ykj) ≥ lj ∀j,k ∈ S, (1f)
 Xc ≥ uc ∀c ∈ S, (1g)
 Xkj, Ykj = 1, 0 ∀j,k ∈ S. (1h)

These constraints completely define the double-cycling problem. Constraints (1a) ensure
that the process ends when the last stack is loaded or later. Constraints (1b) ensure that
stacks are only loaded when empty. Constraints (1c), (1d) and (1h) ensure that every stack is
unloaded after the previous one in Π′ has been unloaded. This is achieved by specifying for
every pair of stacks (j,k) that either stack k is unloaded before stack j (if Xkj = 1) or the reverse
(if Xkj = 0), and that the time difference between the two events is large enough to unload the
second of the two stacks. Constraints (1e), (1f) and (1h) are equivalent to (1c), (1d) and (1h)
but for loading jobs. Constraints (1g) ensure that each unloading completion time allows for
enough time to at least unload that stack.

The SP is in the family of job shop scheduling problems. These problems are notoriously
difficult to solve. Heuristic solution algorithms have been developed for some versions. For
a summary of current solution techniques see Pinedo (2002), or Applegate and Cook (1991).
These methods are not readily applicable to the SP. In our problem, there are two machines;
an unloading crane and a loading crane (in reality this is one device). Each stack must visit
the unloading crane before the loading crane, and containers are only loaded into stacks from
which all relevant containers have been unloaded.

Ship data were generated to evaluate the algorithm. The numbers of containers to load
and unload in each stack were assumed to be independent and uniformly distributed between
0 and 10. A standard numerical solver (AMPL with CPLEX 8.0) was then used to determine
the optimal permutation. Table 1 shows the number of stacks, solution time, number of runs,
and optimality gap. Runs were carried out on a 1.4 MHz Dell Poweredge 1650 server,
running Linux with 2 GB of real memory and 1 GB of swap space.

For small problems (10 stacks and fewer), the problem could be solved optimally.
However, average solution times were found to grow quickly with problem size (number of
stacks). Problems with more than 10 stacks (about half the size of typical problems) could not
be solved optimally in less than 10 hours. The optimality gaps of Table 1 are the percent
difference between the solution at ten hours and the highest lower bound known. The highest
lower bound known is the solution to an infeasible relaxation to the problem. For example, if
the solution was 100 cycles, and the highest lower bound known 75 cycles, then the
optimality gap would be 25%. These gaps increased with problem size and were rather large,
even for N = 15, so the quality of the 10-hour solutions were uncertain.

This shows that, for small problems, the numerical solver provides a good solution. For
typical problems however, further analysis is desirable.

3. Lower Bound
We will now determine a lower bound for the number of cycles, which can be used to better
judge the quality of the numerical solver’s solutions. Define:

∑∑
∈=

Π′ ==
Sc

c

N

n
n uuY

1
)(, ∑∑

∈=
Π ==Λ

Sc
c

N

n
n ll

1
)(.

Recall from Fig. 4(a) that using single-cycling, the number of cycles necessary to

complete a row is:

Υ + Λ.

This is intuitive; one cycle for each container. We have assumed the crane must start and

finish on the dock.

For double-cycling, with a specific loading permutation Π and unloading permutation Π′ ,
the number of cycles must be at least)1('Π+Λ u which satisfies:

)(min)1(' cc uu +Λ≥+Λ Π . (2)

The right-hand side of (2) is a general lower bound that applies to all permutations. It is
also a lower bound if we force the same permutation for loads and unloads (Π′ = Π). More
specifically, if w1

* is the optimal number of cycles with the same permutation for loading and
unloading and w2

* is the optimal number of cycles with different permutations, we can write:

)(min*
2

*
1 cc uww +Λ≥≥ . (3)

1. The new lower bound reveals that the quality of the solution determined by the

numerical solver (in 10 hours) is quite high. Revised optimality gaps, using (3) for the
lower bound, are given in Table 2.

Currently, rows do not accommodate more than 20 stacks, but it is useful to understand the
behavior of the algorithm across a range of problem sizes. Vessels will continue to grow in
size, and, in addition, technologies may change to allow for more efficient lateral movement
of the crane. This is why our results were extended to 250 stacks. For current vessels, the
generic algorithm is not fast enough to be used for real-time applications. Therefore, we will
discuss an alternative algorithm that can be used for real-time applications, that is simpler,
and provides greater flexibility and insight. The algorithm yields an upper bound formula for
the required number of cycles. The formula can be evaluated without running the algorithm,
and thus is useful for planning purposes.

4. Greedy Strategy and an Upper Bound
We propose to unload and load each stack as soon as possible, assuming that the loading and
unloading sequences are given by the same “greedy” permutation, Π′= Π = G. This greedy
permutation is obtained by ordering the stacks in descending order of the variable dc where:

dc = lc – uc)(Υ≥Λif , (4a)
dc = uc – lc)(Υ<Λif . (4b)

The rationale for (4a) is that we want the unloading operations to run ahead of the loading

operations as much as possible. We will now introduce some terminology which will allow
us to prove the existence of an upper bound on the number of cycles required using the greedy
strategy. Associated with this strategy, we define functions U(w) and L(w) for the number of
stacks completed as illustrated by the solid curves on the top and bottom parts of Fig. 5. We

also define L-1(c) and U-1(c) for integer c as the inverse functions, and Uc = uG(c) and Lc = lG(c)

as the horizontal steps of the curves. See Fig. 5 and the notations along the bottom of the
abscissa’s axis. Note that U(Y) = L(Λ) = N. Define wG as the number of cycles with G.

THEOREM 1. If Λ ≥ Y, then)(max)(min *

1
*
2 ccGcc uwwwu +Λ≤≤≤≤+Λ .

PROOF. In view of (3), it suffices to prove)(max*

1 ccG uww +Λ≤≤ . Since
*
1wwG ≥ it suffices to show that Gcc wu ≥+Λ)(max . Consider a horizontal shift, L,

to curve L, that will ensure curve L is to the right of curve U (as in the dotted curve in
the top of Fig. 5), i.e. that L-1(c-1) + L ≥ U-1(c) for c = 1,... N. Obviously the least
possible delay, L0, is maxi(U-1(c) – L-1(c-1)) = maxc(Uc + (U-1(c-1)-L-1(c-1)). Since Λ
≥ Y, the greedy strategy satisfies (U-1(c-1) – L-1(c-1)) ≤ 0 ∀ c. Hence L0 ≤ maxc(Uc).
Therefore maxc(Uc) + Λ =)(max cc u+Λ is an upper bound to the number of cycles.
□

COROLLARY 1. If Λ ≤ Y, then)(max)(min *

1
*
2 ccGcc lwwwl +Υ≤≤≤≤+Υ .

PROOF. G in this case is defined by (4b). That Corollary 1 is true should be

obvious by symmetry. If one were to record the process of unloading and loading the
row, and then play this recording in reverse, the reversed movie would display a
sequence of operations with the same total time as for a problem in which the role of
loads and unloads is switched. Thus, for every problem instance with loads greater
than unloads, there is a dual instance where unloads are greater than loads. Figure
6(b) shows the reverse movie of Fig. 6(a). Note that the greedy strategy continues to
be greedy in reverse, and that everything said up to this point, including the bounds,
continues to hold with time running backward. Note that in Fig. 6(b) the greedy
strategy with time running backward implies a reverse ordering of {dc}, as specified in
(4b), thus Corollary 1 holds. □

Define)(max),(max),(min),(min **
cccccccc llanduulluu ===′=′ . Then given

Theorem 1 and Corollary 1 we can write:

),max(),max(***
1

*
2 luwwwlu G +Υ+Λ≤≤≤≤′+Υ′+Λ . (5)

For rows of large ships where (Λ,Y) >> (u*, l*), the greedy strategy is very close to both

the upper and lower bounds since all the members of (5) are relatively close to max(Λ,Y).
More specifically, note that if uc and lc are bounded by a constant (stack size) then the percent
optimality gap vanishes as the number of stacks (problem size) tends to infinity. Thus the
greedy strategy is asymptotically optimal.

Figure 7 compares the performance of the scheduling and greedy algorithms. The
percentage difference between each strategy’s solution and the minimum is shown. In
general, both algorithms perform well. As expected, the greedy algorithm’s performance
improves with row size. With the scheduling problem we could not provide an upper bound
formula for the savings that double-cycling would provide over single-cycling. Using the

greedy strategy, we have been able to quantify the improvements double-cycling provides in
all cases. Results for the greedy strategy are comparable to those of the scheduling algorithm
(slightly better for the largest problems), but can be obtained more quickly. In the next
section, we consider deck hatches as an extension to the problem considered so far.

5. Deck Hatches
Most container ships currently have hatch coverings, as shown in Figure 8. These are large
steel plates that separate above-deck and below-deck storage. In Fig. 8(a) we have shown a
vessel two hatches wide, with three stacks of containers above and below each hatch. In Fig.
8(b) we have shown a vessel three hatches wide, with five stacks above and below each hatch.
Typical ships are three hatches wide, each hatch containing 5 or 6 stacks of containers.
Hatches change the nature of the problem already addressed because the stacks are no longer
independent. To access the containers below a hatch all containers must be unloaded from
above the hatch, and before loading containers atop a hatch all containers below the hatch
must be loaded.

The following algorithm (the greedy hatch strategy) will be considered. As in the
hatchless case, assume that each stack on the ship is given an initial label. To carry out the
strategy it is necessary to:

1. Order the hatches using a greedy strategy using the same method as for the hatchless

case. Treat the hatches as stacks, considering only the containers atop the hatches.

2. Order the stacks within each hatch using a greedy strategy, considering only the
containers below deck.

The algorithm is then carried out as follows:

1. Apply the greedy strategy to the containers above deck, treating hatches as stacks,

pausing each time all containers above hatch h have been removed.

2. During the hth pause, unload and load the containers below the hth hatch using
double-cycling.

As with the hatchless case, this method may not provide the least number of cycles to

complete loading and unloading operations on the row. The value of the method is its
simplicity; parts of the unloading and loading process are equivalent to the hatchless ship
problem already addressed. Each piece below a hatch is equivalent to a hatchless ship, and
the containers above a hatch to a stack of a hatchless ship. These relationships will allow us
to use the analysis of the hatchless ship to develop bounds for the hatched case. First it is
necessary to define some notation.

 h – hatch label
 Sh – the set of stacks for hatch h
 Nh – the number of stacks of hatch h
 H – the set of hatches
 F – the number of hatches

 hcu – the number of containers to unload below hatch h in stack c ∈ Sh
 hcu – the number of containers to unload above hatch h in stack c ∈ Sh

 hcl – the number of containers to load below hatch h in stack c ∈ Sh
 hcl – the number of containers to load above hatch h in stack c ∈ Sh

 ∑

∈

=
hSc

hch uu – containers to unload below hatch h

 ∑
∈

=
hSc

hch uu – containers to unload above hatch h

 ∑
∈

=
hSc

hch ll – containers to load below hatch h

 ∑
∈

=
hSc

hch ll – containers to load above hatch h

 ∑∑

∈ ∈

=
Hh Sc

hc

h

uY – containers for unloading below deck

 ∑∑
∈ ∈

=
Hh Sc

hc
h

uY – containers for unloading above deck

 ∑∑
∈ ∈

=Λ
Hh Sc

hc

h

l – containers for loading below deck

 ∑∑
∈ ∈

=Λ
Hh Sc

hc
h

l – containers for loading above deck

 wA = the number of cycles above deck
 wB = the number of cycles below deck
 wB,h = the number of cycles below hatch h

Also define the greedy permutation for hatches;
 P(f) = h; P-1(h) = f for f = 1... F; h∈H

and the greedy permutation for containers below hatch, h∈H:
 Π(n⏐h) = c∈Sh; Π-1(c|h) = n for c∈Sh, {n = 1...Nh}

THEOREM 2. An upper bound on the optimum number of cycles for the
hatched case is },{max},{max},max{},max{ hchcSchhh

Hh
hh lululu

h∈
∈

++ΥΛ+∑ .

PROOF. We know from (5) that wA = number of cycles for a row of F stacks with

data given by {uh,lh} ≤ max{Λ,Y} + maxh{uh,lh}. Likewise
wB =∑

∈Hh
hBw , =∑

∈Hh
(number of cycles for a row of Nh stacks with data given by

},{ hchc lu) ∑
∈

∈+≤
Hh

hchcSchh lulu
h

},{max},max{ . Obviously then, the total number of

cycles with the algorithm satisfies
wA+ wB ≤ },{max},{max},max{},max{ hchcSchhh

Hh
hh lululu

h∈
∈

++ΥΛ+∑ . □

THEOREM 3. A lower bound on the optimum number of cycles for the
hatched case is },{min},{min},max{},max{ hchcSchhh

Hh
hh lululu

h∈
∈

++ΥΛ+∑ .

PROOF. We know from (5), but treating each hatch as a stack, that the lower

bound on the number of cycles above deck is },{max},max{ hhh lu+ΥΛ . We also
know from (5), but treating each hatch as a vessel, that the lower bound on the number
of cycles below deck is },{max},max{ hchcSc

Hh
hh lulu

h∈
∈

+∑ . □

Clearly, for rows where },max{},max{ ΥΛ+∑

∈Hh
hh lu >> },{max},{max hchcSchhh lulu

h∈+ ,

both the upper and lower bounds are close to the solution provided by the greedy strategy and
},max{},max{ ΥΛ+∑

∈Hh
hh lu provides a reasonable estimate of the total unloading and

loading time for one row. As with the hatchless case, the gap between the upper and lower
bound is quite small, and decreases with the size of the row. Thus, the simple greedy
algorithm is reasonably efficient.

If one only double-cycles below deck, as is current practice, the benefits of double-cycling
will be reduced by roughly the ratio of containers above deck to containers below deck.

6. Evaluation
This section addresses the magnitude of double cycling benefits. We present simulation
results that estimate benefits in cycles for rows of current vessels. We also present tools to
convert benefits from number of cycles to an amount of time, and compare these tools to data
collected in a real-world trial of double cycling.

6.1 Simulation Results

To understand the benefits on a larger scale, a simulation program was developed to generate
ship data for many vessels and calculate the number of cycles necessary to complete
operations in each row using various double cycling strategies. For all results shown here,
double-cycling only takes place below deck. This is current practice, and matches the real-
world trial at the Port of Tacoma. Loading plans were generated from sets of parameters
intended to approximate the universe of actual and future ships. For more details see
Goodchild (2005). Results are shown in Figure 9.

As expected, the number of cycles using double cycling is always less than single cycling.
Of course, if there are no containers to load, or unload, then double cycling provides no
benefit. Similarly, there exist vessel loadings where double cycling will cut the number of
cycles almost by half (if we were to have no containers above deck). But, on average, there is
a 21% reduction in the number of cycles when using the greedy strategy. Of course, this
percentage would be greater if we could also double-cycle above deck. Each time we replace
two single cycles with one double cycle, we reduce the distance traveled by the crane, and
save some time.

6.2 Time-Savings

We will use the following notation. Please refer to figure 10.

W – time saved for each replacement of two single cycles by one double cycle
Sr - number of cycles required to turn-around row r ∈ {1…R} using single-cycling
Dr - number of cycles required to turn-around row r ∈ {1…R} using double-cycling
dr - number of cycles moving two containers while operating on row r ∈ {1…R}

Vh - hoist speed of the trolley when not moving a container
Vl – speed of the crane when moving lengthwise along the vessel
Vt –horizontal travel speed of the trolley when not moving a container

dV – vertical distance from the apron to the maximum height container reaches
dL – lateral distance between two rows of the vessel
b – horizontal distance from landside vehicle to the edge of the vessel
P –width of the vessel
Tr – time required to position landside vehicle after departure of previous vehicle

For each double-cycle we save some empty-crane travel relative to the two corresponding

single cycles, but we also experience a slight landside-repositioning penalty. The time
penalty, Tr, is incurred because after dropping a container for unloading onto a landside
vehicle, the crane must wait for a container for loading to be positioned below the crane.
With single cycling, this can be done simultaneously with other crane operations. Any minor
vertical motion necessary between dropping a container on the landside vehicle and picking
up the next container (to remove the trolley from the work area) will also be accounted for in
this penalty.

The total distance traveled by the crane is reduced by one complete empty cycle between

the apron and the position above either the container to load or the container to unload. Of
course, some horizontal and vertical motions will take place simultaneously. An upper bound
on the time saved per cycle, W, is provided by summing the horizontal and vertical travel
times, the lower bound by taking the maximum of the two:

() ()
r

tth

V
r

tth

V T
V

P

V
b

V
d

WT
V

P

V
b

V
d

−
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
>>−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
++ 3

1
,max23

1
2 (6)

For each double cycle the vertical distance is reduced by 2dV. The horizontal distance is
reduced by twice the distance between the apron and the closer of the two containers. This is

))3/1((2 Pb + , assuming a uniform distribution of locations. If double cycling only below
deck, the maximum height reached while double cycling will be the clearance height of the
vessel. The number of cycles saved by double-cycling in each row is dr = Sr – Dr.

After completing loading and unloading operations on a row the crane moves along the

vessel to the next row. If there are R rows on a vessel, the time consumed with lateral motion
is 2*(R-1)*dL/Vl with single cycling, and (R-1)*dL/V, exactly half, with double cycling.

6.3 Validation

In June 2003, the Center for the Commercial Deployment of Transportation Technologies,
Transystems, the Port of Tacoma, and Washington United Terminals, worked together on a
full-scale demonstration of the Efficient Marine Terminal concept. Double cycling of
container cranes is a key element of this concept and on June 28, one bay of a Hanjin vessel
was loaded and unloaded simultaneously using double cycling (TranSystems Corp. 2003).
Double cycling occurred below deck only. During this trial, the adjusted average time for a
single cycle was 1 minute and 45 seconds, and for a double cycle, 2 minutes and 50 seconds.
We now compare the difference in these empirical cycle times to the differences obtained
using the expressions developed above. Parameter values based on the trial at Tacoma are
given in Table 3 (Garcia, 2005).

The lower bound is 25.4 seconds. The upper bound, 39.8 seconds. The upper bound is
very close to the empirical difference of 40 seconds. We expect these empirical results to
better match the upper bound as we assume a constant (maximum) speed of the crane.

Clearly the specific results depend on the parameters of each crane, vessel, and container
arrangement, but we have demonstrated that our tools provide results that match empirical
data. A 21% reduction in the number of cycles reduces operating time by approximately 8%.
A 35% reduction in cycles would reduce operating time by 13%.

We can estimate the financial benefits of double cycling by comparing productive ship

time (moving containers) to unproductive time. Intercontinental freight rates are estimated at
$.045 per TEU-km (Notteboom 2004). At this rate, each hour of idle vessel time costs the
ship operator $10,000. The 40 second benefit of each double cycle is worth approximately
$100. During typical operations, double cycling could provide approximately $350 per hour,
saving about $15,000 on a large container vessel. With three cranes per vessel, this is
comparable to the total crane operator’s wages for loading and unloading the vessel.

7. Discussion
Through the research presented in this paper we have developed an understanding of the
impact of double-cycling on loading and unloading operations both with respect to the
number of cycles, and amount of time. For very small problems an exact, optimal solution is
obtained. For larger problems, a sub-optimal strategy is developed that can be solved quickly.
Results for this strategy are tightly bounded by simple formulae, and comparable to results
obtained after 10 hours using a numerical solver. Savings in cycles and time can be quickly
calculated allowing for a flexible and transparent process.

The results obtained are applicable to a wide range of scenarios including large and small
vessels, those with many or few port visits, and a varying number of cranes operating per
ship. An alternative approach that focused on providing more accurate information for
specific cases would require detailed information on each container. Our approach relies on
only a small number of parameters, and sensitivities to these parameters are easily measured.
Favorable comparisons to empirical results support our approach.

Double-cycling while unloading and loading the vessel creates an opportunity to double-
cycle landside equipment. Chassis used to deliver containers to the apron can then carry an
unloaded container to local storage. Typically, these chassis return to local storage empty.
Future work will consider double-cycling with landside equipment in more detail. Our
ongoing research focuses on addressing planning level decisions such as the impact of double-
cycling on the need for landside transport vehicles, apron space, and port productivity. We
are also working on designing loading plans to create more opportunities to double cycle.

 Finally, we would like to emphasize a key result; that any amount of double cycling
will reduce the time required to turn around the vessel, at $100 per cycle the savings can be
very significant. While the benefits of double cycling will not solve current port congestion
they can be implemented quickly and, in conjunction with other measures, can ease
congestion before more long-term infrastructure projects come on line.

Acknowledgements
This work has been funded in part by the National Science Foundation, Grant CMS-0313317.

References
Applegate, D., W. Cook. 1991. A Computational Study of the Job-Shop Scheduling Problem.
ORSA Journal on Computing 3 149-156.

Castilho, B. D., C. F. Daganzo. 1993. Handling Strategies for Import Containers at Marine
Terminals. Transportation Research B: Methodology 27 151-166.

Christiansen, M. et al. Forthcoming. “Maritime Transportation”, in Handbooks in Operations
Research and Management Science: Transportation, C. Barnhart and G. Laporte (eds) North-
Holland, Amsterdam, The Netherlands.

Crainic T.G., K.H. Kim. Forthcoming. “Intermodal Transportation”, in Handbooks in
Operations Research and Management Science: Transportation, C. Barnhart and G. Laporte
(eds) North-Holland, Amsterdam, The Netherlands.

Daganzo, C.F. 1989. The Crane Scheduling Problem, Transportation Research B:
Methodology 23 159-175.

Daganzo, C.F. 1990. The Productivity of Multipurpose Seaport Terminals. Transportation
Science 24 205-216.

Garcia, B. 2005. Personal Conversations. TranSystems Corp.

Goodchild, A.V. 2005. An Analysis of Double Cycling and its Impact on Port Operations.
PhD Dissertation. University of California at Berkeley.

Kim, K.H., J.W. Bae. 1999. A Dispatching Method for Automated Guided Vehicles to
Minimize Delay of Containership Operations. International Journal of Management Science 5
1-25.

Kim, K.H., H.B. Kim. 2002. The Optimal Sizing of the Storage Space and Handling Facilities
for Import Containers. Transportation Research B: Methodology 36 821-835.

Lai, K.K., J. Leung. 2000. Analysis of Gate House Operations in a Container Terminal,
International Journal of Modeling and Simulation 20 89-94.

Mongelluzzo, B. 2005. Ports Rush to Keep Up, Journal of Commerce 6(9) 26-30.

Notteboom, T. 2004. Container Shipping and Ports: An Overview. Review of Network
Economics 3(2) 86-106.

Park, Y.M., K.H. Kim. 2003. A Scheduling Method for Berth and Quay Cranes, OR Spectrum
25 1-23.

Pinedo, M. 2002. Scheduling: theory, algorithms, and systems, Prentice Hall, Upper Saddle,
N.J..

Schonfeld, P., O. Sharafeldien. (1985) Optimal Berth and Crane Combinations, Journal of
Waterway, Port, Coastal and Ocean Engineering 111 1060-1072.

TranSystems Corp. 2003. Efficient Marine Terminal: Full Scale Demonstration. (available at
www.ccdott.org).

Vis, I.F.A., R. de Koster, K.J. Roodbergen. 2001. Determination of the Number of Automated
Guided Vehicles Required at a Semi-automated Container Terminal, Journal of the
Operational Research Society 52 409-417.

Ward, T. 2005. Personal Conversations, JWD Group.

Yau, V. 2003. Personal Conversations, American Presidential Lines.

Tables and Figures

Figure 1 (a) Unloading using single-cycling (b) Unloading and loading with double-cycling.

Figure 2 Plan and side views of a simplified ship (number of containers shown not representative of typical ship
size).

Double CyclingDouble-Cycling

container
Unload
container
Unload Return

without
container

Load
container
Load
container

Unload
container
Unload
container

Single CyclingSingle-Cycling

(a) (b)

Double CyclingDouble-Cycling

container
Unload
container
Unload Load

container
Load
container

Unload
container
Unload
container

Single CyclingSingle-Cycling

(a) (b)(a) (b)

A
B
C

container

Plan View

Side View

stack label

D
E
F

I
H
G

A
B
C

stack
container

Plan View

Side View

D
E
F

Container for load

Key:

Container to be rehandled

Containers to Unload: uA

Key:

Containers to Load: lDRehandles

A B C D

Key:

A B C D

Container to unload

Container to stay on vessel

Container for load

Key:

Container to be rehandled

Containers to Unload: uA

Key:

Containers to Load: lDRehandles

A B C D

Key:

A B C D

Container to unload

Container to stay on vessel

Figure 3 Detailed plan for containers to be unloaded and loaded.

D

C

B

AS
ta

ck
s

co
m

pl
et

ed

Number of cycles
5 10 15 20

D

C

B

AS
ta

ck
s

co
m

pl
et

ed

Number of cycles
5 10 15 20

D

C

A

BS
ta

ck
s

co
m

pl
et

ed

Number of cycles
5 10 15 20

D

C

B

AS
ta

ck
s

co
m

pl
et

ed

Number of cycles
5 10 15 20

Unloads Loads

(a) (b)

(c) (d)

Y

Λ

Λ
uB

D

C

B

AS
ta

ck
s

co
m

pl
et

ed

Number of cycles
5 10 15 20

D

C

B

AS
ta

ck
s

co
m

pl
et

ed

Number of cycles
5 10 15 20

D

C

A

BS
ta

ck
s

co
m

pl
et

ed

Number of cycles
5 10 15 20

D

C

B

AS
ta

ck
s

co
m

pl
et

ed

Number of cycles
5 10 15 20

Unloads Loads

(a) (b)

(c) (d)

Y

Λ

Λ
uB

Figure 4 Turn-around time with different methods: (a) single-cycling with ordering {A,B,C,D} unloading starts
at w = 10, 20 cycles (b) double-cycling with ordering {A,B,C,D} unloading starts at w = 4, 14 cycles. (c) double-
cycling with ordering {A,B,C,D} unloading starts at w = 3, 14 cycles. (d) double-cycling ordering {B,A,C,D}
unloading starts at w = 3, 13 cycles.

Number of
Stacks

Average CPU Solution Time
in minutes (limited to 10
hours (600 minutes))

Number of
runs
represented

Optimality
Gap

2 0.00 10 **
3 0.00 10 **
4 0.00 10 **
5 0.00 10 **
6 0.00 10 **
7 0.02 10 **
8 0.28 10 **
9 3.02 10 **
10 56.11 10 **
15 * 1 51.35%
20 * 1 67.43%
25 * 1 76.03%
30 * 1 78.08%
35 * 1 81.03%
40 * 1 84.10%
45 * 1 85.85%
50 * 1 87.05%

100 * 1 93.80%
150 * 1 96.15%
200 * 1 97.11%
250 * 1 97.63%

Table 1 Solution time and optimality gap for ships of increasing size. ** indicates the optimal solution was
obtained so optimality gap is zero. * indicates run was terminated at 600 minutes.

Number
of Stacks

Solution
obtained after
10 hours

Lower
Bound

Difference
between solution
and lower bound

15 74 74 0.00%
20 96 96 0.00%
25 121 121 0.00%
30 146 144 1.39%
35 174 171 1.75%
40 195 195 0.00%
45 205 205 0.00%
50 224 220 1.82%

100 468 468 0.00%
150 754 736 2.45%
200 1005 987 1.82%
250 1221 1207 1.16%

Table 2 The difference between the 10-hour solution, and the lower bound

Number of Cycles, w

U(w)

4
0

1

2

3

4

5

2 6 8 10 12 14 16

Number of Cycles,

Nu
m

be
r o

f S
ta

ck
s

Co
m

pl
et

ed

U1

U2

U3

U4

U(Y) = N

L

L-1(1) + L
B

D

A

C

Sp
ec

ific
 S

ta
ck

s
Co

m
pl

et
edU(w)

L

L-1(1) + L
B

D

A

C

L(w)

Number of cycles, w

L1

L
3

L2

L4 = 0

L-1(0)

L(Λ) = N

B

D

A

C

Sp
ec

ifi
c

C
ol

um
ns

 C
om

pl
et

ed

0

1

2

3

4

5

42 6 8 10 12 14 16

N
um

be
r o

f S
ta

ck
s

C
om

pl
et

ed

L(w)

0

1

2

3

4

5

2 6 8 10 12 14 16

U1

U2

U3

U4

U(Y) = N

U(w)

4

L

L-1(1) + L
B

D

A

C

Unloads

Loads

U(w)

4
0

1

2

3

4

5

2 6 8 10 12 14 16

U1

U2

U3

U4

U(Y) = N

U-1(0)

B

D

A

C

Sp
ec

ifi
c

C
ol

um
ns

 C
om

pl
et

ed

0

1

2

3

4

5

42 6 8 10 12 14 16

Unloads

U-1(1) U-1(2)
U-1(3) U-1(4)

L-1(1)
L-1(2) L-1(3)

L-1(4)

Number of Cycles, w

U(w)

4
0

1

2

3

4

5

2 6 8 10 12 14 16

Number of Cycles,

Nu
m

be
r o

f S
ta

ck
s

Co
m

pl
et

ed

U1

U2

U3

U4

U(Y) = N

L

L-1(1) + L
B

D

A

C

Sp
ec

ific
 S

ta
ck

s
Co

m
pl

et
edU(w)

L

L-1(1) + L
B

D

A

C

L(w)

Number of cycles, w

L1

L
3

L2

L4 = 0

L-1(0)

L(Λ) = N

B

D

A

C

Sp
ec

ifi
c

C
ol

um
ns

 C
om

pl
et

ed

0

1

2

3

4

5

42 6 8 10 12 14 16

N
um

be
r o

f S
ta

ck
s

C
om

pl
et

ed

L(w)

0

1

2

3

4

5

2 6 8 10 12 14 16

U1

U2

U3

U4

U(Y) = N

U(w)

4

L

L-1(1) + L
B

D

A

C

Unloads

Loads

U(w)

4
0

1

2

3

4

5

2 6 8 10 12 14 16

U1

U2

U3

U4

U(Y) = N

U-1(0)

B

D

A

C

Sp
ec

ifi
c

C
ol

um
ns

 C
om

pl
et

ed

0

1

2

3

4

5

42 6 8 10 12 14 16

Unloads

U-1(1) U-1(2)
U-1(3) U-1(4)

L-1(1)
L-1(2) L-1(3)

L-1(4)

Figure 5 Curves L and U of the greedy strategy

Number of cycles, w

Nu
m

be
r o

f S
ta

ck
s

Co
m

pl
et

ed

U1

0
0

1

2

3

4

5

2 4 6 8 10 12 14

B

D

A

C

Unloads

Loads

Sp
ec

ific
 S

ta
ck

s
Co

m
pl

et
ed

U2

U3

U4

L4 = 0

L3

L2

L1

Number of cycles, w

Num
ber of Stacks Com

pleted

0
0

1

2

3

4

5

2468101214

B

D

A

C

Unloads

Loads

Specific Stacks Com
pleted

(a)

(b)

Number of cycles, w

Nu
m

be
r o

f S
ta

ck
s

Co
m

pl
et

ed

U1

0
0

1

2

3

4

5

2 4 6 8 10 12 14

B

D

A

C

Unloads

Loads

Sp
ec

ific
 S

ta
ck

s
Co

m
pl

et
ed

U2

U3

U4

L4 = 0

L3

L2

L1

Number of cycles, w

Num
ber of Stacks Com

pleted

0
0

1

2

3

4

5

2468101214

B

D

A

C

Unloads

Loads

Specific Stacks Com
pleted

(a)

(b)

Figure 6(a) Definition of the greedy strategy (b) Rotated version of part (a).

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

20 25 30 35 40 45 50 100 150 200 250

Numerical Solver
Greedy Algorithm

15
0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

20 25 30 35 40 45 50 100 150 200 250

Numerical Solver
Greedy Algorithm

15

Figure 7 Performance comparison of the scheduling and greedy algorithms.

(a)

Plan View

Side View

Plan View

Side View

(b)

Figure 8 (a) Plan view and side view of a ship with hatch coverings (b) Rear view of a simple hatched ship.

greedy strategy
single cycling

25

75

125

175

225

275

25 75 125 175 225 275

N
um

be
r o

f m
ov

es

Number of moves using single cycling

save 50%

save 0%

save 21%

greedy strategy
single cycling

greedy strategy
single cycling
greedy strategy
single cycling

25

75

125

175

225

275

25 75 125 175 225 275

N
um

be
r o

f m
ov

es

Number of moves using single cycling

save 50%

save 0%

save 21%

greedy strategy
single cycling

Figure 9 Comparison in the number of moves required to turn-around a row using single cycling and the greedy
strategy. Red bars show the distance between the greedy strategy the general lower bound. Savings of 0%, 21%,
and 50% are indicated.

b

dV

horizontal distance

vertical
distance b P

dV

horizontal distance

vertical
distance b

dV

horizontal distance

vertical
distance b P

dV

horizontal distance

vertical
distance

Figure 10 Horizontal and vertical motion of the crane.

Parameter Value

Vh 300 feet per minute
Vt 500 feet per minute

P 130 feet
dV 75 feet
b 60 feet
Tr 15 seconds (Ward 2005)
Table 3 Parameter values for evaluation, based on Port of Tacoma trial.

	ts its report.pdf
	 Introduction
	1. Modeling Framework
	2. Scheduling Approach
	3. Lower Bound
	4. Greedy Strategy and an Upper Bound
	5. Deck Hatches
	6. Evaluation
	6.1 Simulation Results
	6.2 Time-Savings
	6.3 Validation
	7. Discussion

