Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Electronic Theses and Dissertations bannerUC Berkeley

Interfacial Engineering of Molecular Photovoltaics

Abstract

One of the most worthy pursuits in the field of organic solar cells is that of discovering ways to more effectively harvest charge generated by light absorption. The measure of the efficacy of this process is the external quantum efficiency (EQE). It is determined by the efficiency of incident light absorption, exciton diffusion, exciton splitting and charge transfer, and charge collection. Enhanced EQE can be realized by engineering interfaces between materials in the device to allow for smoother charge transfer throughout the extent of the device, which is usually between 10 and 200 nanometers. Improvements in charge transport are vitally important because the photogenerated excitons in electron donating polymers and small molecules typically only diffuse between 5 and 10 nanometers. These excitons must reach the interface between the electron donor and electron acceptor in order to be split so that the resulting electron and hole can be harvested at the cathode and anode, respectively.

The aim of much of this dissertation is to describe a method by which the donor-acceptor interfacial area can be augmented using nanoimprint lithography, first with a single donor and then with multiple donors. Nanoimprint lithography is introduced as a simple embossing technique that can create features in a single component donor with dimensions as small as 20 nm. Solution-processable small molecules are of interest for their ease of synthesis and fabrication. I continue the discussion of nanoimprint lithography by offering candidates for a two-component donor combination. A two-component donor can extend the absorption range across a broader portion of the solar spectrum than just one donor to improve energy harvesting.

After considering ways of optimizing the donor-acceptor interface, I describe the use of a charge selective layer for better charge transport and collection. When incorporated into a bilayer solar cell and an inverted solar cell, these two molecules markedly improve the energy conversion efficiency.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View