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Abstract of the Dissertation

Optimal Decisions with Multiple Agents of

Varying Performance

by

Noah Silverman

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2013

Professor Rick Paik Schoenberg , Chair

In this dissertation, I look at four distinct systems that all embody a similar

challenge to modeling complex scenarios from noisy multidimensional historical

data. In many scenarios, it is important to form an opinion, make a prediction,

implement a business decision, or make an investment based upon expected future

system behavior. All systems embody an amount of uncertainty, and quantify-

ing that uncertainty using statistical methods, allows for better decision making.

Three distinct scenarios are discussed with novel application of statistical methods

to best quantify the endogenous uncertainty and aid in optimal decision making.

Two chapters focus on predicting the winners of a horse race, one on predicting

movement of a stock index, and the fourth on molding response from an online

advertising effort.

The first horse racing chapter uses a hierarchical Bayesian approach to model-

ing running speed, using a novel grouping of races into “profiles” and then pooling

information across those profiles to improve predictive accuracy. The second horse

racing chapter implements a novel conditional logistic regression that is modified

by frailty parameter derived from winning payoff, and then regularized with a

LASSO. High speed parallel algorithms, running on a GPU, were hand coded to
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optimize tuning LASSO parameters in rapid time.

The chapter on stock index prediction explores the application of ensemble

filters. I show how an ensemble of filters on individual member stocks is a better

predictor of index direction than a filter directly on the index.

The chapter on advertising explores how the clicks and sales from an Ad-

Words campaign may be modeled with a re-paramaterized Beta distribution to

better capture variance. Empirical data from a live campaign is studied, with

a hierarchical Bayesian framework for brand features solved using a Metropolis

within Gibbs algorithm.
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CHAPTER 1

Introduction

In business, medicine, investing, gambling, and many other fields, one often needs

to make a decision when there is imperfect, incomplete, or noisy information. The

general problem exists when there is a finite resource to be allocated in a scenario

where there is a potential loss or gain depending out a random future event or

events. To further complicate things, this decision must be made when there are

multiple “agents” acting collectively, either cooperatively, or competitively. The

decision may require choosing the best agent, or allocation of resources between

multiple agents.

The term “bet” and “investment” are often used interchangeably in academic

literature. A commonly quoted joke is that “If you made a profit, it was an

investment. If you lost money, it was a bet”. Generally any action based on an

event or events with uncertain outcome, where the goal is a gain or profit can be

thought of as a bet. (Even buying a “blue chip” stock is simply a bet with a very

low expectation of losing. Nothing is guaranteed in life.) For this dissertation I

will refer to both bets and investments as simply bets.

The motivation for this dissertation is to study optimal decision making under

a variety of scenarios involving multiple actors. The classification of scenario types

is illustrated in figure 1.1

With a single agent, standard models such as linear, logistic, or Poisson re-

gression can be readily adopted to most situations. Generally data about histor-

ical performance of the agent is used to model how the phenomena of interest
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Of Win

Figure 1.1: Categorization of Scenario Types

responded to the various independent covariates at the time of each past perfor-

mance measurement. Then, data about the covariates for the current state of

inquiry are used to model expected present or future performance. Once an esti-

mate of future performance, or probability of an outcome has been calculated, a

rational decision may be made.

Depending on the nature of decision required, different methods have been de-

veloped to determine bet (or investment) strategy based upon the aforementioned

predicted outcomes. In the case of a binomial outcome, with a bet and potential

profitable return, the decision is often reduced to what percentage of asset to bet

on the outcome. (In the case of actual gambling on a game of chance, or investing

in a stock, the decision is literally how many dollars to bet on the next outcome.)

John Kelly [Kel56] provides an elegant solution to this decision process, commonly

referred to as “The Kelly Criterion”, provided that you can accurately estimate

the probability of outcome. Applications of the Kelly Criterion, to both single

outcomes and multiple outcomes have been well discussed in academic literature.

2



With multiple agents, either acting competitively, cooperatively, or indepen-

dently, both the prediction and decision processes become much more complex.

When looking at competing agents, we can either model each agent’s performance,

and then estimate the probability that their performance is the best, or we can

directly model their probability of winning the contest. To model performance, I

look at a hierarchical Bayesian model in Chapter 2. If I am directly modeling the

probability of an agent winning the contest, then a Conditional Logistic Regres-

sion model may be used as detailed in Chapter 3. If agents are related, but acting

independently over time, then the application of ensemble filtering may provide

insight into the movement of the group as a whole. This is described in detail in

Chapter 4. When considering the probability of events in a complex system, a

re-paramaterized Beta Distribution captures variance much better than the more

traditional logistic, as explore in Chapter 5.

1.1 Horse Racing

Two of the four papers included in this dissertation relate to horse racing. Horse

racing is a parimutuel type of gambling event. A group of horses compete in a

race where there is a single winner. There are a variety of bets, based on different

winning outcomes or combinations of outcomes available to the public. All of the

bettor’s money is placed in a “pool” which is subsequently divided amongst the

bettors who chose correctly. One interesting side effect of this structure is that the

race courses report, in near real time, the fraction of betting pool that would be

awarded if a chosen horse wins. This is a perfect proxy for the public’s confidence

in a given horse and their expected probability of that horse winning.

At first glance, this may seem an unusual system to study, but the structure of

racing can be considered a proxy for financial markets that provides many unique

advantages:
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• Races always involve multiple agents. There are generally 8-14 horses per

race.

• Races are decided very quickly, generally within 60 seconds or so.

• Many distinct pieces of useful data are tracked for every race. I have over

189 variables in my data set.

• There is a large volume of very high quality data readily available. For

example, The Hong Kong Jockey Club provides several years of historical

data for free on their website.

• I have the public’s predictions and choices for every horse in every race in

history. This provides an interesting second layer of information.

1.2 Stock Market Indices

A stock market index is a derivative representation of a group of stocks. These

stocks in a group index are generally chosen because they are related in some

way. For example a group of stocks may be a representative selection of tech-

nology companies, a selection of automative companies, or a selection of utility

companies. The index is then a weighted combination of each stock’s price with

the intention that it will represent the overall value or direction of the industry

being represented. The most well know index is the S&P 500, which is comprised

of 500 stocks chosen to represent the American economy. At the most direct level

of usage, investors will often use an index as a representative proxy for how an

area of interest is performing. Further along in complexity are an entire family

of investment products that are based directly on the index itself, with no regard

for the underlying companies. For example, it is possible to buy and sell fictional

“shares” directly in the S&P 500 index. Subsequently, there is an entire class of

investors very interested in predicting future performance of the stock index.
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While each stock’s price may move stochastically between time periods, the

index can be thought of as a smoothed filter that is representative of the industry

as a whole. This relationship creates an interesting opportunity to estimate the

future price of the index by analyzing the behavior of the individual component

stocks. Analogous to a school of fish, the overall direction of the school can be

seen as a composite of each fish’s individual stochastic swimming path.

In Chapter 4, I propose a method of estimating future stock prices through a

novel application of an ensemble of filters on the component stocks.

1.3 Search Engine Advertising

Search engine advertising, mainly on Google, has become the dominant form

of Internet advertising, generating the most revenue for publishers and the best

results for advertisers. While it may seem unusual to base a statistical study on a

single company, in this case Google dominates the industry by such a large margin

that data from other providers is literally insignificant. In 2011, 96% of Google’s

$37.9 Billion in revenues came directly from advertising. (Need authoritative

source for numbers.)

Google’s main advertising product is known as Adwords and is composed of

11 ads present on any page listing the results of a search query. The pricing model

is one of “pay-per-click” (PPC) where advertisers only pay if a browser clicks on

their ad. Advertisers offer a bid of the maximum PPC they are willing to pay

along with a daily budget of the maximum amount they are willing to spend.

Generally, there are multiple advertisers bidding on a given search in Google.

Google has an internal algorithm designed to maximize their profit by selecting

the order in which ads are displayed. (Ads in positions below 11 are placed on

later pages of the search results, a very undesirable position.)

One great advantage of Internet advertising vs. traditional media is that ad-
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vertisers have no cost to modify ad creatives, and receive feedback on resulting

performance very quickly. Advertisers are generally unsure of the optimal ad cre-

ative, unsure of the ideal search phrases to bid for, and unsure of the optimal bid

PPC price. Furthermore, advertisers may intentionally have different ad variants

or keyword targets in order to capture a broader demographic. The resulting sce-

nario is that most advertisers have a large portfolio of many ads aimed at many

keywords.

The competitive structure of PPC bidding, combined with uncertainty of op-

timal ad variant or keyword choice leads to a very complex optimization problem

well beyond the traditional ad management skills of most businesses. In chapter

5, I discuss the situation in detail and propose an algorithm to optimize parameter

settings given the stochastic nature of the system.
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CHAPTER 2

A Hierarchical Bayesian Analysis of Horse

Racing

2.1 Introduction

Horse racing is the most popular sport in Hong Kong. Nowhere else in the world

is such attention paid to the races and such large sums of money bet. It is literally

a ”national sport”. Popular literature has many stories about computerized ”bet-

ting teams” winning fortunes by using statistical analysis.[Kap03] Additionally,

numerous academic papers have been published on the subject implementing a

variety of statistical methods. The academic justification for these papers is that

a parimutuel game represents a study in decisions under uncertainty, efficiency

of markets, and even investor psychology. A review of the available published

literature has failed to find any Bayesian approach to this modeling challenge.

This study will attempt to predict the running speed of a horse in a given race.

To that effect, the coefficients of a linear model are estimated using the Bayesian

method of Markov Chain Monte Carlo. Two methods of computing the sampled

posterior are used and their results compared. The Gibbs method assumes that

all the coefficients are normally distributed, while the Metropolis method allows

for their distribution to have an unknown shape. I will calculate and compare the

predictive results of several models using these Bayesian Methods.
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2.2 Overview of Parimutuel Racing

At the racecourses in Hong Kong, the games are truly parimutuel. The betters all

place their bets in a ”pool” which is subsequently divided amongst the winners

immediately at the end of each race. Various pools exist representing different

betting combinations, but for this paper I will focus on the ”win pool” which

represents bets on a given horse to win the race. Unlike a casino, the track does

not bet agains the public but takes a fixed percentage from each betting pool.

(18% in Hong Kong.) The pool is divided amongst the winning betters propor-

tionally, based upon the amount they bet. A large tote-board at the track displays

the expected winnings per dollar bet for each horse. These are commonly called

the ”odds”, and are often mistakenly interpreted, by naive betters, as a horse’s

probability of winning. What the posted odds do represent are a measure of the

aggregate public opinion about a horse’s likelihood to win the race. Empirical

study shows that there is a 40% correlation between the public’s opinion as rep-

resented by payoff odds and a horse’s finishing position. The market may be

considered weakly efficient.

2.3 Literature Review

Since the advent of horse racing, people have searched for a way to profit from the

game. In 1986, Boltman and Chapman describe a multinomial logit model that

forms the basis for most modern prediction methods.[BC86]. In that paper they

describe a logistic regression model for predicting the ”utility” of a horse. Mildly

positive results (profits) were produced.

In 1994 Chapman published a second paper that refined the concepts of his

first paper, while applying it to the horse racing industry in Hong Kong.[Cha94]

He compared his predicted results to the public’s and found that a combination of
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the two produced the most profitable results. In 1994, Bill Benter published what

many consider to be the seminal work on the subject titled, ”Computer Based

Horse Race Handicapping and Wagering Systems”[Ben94]. In the paper, Benter

develops a two-stage prediction process. In stage one, he uses a conditional logit to

calculate the ”strength” of a horse. In the second stage, he combines the strength

measure with the public’s predicted probability using a second conditional logit

function. Benter reports that his team has made significant profits during their

5 year gambling operation. (Unlike the other academics discussed here, Benter

actually lived in Hong Kong and conducted a real betting operation.)

In 2007, Edelman published an extension of Benter’s two-stage technique.

Edelman proposes using a support vector machine instead of a conditional logit

for the first stage of the process. Edelman’s rationale is that a SVM will better

capture the subtleties between the data. He theorizes that the betting market is

near-efficient and that the bulk of the information about a horse is already con-

tained in its Market odds for the race. His method simplifies Benters in that it

only combines odds from a horse’s last race with the outcome and conditions of

that race and the conditions of the race today.

Lessman and Sung, in 2007 then expanded on Edelman’s work by modifying

the first-stage SVM process[LSJ07]. They theorized that because only jockey’s in

the first few finishing positions are trying their hardest, information from later

finishers is not accurate as they are not riding to their full potential. The authors

develop a data importance algorithm named Normalized Discounted Cumulative

Gain where they assign weights to horse’s data as a factor of their finishing posi-

tion. The result is that data from the first place finishers is more important than

the latter finishers. This NDCG is used to tune the hyperparameters of the SVM

which is then subsequently used as part of the traditional two-stage model.

In 2009, Lessman and Sung published another paper expanding on their work

from 2007[LSJ09]. Where previous work has focused on regression of finishing po-
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sition, they chose to train an SVM based on classification [win,lose] of race results.

Their argument for this approach is that it eliminates pollution of the data by po-

tentially corrupt rank orderings, especially among minor placings. Additionally,

they pre-process the data by standardizing the continuous variables per race.

2.4 Data Collection and Description

Historical data from September 2005 through December 2009 were downloaded

directly from the Hong Kong Jockey Club’s official website. The data are 36,006

observations from 2,973 distinct horse races. (A race may have anywhere from

8 to 14 entrants.) The data was loaded into an SQL based database (MySQL).

From this database of historical data, the variables were calculated and formatted

into a second CSV file, using a Perl script, appropriate for direct import into R.

The single outcome variable used in this study, is the running speed of a horse

expressed in meters per second. A detailed description of the covariates is included

in The Code Book 2.2 and a sample of the data is included in Table 2.

There are two race courses in Hong Kong (Sha Tin and Happy Valley). Sha Tin

has two separate tracks (turf and dirt), so there are a total of three possible tracks

a race may compete on. Furthermore, horses are divided into “classes” based

upon ability. The racing stewardship attempts to create a fair race by grouping

horses of similar ability into the same class. Lastly, there are several distances

for which races are run. All combined, there are 73 different combination of

course, track, class and distance, each of which will be referred to as a race profile.

The distribution of speed run in each profile is notably different. This may be

visualized by overlaying plots of the density of speed of all race profiles onto a

single plot. (Figure 2.1) and the boxplots of speed stratified by profile(Figure 2.2)

The distinctly different shape of the speed distributions suggest that a Bayesian

hierarchical regression model would be well suited for this study. Following the
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methods of Lessman And Sung.[LSJ09], who centered their data per race, I cen-

tered the data per profile using the following formula:

X̃j
ki =

Xj
ki − X̄

j
k

σjk
(2.1)

Where X̃j
ki (Xj

ki)denotes the new (original) value of attribute t of runner i in

profile j and the mean X̄ as well as the standard deviation σjk are calculated over

the horses in profile j.

Speed, the dependent variable shows some correlation with the other variables,

as described in Table 2.1. The data was divided into a training set, which consists

of races prior to January 1st, 2009, and a test set consisting of races run during

2009. A Bayesian MCMC approach will be used to estimate the running speed of

a horse, based on the covariates in the training set. Then model performance will

be tested on the test data set.

2.5 The Hierarchical Model

The goal is to capture and describe the between-profile heterogeneity of the obser-

vations. As Hoffs[Hof09] gives in Chapter 11, the within-profile sampling model

is:

Yij = βTj xij + εij, {εij} ∼ i.i.d normal(0, σ2) (2.2)

Where xij is a vector of variables for observation i in group j, βj are the

coefficients of the regression, and εij are errors.

Which gives the within-group regression model of:

β ∼ MVN(θ, Σ) (2.3)

Yi,j = βTi,jxij + εij (2.4)

= θTxi,j + γTj xij + εij (2.5)
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With Θ and β are fixed and unkonw parameters to be estimated, and γj repre-

senting random effects that vary for each group.

2.6 Priors

An important step in Bayesian modeling is the calculation of the prior. An OLS

regression was performed for each group and the resulting βj from each group

were used as the prior for the Hierarchical model.

βj = θ + γj (2.6)

γ1 . . . , γj ∼ i.i.d Multivariate Normal(0,Σ) (2.7)

2.7 Conditional Distribution

V ar
[
βj|yj, Xj, σ

2
j , θ,Σ

]
= (Σ−1 +XT

j Xj/σ
2)−1 (2.8)

E
[
βj|yj, Xj, σ

2
j , θ,Σ

]
= (Σ−1 +XT

j Xj/σ
2)−1(Σ−1θ +XT

j yj/σ
2) (2.9)

{θ|β,Σ} ∼ MVN(µm,Λm) (2.10)

Λm = (Λ−1
0 +mΣ−1)−1 (2.11)

µm = Λm(Λ−1
0 µ0 +mΣ−1β̄) (2.12)

{Σ|θ, β} ∼ inverse-Wishart(ν0 +m, [S0 + Sθ]
−1 (2.13)

Σθ =
m∑
j=1

(β − θ)(β − θ)T (2.14)

2.7.1 Fitting the model with MCMC

2.8 Implementation of Gibbs method

First, I wrote a custom R script to simulate draws from the posterior using the

Gibbs method. The initial tests showed some autocorrelation from the MCMC
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chains, so the code was adjusted to only sample one out of every 10 runs of the

chain. A total of 300,000 iterations through the chain produced 30,000 samples

from the posterior. The chain converged well after 200,000 iterations, so the final

100,000 were used as samples form the converged posterior. Storing one out of

every 10 iterations gave me a chain of 10,00 draws from the converged posterior.

Additionally, I calculated the Residual Sum of Squared Error (RSS) for each run

and stored the results along with each posterior sample. This chain of 30,000 RSS

errors allowed me to track the accuracy of the inference. The residual sum of

squares for this method converged to: 988.637 which gives a predicted σ2 of .0350

for an individual horse.

2.9 Implementation of Metropolis Hastings method

Next, I wrote custom R code to generate draws from the posterior using Metropolis

Hastings. Following the same model as the Gibbs technique above, The Metropolis

acceptance ratio was used as described by the formula:

r =
p(θ∗|y)p(θ∗)

p(θs|y)p(θs)
(2.15)

Initially the acceptance ratio was low, so the variance of Σ was adjusted

through trial and error to 0.5 ·Σ which produced an reasonable acceptance ratio of

0.54. A total of 200,000 iterations were run. The chains converged after 100,000

iterations, so the resulting100,000 were used as samples from the converged pos-

terior. SInce I am storing 1 out of every 10, the ending posterior chain was 10,000

long. The residual sum of squares for the this method was 1033.35 which gives a

predicted σ2 of 0.0363. This was, surprisingly, slightly higher than the RSS from

the Gibbs technique.
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2.10 Results and conclusion

Predicted speeds were calculated for each horse in the test data set, to measure

predictive ability of the Gibbs model. 10,000 β were drawn and then used in a

regression with the covariates for each horse. The maximum a-posteriori (MAP)

of the resulting regression for each horse was stored as ”predicted speed”. The

variance of this predicted speed was 0.0397. The horse with the fastest predicted

speed won his race 21.63% of the time. This is better than a random choice,

which would produce an expected winner between 7.14% and 12.5% (Depending

on the number of horses in a race). However, simply betting on the horse with

the highest predicted speed was not enough to profit. (The ultimate goal is not

to guess winners, but generate profit.)

As a further step, a conditional logit as calculated to combine our predicted

speed with the public’s odds estimate. As this is the ”standard” for other predic-

tive models. The coefficients for that model were 6.4186 for the public odds and

4.0541 for the hierarchical Bayesian predicted speed.

As a further test of performance, the expected value for each bet was calculated

as ev = payoff if wonxprobability of winning. There were 3,323 horses in the test

set with positive expected value (out of 8,618 possible.) If $1 had been bet on each

horse with a positive expected value, the return would have been 2919 resulting

in a net loss of $404 (-12.15%). While the predictive errors are small, the model

is still not good enough to generate profit without further refinement.

2.11 Tables and Figures
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Figure 2.1: Density distributions of speed stratified by profile
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Figure 2.2: Boxplots of speed stratified by race profile
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Table 2.1: Correlation of variables to speed

Name Correlation

last rank 0.077898638

last run 1 0.091421415

last run 2 0.106251733

last run 3 0.110888381

last odds prob 0.111767807

last distance -0.562025513

last weight 0.035323525

last draw 0.007378011

last speed 0.563767210

last percentage -0.016219487

perc won 0.159669358

last 4 perc -0.024847700

last 4 rank 0.128202630

last 4 odds prob 0.147430995

rest 0.136668197

distance -0.799783155

weight 0.005454088

draw 0.022529607

total races -0.187955730

bad runs -0.077079847

jockey rides -0.030171224

dist last 30 -0.217824843
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Table 2.2: Data Code Book

Name Mean SD Low High

speed 16.648026 0.421332 14.297061 18.050542

odds prob 0.082121 0.081307 0.002158 0.745455

last rank 0.000457 1.000038 -1.672634 1.577826

last run 1 0.000310 0.999845 -1.613067 1.594531

last run 2 0.000365 0.999841 -1.623586 1.597088

last run 3 0.000191 0.999820 -1.657603 1.597270

last odds prob 0.000544 0.999850 -0.976207 8.181944

last distance -0.000505 0.999136 -1.679878 3.419010

last weight -0.000349 1.000267 -2.866383 1.830325

last draw 0.000408 1.000169 -1.566456 1.879832

last speed 0.000237 0.999575 -5.522472 3.813677

last percentage 0.000407 0.999548 -7.595383 2.543021

perc won -0.000762 0.996582 -0.766225 7.839123

last 4 perc 0.001131 0.997601 -7.240364 2.922523

last 4 rank 0.000107 0.999540 -2.348644 2.335103

last 4 odds prob 0.000203 0.999670 -1.132926 9.931562

rest 0.000100 1.000661 -0.991545 5.016491

distance -0.002648 0.996482 -1.726967 3.412664

weight 0.000140 0.999623 -2.827238 1.807332

draw 0.000548 1.000079 -1.568536 1.882718

total races 0.001505 1.000234 -1.321604 4.875548

bad runs 0.000264 1.000246 -0.293411 8.160743

jockey rides 0.000219 0.999542 -0.651017 10.310366

dist last 30 0.000271 0.999912 -1.167798 6.151917
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Figure 2.4: Posterior density of theta for predictor variables - Gibbs
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Table 2.3: Sample of data

1 2 3 4 5 6 7 8 9 10

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

last rank -0.98 -1.34 1.48 -1.29 0.56 1.53 1.53 0.75 -0.30 -0.37

last run 1 0.15 -0.36 -1.60 -0.72 1.32 0.87 1.12 -0.36 0.13 1.61

last run 2 -1.30 0.12 -1.30 -1.59 1.58 -1.59 1.10 -0.61 -1.10 1.01

last run 3 -1.37 0.36 0.13 -1.37 1.62 -0.91 1.37 -0.40 -0.66 1.32

last odds prob 0.40 0.16 0.63 -0.39 -0.78 -0.62 -0.28 -0.14 -0.91 0.16

last distance -1.12 -1.12 -1.12 1.06 1.06 0.82 -0.15 -1.12 -1.12 1.06

last weight -0.15 1.36 -0.83 0.40 -0.56 0.81 0.67 -0.83 -1.11 0.54

last draw 0.95 -1.12 -1.12 0.95 -0.86 1.73 -0.08 -1.38 0.18 0.18

last speed 0.10 0.53 0.40 -1.30 -1.09 -0.08 0.65 0.04 -0.44 -1.75

last percentage -0.43 -1.00 -0.88 0.40 0.76 0.14 0.72 -1.79 -2.57 -0.38

perc won -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 0.94

last 4 perc 0.55 -0.96 -0.00 -0.37 -1.28 -0.73 -0.29 -1.69 -2.03 0.08

last 4 rank 0.00 -0.32 1.25 -0.33 -0.50 0.96 1.31 1.16 -1.24 0.20

last 4 odds prob 0.77 0.42 0.50 0.65 -0.35 0.21 -0.24 -0.34 -1.07 0.27

rest 0.72 1.52 1.00 2.53 0.90 1.16 1.16 0.79 0.79 3.80

weight -0.20 0.26 1.03 -0.65 0.26 0.88 0.72 0.88 -0.20 -0.65

draw -0.33 1.42 0.67 0.17 0.92 -1.34 1.67 -1.59 0.42 -1.08

total races -0.24 -0.30 -0.24 -0.54 -0.97 -0.24 -0.67 -1.10 -1.16 -0.48

jockey rides -0.19 -0.59 -0.19 -0.59 -0.39 -0.39 -0.59 -0.59 0.21 -0.59

dist last 30 -1.06 -1.06 -1.06 -1.06 -1.06 -1.06 -1.06 -1.06 -1.06 -1.06
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CHAPTER 3

Predicting Horse Race winners through A

Regularized Conditional Logistic Regression

with Frailty

3.1 Introduction

Since first proposed by Bill Benter in 1994, the Conditional Logistic Regression has

been an extremely popular tool for estimating the probability of horses winning

a race. We propose a new prediction process that is composed of two innovations

to the common CLR model and a unique goal for parameter tuning . First, we

modify the likelihood function to include a “frailty” parameter borrowed from

epidemiological use of the Cox Proportional Hazards model. Secondly, we use a

LASSO penalty on the likelihood, where profit is the target to be maximized. (As

opposed to the much more common goal of maximizing likelihood.) Finally, we

implemented a Cyclical Coordinate Descent algorithm to fit our model in high-

speed parallelized code that runs on a Graphics Processing Unit (GPU), allowing

us to rapidly test many tuning parameter settings. Historical data from 3681 races

in Hong Kong were collected and a 10-fold cross validation was used to find the

optimal outcome. Simulated betting on a hold out set of 20% of races yielded a

return on investment of 36.73%.

Conditional logistic regression has remained a mainstay in predicting horse

racing outcomes since the 1980’s. In this paper, we propose and apply novel
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modifications of the regression model to include parameter regularization and a

frailty contribution that exploits winning dividends. The model is trained using 4

years of horse racing data from Hong Kong, and then tested on a hold-out sample

of races. Simulated betting produces a return on investment significantly higher

than other published methods with Hong Kong races.

3.2 Background

3.2.1 Horse Racing

Horse racing is one of the oldest forms of gambling in existence. It is conducted as a

parimutuel style wagering contest. For a given race, each person bets on his choice

to win the race. All monies bet are grouped into a pool. The racetrack takes a fixed

percentage of the money pool in each race as its profit. The remaining funds are

proportionally distributed amongst the bettors, who selected the winning horse,

according to the amount they bet. A bettor’s potential winnings, if a chosen

horse wins, are erroneously named the “odds” on a horse. These “odds” do not

represent the true odds or probability in the statistical sense, but are simply an

indication of the percentage of bettors who favor the given horse. We prefer to

think of these “odds” as bettor implied confidence.

This poses an interesting opportunity. Traditional casino games generally

exist in a setting where the player bets against the establishment in a negative

expectation game. Even with perfect skill, the player is bound to eventually lose

his or her bankroll. With parimutuel betting, players are betting against each

other, and it is possible to achieve a positive expectation bet if a winning horse

can be chosen with more accuracy than the public. Many books and academic

papers have been published in an attempt to model this system. [Bay07] [BC86]

[Hau08] [Kap03] [LSJ07] [LSJ09] [LSJ10]

23



3.2.2 Conditional Logistic Regression

Logistic regression is a form of a generalized linear model for working with binary

outcomes [MN89]. In simple terms, logistic regression models the probability of

an event occurring. The regression is linear in the log of the event odds. With

the covariates X represented by an N × K dimensional matrix, with each row

representing the covariates of a single outcome (Here a single horse’s features.),

β as a column of k regression coefficients, and pi as the probability of a positive

event outcome, the format of logistic regression may be represented as:

ln

(
pi

1− pi

)
= xiβ (3.1)(

pi
1− pi

)
= exiβ (3.2)

The probability of an event occurring may be then be represented by the inverse

logit transform

p =
1

1 + e−Xβ
(3.3)

Horse racing is an event where there is a single winner within a group of

race competitors. A race r = {1, 2, . . . , R} is run between several horses h =

{1, 2, . . . , H} with a single horse winning. The features of horse h in race r may

be represented in a k dimensional vector identified by Xrh, The coefficients of the

winning horse may then be represented by Xw
rh, with the superscript w indicating

that horse h won race r. For each horse h in a race r, the estimated probability

of winning that race is “conditioned” on the winning probabilities within race r

summing to 1.

prh =
eXrhβ∑

h∈r

eXrhβ
(3.4)
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The likelihood and log likelihood over all races then become

`(β) ∝
R∏
r=1

eX
w
rhβ∑

h∈r

eXrhβ
(3.5)

ln(β) ∝
R∑
r=1

[
Xw
rhβ − ln(

∑
h∈r

eXrhβ)

]
(3.6)

3.2.2.1 L1 penalized conditional logistic regression

Tibshirani [Tib96] proposed a method for variable selection for a Cox proportional

hazards model through penalization of the regression coefficients under an L1

norm. As the partial likelihood of the Cox model takes the similar form to the

conditional logistic regression likelihood, and has the same partial likelihood. So

we apply the same likelihood and shrinkage method.

Tibshirani describes penalizing the log likelihood, with a LASSO prior on β

such that
∑
|βj| ≤ λ where λ is a user selected parameter. As λ is increased,

the values of beta are pushed toward zero. [Tib97] By combining this shrinkage

technique with cross validation, a model may be derived that maximizes likelihood

while resisting over-fitting.

The log likelihood with this shrinkage factor is then

ln(β) ∝
R∑
r=1

[
xwrhβ − ln(

∑
h∈r

exrhβ)

]
− λ

∑
k

|βk| (3.7)

3.3 Current models for predicting Horse Racing

Applying a conditional logistic regression to a horse race was first suggested by

Boltman and Chapman [BC86] in 1986. Subsequently, it has been used, in a

modified form by a majority of published work afterward. [Ben94] [ED07] [LSJ07]

[LSJ09] Each successive author has used a “two stage” form of this model. A

“strength” factor, indicated by α, is calculated and then combined with the payoff
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dividend (generally in the form of a conditional logistic regression.) The likelihood

of this conditional logit is

R∏
r=1

eα
w
rhβ1+pwrhβ2∑

h∈r

eαrhβ1+prhβ2
(3.8)

The concept here is to combine a previous model predicted “strength” of a

horse, represented by a = {1, 2, . . . , A} with the “odds implied probability” for a

horse p = {1, 2, . . . , P}. Payoff dividends for a horse can be converted to implied

probabilities with the formula: p(xh) = 1
dh

. Recall that this value is best described

as the bettor implied confidence, as it is not a true probability of outcome, but an

aggregate estimate of the public’s opinion. Additionally, the “odds” reported at

the racetrack represent the payoff with a track-take deducted. (This deduction is

the profit of the racetrack hosting the event.) Subsequently, the dividend implied

probability can be be calculated with the adjusted formula p(xh) = 1−τ
dh

, with τ

representing the track take from the parimutuel pool.

A series of authors have published successive variations to the original Boltman

and Chapman model. Each publication has attempted to improve the calculation

of the horse “strength” measure that is represented by a in the conditional logistic

regression equation 3.8.

• in 1994 Benter [Ben94] used a conditional logistic regression to estimate

horse strength.

• in 2006 Edelman [ED07] used a support vector regression on the horse’s

finishing position to estimate horse strength.

• in 2008 Lessmann and Sung [LSJ07] use a support vector classifier, and

subsequent distance from the hyperplane to estimate horse strength.

• in 2010 Lessmann and Sung [LSJ09] use CART to estimate horse strength.
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Despite different methods for calculating the “strength” of a horse, all of the

authors used equation 3.8, a standard conditional logistic regression, as a second

stage of their prediction algorithm.

3.4 Application of a Frailty Model to Horse Racing

As noted previously, the conditional logistic regression likelihood shares similar-

ities to a Cox Proportional Hazards model. The Cox model has been extended

to account for the “frailty” of a subject, first suggested by Gillick [Gil01]. This

frailly was introduced to account for the fact that while a hazard may be propor-

tionally equal for the population being studied, an individual may be more or less

sensitive. This individual sensitivity is termed “frailty” and is represented here

by ω. The likelihood involving a frailty term is then:

`(β) ∝
R∏
r=1

eX
w
rhβ+ωwrh∑

h∈r

eXrhβ+ωrh
(3.9)

Our empirical analysis shows about a 40% correlation between public estimated

probability and the true probability of a horse winning. In can be reasoned that

the public is not completely naive, but has some degree of knowledge in picking

winners. Subsequently, we propose using the public’s knowledge to strengthen

model accuracy. The “desirability” index wrh for a horse h in race r may be

calculated as a function of the posted “dividend” drh of a horse.

ωrh = 1− (
1

drh
) (3.10)

In essence, this can be considered a reverse-frailty model, as we are giving the

horses with higher paying dividends a higher score. We are, in effect, creating

a “strength” model instead of a frailty model. Profit from a race is maximally

realized when betting on a horse that the public does not expect to win. Horses

with the highest paying dividends, by definition, have the lowest public confidence.
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Looking for betting opportunities where the public is wrong is a strategy toward

profit. By setting our strength(frailty) as the opposite of public confidence, we

are looking for those horses we have a high confidence of winning that also pay

high dividends. (Low public confidence of winning.)

The modified likelihood and log likelihood then become:

L(β) ∝
R∏
r=1

eX
w
rhβ+ωwrh∑

h∈r

eXrhβ+ωrh
(3.11)

L(β) ∝
R∑
r=1

[
Xw
rhβ + ωwrh − log(

∑
h∈r

eXrhβ+ωrh)

]
(3.12)

Our model includes 186 variable, many of which may be correlated. In an

effort to avoid over-fitting, and and reduce the effect of colinearity, a regularization

parameter is included. Applying the L1 shrinkage factor as described by Tibshirani

gives a regularized log likelihood of:

L(β) ∝
R∑
r=1

[
Xw
rhβ + ωrh − log(

∑
h∈r

eXrhβ+ωrh)

]
+ λ

K∑
k=1

|βj| (3.13)

Using cyclical coordinate descent to fit this log likelihood requires the calcu-

lation of the first and second partial derivatives for each βj

∂L

∂βj
=

R∑
r=1

xwrh −

∑
h∈r

xrhe
xrhβ+ωrh

∑
h∈r

exrhβ+ωrh
+ λ (3.14)

∂2L

∂β2
j

=
R∑
r=1


∑
h∈r

x2
rhe

xrhβ+ωrh

∑
h∈r

exrhβ + ωrh
−


∑
h∈r

xrhe
xrhβ+ωrh

∑
h∈r

exrhβ+ωrh


2
 (3.15)

3.5 Choice of Shrinkage Factor λ

Ultimately, the goal of this process is not to predict winners with the most accu-

racy, but to maximize profit, which is not necessarily the same. This paper uses
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a frailty modified conditional logistic regression that is regularized by a shrinkage

factor λ. While all of the coefficients may be calculated using the aforementioned

cyclical coordinate descent, the choice of λ is left up to the user. We performed a

10-fold cross-validated training process, with a random 20% of the data held out

for testing each time, for different values of λ, calculating the mean return-on-

investment for the hold out set of each 10-fold run. λ is chosen to maximize ROI,

which is defined as:

ROI =
1

10

10∑
i=1

[
R∑
r

bwrh · dwrh −
∑
h∈r

brh

]
(3.16)

with bwrh representing the amount bet on the winning horse h in race r, brh rep-

resenting the amount bet on horse h in race r, and dwrh representing the dividend

collected if horse h wins race r.

3.6 Parallel Computing

Given the large data set of 40,000 cases of 186 variables each, computing the

regularized logistic regression can be slow even on state of the art hardware. Ad-

ditionally, adding the polynomial expansion magnifies the 186 variables to 36100.

The optimal LASSO penalty, λ can’t be calculated ahead of time, so must be

discovered by iterating over a wide range of values. We performed a 10-fold cross

validation for each of 100 different levels of λ resulting in 1,000 runs of the model

fitting regression.

In order to speed up the model fitting process, and to allow for faster experi-

mentation, custom software was written in C++. This software takes advantage

of the Graphics Processing Unit (GPU) in the author’s desktop computer. A ba-

sic level GPU costs about $250 and provides hundred of CPU cores optimized for

parallel processing and are quickly finding many uses in statistics [ZLS10] [SSZ12].

Using the Thrust[HB10] library provided a fast and easy way to harness this com-

puting power. (Specifics of the software used will be discussed in a forthcoming
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paper.)

Fitting this form of model involves the cyclical update of each coefficient many

times. Each of those updates may be described as a series of transformations and

subsequent reductions. For example, one component needed is the sum of the

exponent of the linear term for each race:

∑
h∈r

exrhβ+ωrh (3.17)

A non-parallelized solution would be to create a loop that computes the ex-

ponent of each item, then a second loop that sums these exponents by race. An

intermediate solution would be to use the OpenMP[Boa11] library to take advan-

tage of running multiple threads on the same CPU. However this is still limited in

terms of parallelization benefit. Parallelization on the GPU is fairly simple with a

few strategic calls to the Thrust library. As the exponent steps are independent,

they may all be performed in parallel. The subsequent sums by race are also

independent, so they may also be computed in parallel.

3.7 Results

Data from 3681 races in Hong Kong were collected from the Hong Jockey Club’s

official race records. 2944 races were used to learn the model through cyclical

coordinate descent as described in algorithm 1. The data were 186 covariates

describing each horse’s past performance. (i.e. days of rest since last race, change

in weight carried, average speed in previous races, and if the horse had gained or

lost weight.) 737 races were withheld to use for testing the predictive strength of

the model.

First, a two stage conditional logistic model, as described by Benter [Ben94]

was fit to establish a base level of performance. Bets were placed on any horse
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with a positive expectation, defined as: Prrh(win) · dividendrh > 1.0.

Return on investment (ROI) was calculated using equation 3.16. The Benter

two-stage model produced a return on investment of 14.2%. Next, we fit our

proposed modified frailty model with the same data. λ was varied between 1

and 100 to find the best resulting profit. With a λ of 7, our model produced

a maximum ROI of 36.73% which is a significant improvement over the Benter

model. As third version was tried, by adding the square of each covariate to

the data set x2 in an attempt to capture some non-linearity. However, the ROI

produced was not as good as the main model. A plot of ROI as a function of λ

for both models is included as plot 3.1

Parallelization of the model fitting algorithm via the GPU was compared to

using the OpenMP library across a range of operating threads. The algorithm

took 494 milliseconds to fit using the GPU solution. The openMP solution speed

ranged from a high of 3995 milliseconds with a single thread to 1324 milliseconds

using 8 threads. The GPU solution was faster than the best openMP solution by

a factor of 2.68. A plot demonstrating the model fitting speeds is included as plot

3.2

3.8 Conclusion

The conditional logistic regression model has been a standard tool in horse race

modeling. We have found that this continues to hold true. However, much of

the past work revolves around how to best estimate a “strength” score that is fed

into this form of model, and then maximizing accuracy probability estimates. By

both combining a calculated inverse-frailty score, and changing the goal to directly

maximizing profit, we are able to repeatedly generate a significantly higher return

on investment.

Fitting a model with number of coefficients repeatedly as we iterate over a
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range of tuning parameters can be prohibitively slow. By using a CCD algorithm

parallelized to take advantage of a GPU, we achieve a massive speedup, allowing

us to quickly experiment with different forms of the model and tuning parameters.

Ultimately, our model innovations and tuning procedure produce a return on

investment over 36% over repeated cross-validation trials.

Algorithm 1 Single CCD Step with Bounding Box

Initialize: βj ← 0,∆j ← 1 for j = 1, . . . , d;

while iteration i not converged do

for j = 1, 2, p do

Calculate tentative step ∆vj

∆j+ = −
∂L
∂βj

+λ

∂2L

∂β2
j

∆j− = −
∂L
∂βj
−λ

∂2L

∂β2
j

∆vj =


∆j− if ∆j− < 0

∆j+ if ∆j+ > 0

0 otherwise

βj ← βi−1
j + min(max(∆vj,−∆vj, γj)) Bound on step size

γj ← max(2|βj|, γj/2) Update upper bound limit

end for

end while

32



0 20 40 60 80 100

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

Lambda

R
et

ur
n 

on
 In

ve
st

m
en

t

Our Model
Benter

Figure 3.1: Mean ROI Over 10 Fold Cross Validation

Main loop speed

Cores

M
ill
is
ec
on
ds

1 2 3 4 5 6 7 8

0
50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

openMP
CUDA

Figure 3.2: Speed of parallelization

33



CHAPTER 4

An Exploration of using LMS Adaptive Filters in

Predicting Movement of a Stock Market Index

4.1 Introduction

The price of a stock index is determined by a weighted average or sum of its

component stocks. We explore the application of adaptive filtering techniques

derived from an LMS filter to predict the price or direction of the index one day

in the future. A two stage algorithm incorporating diffusion and a feed-forward

design is developed and then tuned for optimal hyper-parameters.

In finance, the goal of most trading firms or “agents” is to seek an “edge” to

generate profit. An edge is defined as either a market inefficiency in pricing an

asset, or a recognized pattern in asset pricing that allows future prediction. In this

paper, I explore the application of adaptive filtering to see if the future price or

direction of a stock index can be predicted accurately enough to generate profit.

We take the approach of a “data detective”, attempting multiple configurations

of filtering, diffusion, weighting, and data analysis to find edge by comparing a

standardized loss measure. Additionally, since the goal of ”edge” doesn’t have a

specific definition beyond profit, multiple types of edges are tested for the various

configurations explored.

The objective of this paper is to determine if a diffusion network of adaptive

filters can reliably predict either future price or direction of a stock index. Various

implementation of the LMS filter and NLMS filter are attempted in an exploratory
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manner, along with hyper-parameter tuning to seek the optimal filtering and

diffusion strategy. Multiple scoring metrics are explored to find a possible financial

“edge”

This paper is structured as follows: section 2 gives a brief overview of technical

analysis and adaptive filtering. section 3 explains basic concepts, data sources, and

scoring metrics. section 4 describes the details of the different filter constructions

and analysis. section 5 lists the results. section 6 is a discussion of the findings

and suggestions for future exploration section 7 is the conclusion.

4.2 Overview and Related Work

The study of predicting stock prices from their past behavior is generally known

as “technical analysis”. The focus of this paper is on exploration of filtering

techniques, so the the discussion of technical trading will be brief. The reader is

referred to a very thorough discussion of technical trading on Wikipedia[wik] if

they wish more details on that discipline.

The earliest discussion of this technical trading was made by Joseph de la

Vega when looking at Dutch markets in the 17th Century [Veg88]. Since that

time, there have been an endless number of theories and models about predicting

stock performance based on history. Some of the more traditional tools are moving

average, Bollinger bands, “charting”, and trend analysis. Despite the popularity

of technical trading, the academic community appears to be divided as the relative

merit of these techniques.

The Dow Jones company publishes a variety of stock indexes. An index is com-

prised of a group of stocks related by industry. Some indexes use the weighted

average prices of their member stocks, others use the sum of prices. Two of the

more well know indexes are the S&P 500 and the Dow Jones Industrial Average,

both are designed to measure the direction of the overall U.S. stock market. For

35



this paper, I chose to look at The Dow Jones Utility stock index, which is com-

prised of 15 companies in The United States. This index was formed in February

of 2000. Shares of the index fund are actively traded on the NYSE while futures

and options are actively traded by the Chicago Board Options Exchange.

We could find no previously published references to predicting index perfor-

mance from filtering on its composite members.

In 2010, X. Zheng and B. Chen[ZC10] did present a paper where they applied

filtering to predicting future performance of the S&P 500 index, but the input

parameters were a collection of global financial indicators including Interest Rate,

Petroleum Price, Baltic Dry Index, CBOE DJIA Volatility, and Exchange Rate.

They calculate the exponential weighted moving average of each of these 5 input

data, then use a Kalman filter to provide the recursive prediction and updating

process.

Lopes and Sayed[LS08] published a paper describing the combination of indi-

vidual filters through diffusion in order to obtain a more accurate “group” esti-

mate.

Takane, Young, and DeLeeuw[TYL77] explain the concept of Alternating Least

Squares. The technique is used to impute missing values by alternating between

two least squares regressions. The output of each regression is used as the input

of the other. This alternation continues until the resultant values converge.

In this paper, I combine concepts from all three of the mentioned papers in

a variety of ways looking for maximum edge A simple LMS filter for the stock

index, using just it’s own historical prices does not track well at all, as evidenced

by Figure 4.1 on Page 37
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Figure 4.1: ”Simple LMS on the stock index”

4.3 Basic Concepts

The Dow Jones Utility index (DJU) was chosen as it is comprised of a relatively

small number of stocks making initial exploration easier. The index is composed

of 15 companies and is a weighted sum of their prices. Yahoo.com was used as

a source for the end-of-day prices of the index and its component stocks from

01/03/2007 until 03/04/2011 giving 1,051 trading days of information. The R

programming environment was used for data management, script development,

and all testing.

An important step in any financial modeling application is the measurement of

success. For this paper, I chose to measure performance of the different algorithms

over the last 100 days of trading the index. The initial measure is the sum of

squared errors between predicted and actual price.

Borrowing loosely from Takane, Young, and DeLeeuw, I create a two stage

process where the output of each stage is the input to the other, thus “alternating”

between filters. We call this technique “Alternating LMS Adaptive Filtering”. We

use the general framework of Diffusion filtering described by Lopes and Sayed as
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the first stage filter, and then a Normalized LMS filter on the index for our second

stage filter. At each time step, each stage is iterated once. Ultimately, I found

that feedback from the second stage to the first reduced accuracy, and the final

algorithm was modified so that the first stage only feeds the second stage.

Lopes and Sayed describe the formulation of a network of adaptive filters.

They explain how each filter absorbs the weighted coefficients from its neighbors.

In particular, their equation 19 is the starting place for the filtering algorithm

developed in this paper.

φ
(i−1)
k =

∑
`∈Nk,i−1

ck`ψ
(i−1)
` , φ

(−1)
k = 0 (4.1)

ψ
(i)
k = φ

(i−1)
k + µku

∗
k,i(d

(i)
k − ukIφ

(i−1)
k ) (4.2)

Their algorithm is for predicting individual “agents” by diffusing values over

the group. Our goal, in this paper, is to predict the index which is a weighted

collection of the agent’s values. It follows that I should be able to derive some

weighted collection of the individual stocks to predict the value of the filter.

Our initial two stage algorithm has the following structure:

Algorithm 2 Initial two stage filter algorithm

for t = 1 to Time do

for s = 1 to stocks do

wst ← φt−1 + µ · u∗st [dst − (wit−1 · ust)]

end for

φt ← c · wst

wit ← wit−1 + µ · ui∗t [dit − (φt · uit)]

end for

Where wst is the weight for stock s at time t, µ is the step size, ust are the

regressors, dst is the true value for stock s at time t, c is a weighting function for

the stock weights used to combine them into φ. In the second stage, wit is weight
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of the index at time t and uit are the regressors at time t.

We chose to score the algorithm by the root mean squared error over the last

100 time steps (RMSE)

SSQ =

√√√√ 1

100

1051∑
i=952

(yi − ŷi)2 (4.3)

Where yi represents the true index price at time i and ŷ is the predicted

value. As stock market data is extremely noisy, a second performance metric

was developed that ignored price and instead focused on direction. Predicting

the index moving up when the index actually moved up, or predicting the index

moving down when the index actually moved down would be a valuable result

that might be used to generate possible profit.

SSD =
1

100

1051∑
i=952


1 if di = d̂i

0 if di 6= d̂i

Where

di =


up if di > di−1

down if di < di−1

So that d represents the direction of the price change. (Did the index move

up or down since yesterday.) The score SSD represents the percentage of time a

given algorithm predicted the correct direction.

A common practice in finance is to look at at the percentage change in price

for each time step as opposed the actual dollar amount change. Ultimately an

investor doesn’t care of an asset moves by $1, but cares what percentage change

it made. (i.e. A $1 move of a stock priced at $5 is much more significant than a

$1 move of a stock priced at $100. The industry term for this percentage change

is “Daily Return”, often just abbreviated as “Return”. The Return is calculated
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by:

Ri =
pi − pi−1

pi−1

(4.4)

Where R represents the Return at period i and p represents the price.

This gives us two different performance measures over two different index price

formats, represented by the Table 4.1 on Page 40.

Error Measure

SSQ SSD

Price Meas.
Dollar SSQ(Dollar) SSD(Dollar)

Return SSQ(Return) SSD(Return)

Table 4.1: Matrix of performance measurements considered

Each system design was tested against each of the 4 measurement methods to

determine if there was a significant advantage. Since the SSQ measures are on

different scales, I standardized them by looking at the z-test of the SSQ. The score

can be interpreted as, “how many standard deviations of the data is our error.”

z = RMSE/
√
var(dju) (4.5)

Where RMSE is the Root Mean Squared Error as calculated above and var(dju)

is the variance of the prices (or returns) for the 100 day testing period.

4.4 Experimental Design

The general filtering technique chosen for this paper was Least Mean Squares

(LMS) along with a few of its variants as detailed below. The standard formula

for an LMS adaptive filter is:
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Least Means Squares

wt = wt−1 + µu∗ [di − uiwi−1] (4.6)

where wi indicates the weight at time t, d represents the known or correct

value at time t, u represents the predictive data, and µ is a positive step size.

For each individual stock, d is the price (or Return) at time t and u represents

a vector of prior prices of length l so that u = {ui−1, ui−2, ...ui−l}. This leads to

two hyper-parameters to be tuned: The step size µ and the length of history to

consider at each step l.

Other algorithms explored were:

Normalized Least Means Squares

f = µ/(ε+ |u|2) (4.7)

wt = wt−1 + f · u∗ [dt − utwt−1] (4.8)

Normalized Least Means Squares with Diffusion

f = µ/(ε+ |u|2) (4.9)

φ =
S∑
s=1

cs · ws (4.10)

wt = φt−1 + f · u∗ [dt − utφt−1] (4.11)

Sign Error Least Means Squares

wt = wt−1 + µu∗csgn([dt − utwt−1]) (4.12)

The Algorithm 1 from section 3 is treated as a general base framework for
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testing different filtering strategies. For example the uit n the second stage filter

may be the mean of the wst, or the error weighted sum of wst. The ust may be phi,

wit, or some other variable. This general structure allows us to quickly and easily

test a wide variety of filtering strategies looking for optimal results. Additionally,

the hyper-parameters µ and size may be tuned for optimal results.

A total of 96 filters variations were developed and tested using multiple com-

binations of:

1. LMS, Normalized LMS, Diffusion LMS, or Sign Error LMS for the first stage

filter.

2. LMS, Normalized LMS, or Sign Error LMS for the second stage filter.

3. Four different input variables for the second stage filter.

4. All of the above methods repeated, but with feedback from the second stage

filter fed back to the first stage filter.

Finally, 10 values for µ and 10 values for size were tested for each of the 96

filters. Resulting in evaluation of over 960 filters.

Using our initial two-stage algorithm, I found the optimal filter was a Diffusion

Normalized LMS filter for stage one, with a Normalized filter for stage two, the

phi from the diffusion used as the input data for the second stage filter, and the

weights from the second stage filter fed back in to the first.

4.5 Results

Ultimately, I found that while our initial algorithm worked reasonably well, I

discovered that results could be improved. The initial algorithm was modified to

eliminate the feedback from the second stage to the first, thus eliminating the

“alternating” step. Now, the output from the diffusion filter on the stocks was
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used as the input to the index filter, as before, but the index filter was not fed

back to the stock filters.

Algorithm 3 Final two stage filter algorithm

for t = 1 to Time do

for s = 1 to stocks do

wst ← φt + µ · u∗st [dst − (φt · ust)]

end for

φt ← c · wst

wit ← wit−1 + µ · ui∗t [dit − (φt · uit)]

end for

Both algorithms were then tuned for ideal hyper-parameter values.

RMSE Z

Algo 1 Dollar 1.9786 .2276

Return 0.00080 0.1826

Algo 2 Dollar 2.7911 0.2703

Return 0.000795 0.5107

Table 4.2: Results when predicting prices

The best result, as defined by the lowest Z score is using Algorithm 2 for

predicting prices with µ = 5 and size = 4 as documented in Table 4.2 on Page 43.

A chart of the final filtering process shows that it is tracking well. See Figure 4.2

on Page 44. The errors also appear to converge and are stable as evidenced by

Figure 4.3 on Page 45

The second metric I discussed was the accuracy in predicting the direction of

the index. The results are documented in Table 4.3 on Page 44. The best result

was an accuracy of 76% found using algorithm 1 with µ = 0.1 and size = 2. Being
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able to predict the future direction of the stock index with 76% accuracy would

appear to be a useful and potentially profitable result.

Algo 1 Algo 2

Price 0.55 0.55

Return 0.76 0.70

Table 4.3: Results when predicting direction
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Figure 4.2: ”Final algorithm predictions”

4.6 Discussion

It appears as if an industry “signal” can be learned from the stocks underlying

an index that can help predict the future price or direction of the index better

than just relying on the historical prices of the index alone. This could lead to

a significant financial modeling system that doesn’t appear to have been used

before.

Given the limited scope of this paper, only variations of the LMS algorithm
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Figure 4.3: ”Final Error Convergence”

were explored. However, the final filter derived from the second algorithm appears

to be tracking well. It would be a useful test to simulate trading the actual index

asset to determine if the best z-score or best direction score generated the highest

profit, if any.

Furthermore, it would be worthwhile to develop and test adaptive filtering

algorithms based on RLS or Lattice filters to see if improvements in stability,

reduced error, or profit could be found. Additionally, it might be interesting to

include input beyond the component stocks such as the price of oil, index rates,

or even the temperature.

4.7 Conclusion

A two stage filtering algorithm was developed and coded to predict time forward

prices or direction of The Dow Jones Utility index. We developed and tested

960 unique combinations of filters and hyper-parameters looking for the optimal

combination as defined by two different error methods. The resulting algorithm

produces a filter that tracks well and shows a good degree of accuracy in predicting
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both future price and direction one day into the future.
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CHAPTER 5

Estimating Adwords Clicks and Conversions

using a Beta Distribution Regression

5.1 Introduction

In this paper, I propose a novel method for modeling both the click through rate

and the conversion rate for ads in the AdWords system. Clicks are considered

as arising from a Binomial distribution where the probability is a function of a

Beta distribution. Conversions (sales) are also modeling with a similar structure.

While prior papers have traditionally employed a logistic regression to directly

model click through rate, I [use a re-paramaterized Beta distribution that allows

for both a location and a precision parameter to be estimated separately, better

capturing the variance of the inferred values. A full conditional likelihood model

is described and fit for the probability of a click given an impression and a series

of covariates and a hierarchical indicator of specific sub-brands. Separate models

for both Click Through Rate and Conversion Per Click rate are then fit using a

Metropolis within Gibbs algorithm to estimate the coefficients of interest.

5.2 Adwords Overview

Advertising is one of the largest generators of revenue stemming from The Inter-

net. Most “free” services that exist online, are simply designed around a business

model that realizes revenue through advertising. One could reasonably argue that
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much of the World Wide Web is simply a vehicle for serving advertising, not un-

like the typical free newspaper found in most major cities. Facebook, Myspace,

Yahoo, Google, etc. are all examples of firms that generate most, if not all, of

their revenue through advertising. Generally, online advertising can be divided

into two distinct groups: Display and Search. In this paper, I will focus on Search

advertising as that is currently the larger of the two. (Both in size and revenue.)

Google reported $43.68 billion dollars of advertising revenue for 2012. Of that

revenue, 68%, or $31.22 Billion, came directly from Search Advertising. Google’s

main advertising product is known as AdWords and is composed of 11 ads present

on any page listing the results of a search query. The pricing model is one of

“pay-per-click” (PPC) where advertisers only pay if a browser clicks on their ad.

Advertisers offer a bid of the maximum price they are willing to pay along with

a daily budget of the maximum amount they are willing to spend. Generally,

there are multiple advertisers bidding on a given search in Google. Google has an

internal algorithm, that conducts an instant auction, designed to maximize their

profit by selecting the order in which ads are displayed. (Ads in positions below

11 are placed on later pages of the search results, a very undesirable position.)

A screenshot of a typical Google results page, illustrating AdWords is in Figure 5.1

One great advantage of Internet advertising vs. traditional media is that ad-

vertisers have no cost to modify ad creatives, and receive feedback on resulting

performance very quickly. Advertisers bid to show their ad for a given search

query, but they are unsure of the the optimal querys to bid on, the optimal cre-

ative, and the optimal maximum price to pay for a click. Furthermore, advertisers

may intentionally have different ad variants or query targets in order to capture a

broader demographic. The resulting scenario is that most advertisers have a large

portfolio of many ads aimed at many querys, with only limited to no knowledge
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Figure 5.1: Adwords System

about how to optimize that complex scenario for maximum profit.

An advertiser faces three questions when developing an online advertising cam-

paign using AdWords.

1. What query do I want to show ads for?

2. What ad should I run for a given query?

3. What is the optimal amount to bid for a click from a specific query?

In traditional advertising, massive effort has been spent on defining demo-

graphic segments, and then studying how to best target each specific segment -
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where to advertise and what message to deliver. A majority of offline advertising

is sold as belonging to a specific demographic group. Firms are often develop-

ing new ways to sub-divide audiences into better focused demographics. With

pay-per-click advertising on search engines, there is no a priori definition of a de-

mographic. Subsequently, we may use the query entered into the search engine as

a proxy for identifying groups of similar interest or demand. People are giving us

clues as to their interest by what they search on.

An advertiser may identify thousands of queries that may come from people

interested in their product. However, determining the true value of people en-

tering a specific query is not a clearcut process. People click on an ad, costing

the advertiser money, and then hopefully complete a purchase, bringing the ad-

vertiser revenue. Understanding how cost and revenue are affected by different

components of search queries is key to maximizing profit. In this paper, I focus

on novel methods for estimating the true click through rate and conversion rate

of ads as a function of various query features.

One key goal of any advertiser is to estimate both Clicks and Sales for a given

search query. For if these two values were known with perfect information, then an

optimal advertising strategy would be a trivial calculation. Each different query

represents a distinct sub-group of people searching for information. Subsequently,

we can use the query itself as an indication of the probability of a person clicking

on an ad, and making a purchase. Furthermore, the Click Through Rate (CTR)

and Conversion Per Click (CVC) will most likely respond differently to different

query parameters. (i.e. some groups may click often, but purchase little while

other groups may click rarely but purchase more often.) Figure 5.2 is a cartoon

diagram of the system just described.
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Figure 5.2: Adwords System

Due to the complex nature of the topic, and the diversity of published research,

I will institute a standard notation for all mathematical formulae in this paper,

described in Table 5.1.

5.3 Literature Review

5.3.1 Budget Optimization in Search-Based Advertising Auctions

[FMP06] Feldman et. al. , in one of the earlier papers on search ad optimization,

approach the subject from the perspective an advertiser. The authors investigate

optimal bid and budget choices given that the true CTR and POS are known for

every bid level. They propose a randomized bidding strategy that consists of two

bids at the endpoints of the line on a convex hull. The hull is defined on a graph

of CTR and cost. However, they skip the important issues of estimating CTR as a

function of either position or content and simply state that CTR can be measured
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Q query

I Impression

C Click

S Sale (conversion)

R Revenue from a conversion

CPC Cost Per Click

CPV Cost Per Conversion

POS Position

BID Bid amount

CTR Click Through Rate: Clicks/Impressions

CVC Conversion Per Click: Conversions/Clicks

CVI Conversion per Impression: Conversions/Impressions

Table 5.1: Summary of Notation

empirically using past history. Another interesting contribution of the authors is

the discussion of treating a budget composed of multiple queries as a “Knapsack

Problem”.

5.3.2 A Model of Individual Keyword Performance in Paid Search

Advertising

[RB07] Rutz and Bucklin published the first paper that considered the profitability

of an advertisement as a function of keywords (query input by user). The study

focuses on discriminating between attractive vs. unattractive keyword without

changing the existing Bid or ad text. Traditionally, ad campaign managers will

use a pre-defined CTR as the threshold for keeping or discarding a keyword in

their advertising campaign. (i.e. Only keep keywords that have a CTR of at

least 0.05.) The authors point out that the flaws of this “traditional” method
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of advertising in that it fails to account for the resultant CVC and CPV of each

keyword. They then develop a model to evaluate the performance of individual

keywords based on CVC. Conversion is described as a binary choice conditional on

a click, represented by a logit model. A linear combination of weighted covariates

plus an error term is considered the “value” of a particular keyword and is then

used in a logistic function to determine the expected CVC of that keyword.

CV Ck,t =
1

1 + e−ν
(5.1)

Two categories of covariates were used to fit this model. The first being meta-

features of the keyword: POS, CTR, and CPC.

νk,t = β0 + β1POSk,t + β2CTRk,t + β3CPCk,t + εk,t (5.2)

The second being actual words present in the keyword: City, State, Brand,

etc.

νk,t = β0 + β1CITYk,t + β2STATEk,t + β3BRANDk,t + εk,t (5.3)

Lastly, a Bayesian versions of the two models were developed where the β were

unique to each keyword. (Note: In the Appendix, the authors suggest that the β

are drawn from a prior Normal distribution.

νk,t = β0,w + β1,wPOSk,t + β2,wCTRk,t + β3,wCPCk,t + εk,t (5.4)

νk,t = β0,w + β1,wCITYk,t + β2,wSTATEk,t + β3,wBRANDk,t + εk,t (5.5)

Their results, from analysis of a large empirical dataset, produce several im-

portant findings:

• Keywords are predictive of conversion rates

• Position is not the only factor that drives conversion rate
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• Covariates (CTR, Position, etc.) are important in estimating conversion

rate

• Keywords with higher CTR tend to have higher CPC

• Wordgraphics (brand in query, etc.) have an effect in some of their models.

5.3.3 Predicting Clicks: Estimating the Click-Through Rate for New

Ads”

[RDR07] Richardson, Dominowska, and Ragno write about the problem of es-

timating CTR for new ads from the perspective of a search engine. Since ad

position is a function of both bid price and historical CTR, new ads are hard

to position given their unknown CTR. No discussion of bid price or advertising

budget is made. The authors look at several different feature sets as input to a

logistic regression model that estimates CTR:

• The CTR of other ads that have the same bid term

• Related term CTR

• Unigrams from ad text

• keyword specificity

• External data sources. (web directories, search engine result count, fre-

quency of query.)

The authors employ a logistic regression model and use the KL-divergence as

the measure of goodness-of-fit. Their first feature is the CTR of “related” ads to

estimate the CTR for a new ad.

f0,new =
αCTR +N(adterm)CTR(adterm)

a+N(adterm)
(5.6)
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where ¯CTR is the mean CTR for all ads, N(term) is the count of ads with a

given keyword, CTR(adterm) is the CTR for ads with the same term and alpha is

a “prior” .

Another interesting feature they derive is the weighted average of the CTR

of ads with related terms. For example, an ad for “red shoes” and an ad for

”buy red shoes” are related with only one word difference. The authors describe

a method of tuning across different lengths of similarity. Next, they looked at

several features relating to subjective analysis of ad quality, such as appearance,

reputation, landing page quality, etc. Finally, they looked at unigram features for

the most common 10,000 words to see which had a positive or negative impact on

CTR. For example, the word “official” in the ad title had the highest impact on

CTR.

5.3.4 Budget constrained bidding in keyword auctions and online knap-

sack problems

[ZCL08] Chakrabarty, Zhou, and Lukose look at bidding on a portfolio of key-

words as an online knapsack problem. Instead of focusing on keyword choice, or

ad text, they look at how to allocate a budget with everything else known. They

do not discuss how change in bid impacts both position and CTR.

In this paper, the authors assume that the correct CPC and CTR are known

for all ads, and then describe an algorithm for allocating a budget amongst ads.

Keeping with the terminology of the Knapsack Problem, the weight of an ad is

defined as wt = CPC ∗Ct and the value of an ad is defined as π = (R−CPCt)∗C.

The value to weight ratio, constrained by an lower bound L and an upper bound

U is then L < πt
wt
< U .
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With the upper bound defined as U = R
CPCmin

− 1, the lower bound set as

some small constant L > 0, e as the base of the natural logarithm, and z as the

percentage of budget used at time t, then their online knapsack algorithm is:

while Budget not exhausted do

ψt = Ue
L

z L
e

if πt
wt
> ψt then

Pick Element t

end if

end while

5.3.5 On Best-Response Bidding in GSP Auctions

[CDE08] The authors propose an equation they name “Balanced Bidding” that

computes the upper bound an advertiser should be willing to pay for an improved

position on online advertising. They then continue on to demonstrate that if all

advertisers follow the Balanced Bidding procedure, that the system will converge

to a Nash Equilibrium with probability 1.

The Balanced Bidding equation be derived as follows. Let:

• CTR1 = click through rate for slot 1

• CTR2 = click through rate for slot 2

• PPC1 = amount paid per click in position 1

• PPC2 = amount paid per click in position 2

• R = Revenue generated from a click
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The equation is based on an equilibrium where the advertiser is indifferent as

to the outcome of being at position 1 or position 2. (Note: Here, position one is

preferred, being higher on the page and having a higher CTR, but costing more.)

CTR1 ·R− CTR1 · CPC1 = CTR2 ·R− CTR2 · CPC2 (5.7)

R− CPC1 =
CTR2 ·R− CTR2 · CPC2

CTR1

(5.8)

CPC1 =
CTR2

CTR1

· (R− CPC2) (5.9)

5.3.6 The value of location in keyword auctions[NDI10]

The authors make a case that the current auction structure for advertising, estab-

lished by Google, is unfair to advertisers as it encourages them to pay more for an

ad than it is actually worth to them. They describe modeling click through rate

for an ad in position j as a probability θj with a Zipf distribution θj = 1
Jα

where

the probabilities sum to one. α is a parameter fit by estimation. Intuitively, this

is a flawed representation, as the very strong possibility of no ad being clicked is

completely ignored. Furthermore, given their formulation, the click through rate

for position one is 100%.

The authors also explicitly use the balanced bidding strategy proposed in

Carey et al.[CDE08], which is a very elegant solution to estimating a bid upper

bound, but has some inherent flaws which will be discussed later in this paper.

Naldi, et al. then attempt to describe individual advertiser valuations of differ-

ent advertising positions as a function of several different distributions. (Uniform,

Normal, Exponential, and Pareto) The Zipf parameter is varied to produce a range

of results, but no rationale is provided as to the choice of this parameter, or how

to estimate the best fit of this distribution to the scenarios described.
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5.3.7 Location, Location, Location: An Analysis of Profitability of

Position in Online Advertising Markets

[AHS11] Agarwal et al. model both the CTR and CVI as functions of position,

month, and keyword length. The inclusion of keyword length is a novel idea that

the authors theorize is indicative of ad specificity and subsequent consumer inter-

est. (i.e.“Hotel Los Angeles Free Wifi” is more specific than “Hotel Los Angeles”.)

They explain that shorter keywords are more “general” and that while attracting

clicks, may not generate as many sales. Longer keywords are more specific so

that people clicking are more likely to find what they are looking for, and make

a purchase. Their computations, from empirical data, show both CTR and CVI

are non-monotonic; and that the most profitable ad position is most often not

position one, but hovers around positions 3 to 4. It is explained that the CPC

of ads in lower positions is significantly less than ads in higher positions, yet the

CTR and CVI decrease at a lower rate. For example, an ad in position three

might have a CPC half that of an ad in position 1, but will have a CTR only a

little less, therefore making position three more profitable.

The authors also describe the problem of data sparsity, as many ads do not

receive clicks or generate conversion each day. In order to more accurately fit their

model with this sparsity, they adopt a hierarchical Bayesian approach where each

ad’s coefficients are drawn from a shared normal distribution with similar ads.

CV Ik,t =
1

exp−Uk,t
(5.10)

Uk,t = Yk,t + εk,t (5.11)

Yk,t = βk,tXk,t (5.12)

βk = ∆bZk + µk (5.13)

µk ∼ N(0, V ) (5.14)
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With Xk representing covariates relating to position, Zk representing the key-

word specific characteristics - length in this case, ∆b representing the relationship

between keyword characteristics and the mean values of coefficients, and µk rep-

resenting keyword specific heterogeneity. Consumer choice of selecting an ad can

also be modeled using the same model, but substituting CTR for CVI.

5.3.8 Beta Regression for Modeling Rates and Proportions

[FC04] Ferrari and Cribari-Neto propose a re-parameterization of the Beta distri-

bution that allows for relatively straightforward regression using a linear combi-

nation of weighted covariates through a logit link. The Beta probability density

function takes two parameters B(p, q). The authors re-parameterize the distribu-

tion with a mean µ = p
p+q

and a precisions Φ such that p = µΦ and q = (1−µ)Φ.

We can then define µ as a linear combination of covariates and coefficients passed

through a logistic link function.

P (y; p, q) =
Γ(p+ q)

Γ(p)Γ(q)
yp−1(1− y)q−1, 0 < y < 1 (5.15)

P (y;µ,Φ) =
Γ(Φ)

Γ(µΦ)Γ((1− µ)Φ)
yµΦ−1(1− y)(1−µ)φ−1, 0 < y < 1 (5.16)

g(µ) = η =

Q∑
i=1

xiβi (5.17)

µ =
e−x

T β

1 + e−xTβ
(5.18)

5.4 A Brief Discussion of Ad Position

All of the papers discussed in the above literature review, along with all other pa-

pers on the subject read, describe ad position as a discrete integer. While this is

absolutely true for a single ad display, the dynamic nature of the Adwords system

means that for any repeated measures, ad position is stochastic, ceteris paribus
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(bid, ad copy, etc.), Google reports AdWords statistics as a 24 hour summary

with only mean position provided. In six months of data, for two very different

companies, and a total of 56,441 distinct ads, not once was the daily average

position reported as an integer value. Furthermore, there were 54,672 ads where

the bid did not change during the study period, and an expectation of an integer

daily position would have seemed plausible.

Trimming the data set to ads with variance below the 90th percentile, to min-

imize outliers, results in 49,204 ads of which 31,432 had a non-zero variance of

reported position over the study period. The median reported position variance

was 1.333. The distribution of reported ad position variance may be reason-

ably represented by a Gamma distribution with parameters shape=1.0238 and

rate=0.6046. A density plot of the reported position variance, with representative

Gamma distribution is in Figure 5.3.

One thought would be to use the Bid offered by the advertiser as a proxy for

ad position or “ad competitiveness”. However, this is difficult to do in actuality.

An ad position may bounce around stochastically throughout the day due to nu-

merous endogenous factors that we are unable to see. For example, both Google’s

internal algorithms and other advertisers changing bids will cause our ad position

to change. However, we are never able to see that data. Given that we are only

reported an average daily position, it isn’t possible to derive the values of these

other endogenous inputs.

Subsequently, for this paper, I will treat daily average ad position as a simple,

continuous value, covariate to be used in the regressions, with full acknowledge-

ment that it is an imperfect summary statistic. More complete modeling of the

position can be considered an open problem.
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Figure 5.3: Variance of Reported Daily Average Ad Position

5.5 Understanding Variability of Ad Impressions

For a given ad, ceteris paribus, The number of reported daily impressions can vary

significantly. The stochasticity of this key element can cause many naive adver-

tisers to misunderstand the true performance of a given ad. Every day different

people search for different things, different competitors may be changing ads and

bids, and Google is constantly optimizing ad display to maximize their profit. An

ad click is a fairly rare event, with most advertisers experiencing a CTR of 1%

- 5%. However, the occasional event happens where an ad is only shown a few

times for a day, and still receives a click. For example, an ad that receives an
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average of 200 impressions per day may experience several days with only 3-4 im-

pressions. Subsequently, clicks during those days will significantly bias the CTR

and possible CVC rate much higher than actuality. Simply estimating CTR or

CVC from a direct observation of impressions and clicks (or conversions) will lead

to erroneous estimates. Furthermore, when an ad is relatively new, without many

days of reporting, it is especially sensitive to this bias, and may lead an advertiser

to incorrectly favor a new ad due to over estimation of its performance. Subse-

quently, any inference of CTR or CVC needs to take into account the likelihood

of the number or impressions for each measurement.

The number of daily impressions, for the 56,441 ads in this study, with outliers

above the 99th percentile removed, may be reasonably represented by a log-normal

distribution with mean=2.1811 and standard deviation=1.1354. A density plot of

reported daily impressions with representative log-normal distribution is in Figure

5.4

5.6 Modeling Clicks and Conversions as a Beta Distribu-

tion

Cary’s Balanced Bid formula may be solved to give the equilibrium or “indiffer-

ence” price for any ad position.[CDE08] In real world applications, where a price

is not chosen by the advertiser, but a bid is made in an auction, the actual CPC

paid is a function of a second-price or “Vickery” auction. The indifference price

described by Cary, et al. may be considered an upper bound on the price an

advertiser should rationally be willing to pay for a given position.
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Figure 5.4: Variance of Reported Daily Average Ad Position

CTR1 ·R− CTR1 · CPC1 = CTR2 ·R− CTR2 · CPC2 (5.19)

R− CPC1 =
CTR2 ·R− CTR2 · P2

CTR1

(5.20)

CPC1 =
CTR2

CTR1

· (R− CPC2) (5.21)

However, Cary neglects to consider that not all clicks convert to a revenue

event, and that different ad positions may have different rates of CVC. This is a

very important distinction, as a change in ad position that increases CTR might

actually have a lower CVC, thereby reducing profit. Agarwal et al. have demon-
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strated that position definitely has an impact on CVC [AHS11]. Including a

position dependent CV C into Cary’s equation then gives:

CPC1 = CV C1 ·R−
CTR2

CTR1

(CV C2 ·R− CPC2) (5.22)

Once a query is chosen, and ad copy written, the only real “control” left to

the advertiser is choice of bid. Cary’s approximation is useful, if discrete position

information is available, CTR for all positions is known, and CVC for all positions

is known. However, we may still use it as a tool for thinking about advertising

strategy. As previously discussed in this paper, both CTR and CVC are random

variables ∈ [0, 1], that it may be approximated by a Beta distribution, and posi-

tion is a random variable with a daily average being reported.

If we are then able to model CTR and CVC using regression, then the fitted

coefficients may then be used to determine the changes to cost, revenue, and ex-

pected profit as a function of changing the bid. Rutz and Bucklin [RB07] have

shown that ad features and words have an effect on CTR, so a natural place to

start, would then be to use regression to fit a Beta distribution using ad features

and word grams to estimate both CTR and CVC.

Ferrari and Cribari-Neto [FC04] propose a re-parameterization of the Beta

distribution that facilitates regression using a linear combination of weighted co-

variates transformed through a logit link.
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P (y; p, q) =
Γ(p+ q)

Γ(p)Γ(q)
yp−1(1− y)q−1, 0 < y < 1 (5.23)

P (CTR;µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1, 0 < y < 1 (5.24)

µ =
p

p+ q
(5.25)

φ = p+ q (5.26)

We can then represent µ as a transformed linear combination of covariates and

coefficients. Given that µ ∈ [0, 1] Ferrari and Cribari-Neto suggest using a logic

link transformation of µ

η = X tβ (5.27)

µ =
1

1 + e−η
(5.28)

One distinct advantage of use a Beta distribution over a Logistic is that the

Beta allows for independent estimate of variance. φ is the precision parameter

that may also be estimated through regression with different covariates and coef-

ficients from µ. φ may then be considered a measure of difference between using

a Beta distribution over a Logistic. As φ approaches 0, the variance of the Beta

distribution approaches the variance of the Logistic, and the means of the distri-

butions will also converge. Given the re-parameterization of the PDF described

above, the variance then becomes:

V AR =
µ(1− µ)

1 + φ
(5.29)

φ = X tγ (5.30)

While Rutz and Bucklin [RB07] proposed a logistic regression model, we can

compare the difference between my proposed Beta distribution with their logistic

through the parameter φ.
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5.7 Full Model for Estimating CTR and CVC

We can consider the number of clicks an ad receives as represented by a binomial

distribution, P (C) ∼ Binom(I, π) with I representing the number of impressions

an ad received for the day, and π representing the probability of a click (CTR).

Treating π as a random variable arising from a Beta distribution allows for regres-

sion using query specific covariates and a separate parameter φ for the variance

of π

Let θ represent the coefficients of the model and X be an [N,M ] vector of

covariates representing query length, brand, program, and location for each ad on

each day.

The full conditional model for a sale, given a click and ad features, is:

P (S|I, C,X) = P (C|I, CTR) · P (CTR|X, θctr) · P (θctr) (5.31)

· P (S|C,CV C) · P (CV C|X, θcvc) · P (θcvc) (5.32)

(5.33)

As CTR and CVC are independent, each may be modeled separately, using

the same covariates and model. Company A owns seven distinct brands. While a

simple indicator covariate for “brand in query” could be used, I chose to treat co-

efficients for each distinct brand as coming from a nomad distribution with mean

and variance as coefficients to be estimated. That hierarchy provides an addi-

tional level of understanding as to how each brand affects both CTR and CVC.
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For Clicks:

P (C) ∼ Binom(I, πcl) (5.34)

P (πcl|X, θcl) ∼ Beta(µclφcl, (1− µcl)φcl) (5.35)

µcl =
1

1 + e−X
tβcl+Xt

brands·β
cl
brands

(5.36)

P (βcl) ∼MVN (0,Σcl
beta) (5.37)

P (βclbrands) ∼ N(µclbrands, τ
cl
brands) (5.38)

P (µclbrands) ∼ N(0, γcl) (5.39)

P (τ clbrands) ∼ EXP (δcl) (5.40)

P (φcl) ∼ Exp(λcl) (5.41)

(5.42)

With γcl, δcl, λcl, Σcl
beta, and αcl as hyper-parameters for this hierarchical model.

Sales, given a click:

P (S) ∼ Binom(C, πcv) (5.43)

P (πcv|X, θcv) ∼ Beta(µcvφcv, (1− µcv)φcv) (5.44)

µcv =
1

1 + e−X
tβcv+Xt

brands·β
cv
brands

(5.45)

P (βcv) ∼MVN (0,Σcv
beta) (5.46)

P (βcvbrands) ∼ N(µcvbrands, τ
cv
brands) (5.47)

P (µcvbrands) ∼ N(0, γcv) (5.48)

P (τ cvbrands) ∼ EXP (δcv) (5.49)

P (φcv) ∼ Exp(λcv) (5.50)

(5.51)

With γcv, δcv, λcv, Σcv
beta, and αcv as hyper-parameters for this hierarchical

model.
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5.8 Estimating Model Coefficients

The complex nature of the proposed model presents a rather difficult challenge for

fitting coefficients. A Metropolis within Gibbs algorithm was written in the R sta-

tistical programming language and used to fit all coefficients. Separate processes

were then run for both CTR and CVC. The algorithm is descried in Algorith 4
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Algorithm 4 Metropolis within Gibbs

1: for 1:S do

2: # Sample P (τbrand|µbrand, β, φ,X,Clicks, Impr) with small MH loop.

3: for j in 1:T do

4: τ ∗brand ← τbrand +N(0, 1) # Proposal

5: Compute L∗ using τ ∗brand

6: r = min(1, Lprop
L

) # Acceptance ratio

7: if r > U(0, 1) then

8: τ ibrand ← τ ∗brand

9: L← L∗

10: else

11: τ ibrand ← τ ibrand

12: end if

13: end for

14: # Sample P (µbrand|τbrand, β, φ,X,Clicks, Impr) with small MH loop.

15: for j in 1:T do

16: µ∗brand ← µbrand +N(0, 1) # Proposal

17: Compute L∗ using µ∗brand

18: r = min(1, Lprop
L

) # Acceptance ratio

19: if r > U(0, 1) then

20: µibrand ← µ∗brand

21: L← L∗

22: else

23: µibrand ← µibrand

24: end if

25: end for
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Algorithm 5 Metropolis within Gibbs - Part 2

26: # Loop over all brands

27: for b in Brands do

28: # Sample P (βbrandb|τbrand, µbrand, β, φ,X,Clicks, Impr) with small MH

loop.

29: for j in 1:T do

30: β∗brandb ← βibrandb +N(0, 1) # Proposal

31: Compute L∗ using β∗brandb

32: r = min(1, Lprop
L

) # Acceptance ratio

33: if r > U(0, 1) then

34: βibrandb ← β∗brandb

35: L← L∗

36: else

37: βibrandb ← βibrandb

38: end if

39: end for

40: end for

41: # Sample P (β|τbrand, µbrand, φ,X,Clicks, Impr) with small MH loop.

42: for j in 1:T do

43: β∗ ← βi +MVN(0,Σ) # Proposal

44: Compute L∗ using β∗

45: r = min(1, Lprop
L

) # Acceptance ratio

46: if r > U(0, 1) then

47: βi ← β∗

48: L← L∗

49: else

50: βi ← βi

51: end if

52: end for
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Algorithm 6 Metropolis within Gibbs - Part 3

53: # Sample P (φ|bid, pos, clicks, impr, βposition, β) with small MH loop.

54: for j in 1:T do

55: φ∗ ← φi +N(0, 1) # Proposal

56: Compute L∗ using β∗

57: r = min(1, Lprop
L

) # Acceptance ratio

58: if r > U(0, 1) then

59: φi ← φ∗

60: L← L∗

61: else

62: φi ← φi

63: end if

64: end for

5.9 Data Collection

Google provides a convenient, but complicated API for directly accessing data

from an AdWords account. Code was written in Python to interface directly with

Google’s AdWords API and query all available data. The collected data was then

stored in a MySQL database.

164 days of full advertising data (impressions, clicks, conversions, position,

bids, cost-per-click, queries, and grouping.) were collected for two distinct com-

panies. Company A owns seven brands consisting of many trade schools around

the country that specialize in technical training for fields such as nursing, welding,

auto repair, etc. Company B is a dating site for a narrowly focused demographic.

To protect company privacy, the names are withheld and actual ad text has been

anonymized.
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The dataset for Company A was used for empirical fit and analysis of the

proposed model. There were a total of 19,257 ads of which 6,863 had more than

two changes in bid price over the study period. 3,590 ads had more than two bid

changes and at least one click. Of those ads, 742 produced at least one conversion.

Company A

Ads 19,257

Ad Groups 9,459

Impressions 21,470,029

Clicks 199,649

Conversions 4,286

Table 5.2: Data Collected

5.10 Empirical Analysis and Results

To be determined.
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