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Abstract

This paper assumes that in addition to the conventional (sel�sh)
preferences over outcomes, players in a strategic environment have
preferences over strategies. In the context of two-player games, it pro-
vides conditions under which a player's preferences over strategies can
be represented as a weighted average of the individual's sel�sh payo�s
and the sel�sh payo�s of the opponent. The weight one player places
on the opponent's sel�sh utility depends on the opponent's behavior.
In this way, the framework is rich enough to describe the behavior
of individuals who repay kindness with kindness and meanness with
meanness. The paper assumes that each player has an ordering over
his opponent's strategies that describes the niceness of these strategies.
It introduces a condition that insures that the weight on opponent's
utility increases if and only if the opponent chooses a nicer strategy.
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1 Introduction

The notion that economic agents act rationally is a premise that unites most
work in economic theory. The rationality assumption is often stated broadly
and implemented narrowly. The broad version of the assumption is that
agents are goal oriented and seek to maximize preferences subject to con-
straints. The narrow version of the assumption is that an individual's prefer-
ences are exogenously given and depend only on those aspects of an allocation
that directly inuence his or her material well being.

This paper lays the foundations for an extension of the narrow view of
rationality in strategic settings. No modi�cation of game theory is needed
to permit individuals to be motivated by something other than material well
being. The utility in standard game theory may be derived from arbitrary
preferences over outcome distributions. Our theory goes beyond this. We
present a representation theorem in games that incorporates the possibility
that preferences will be inuenced by the behavior of others.

Game theory always assumes that players have preference relationships
de�ned on lotteries over outcomes. Our starting point is to also assume that
players have preferences over strategies. Since the space of (mixed) strategies
is a mixture space, it lends itself to the expected utility setup. In other words,
we assume that for any three strategies �1, �2, and �3, and for all � 2 (0; 1],
�1 � �2 i� ��1+(1��)�3 � ��2+(1��)�3. This, together with continuity
and transitivity, implies that preferences over strategies can be represented
by an expected utility functional, where the utility is a utility from strategies.
This utility does not have to agree with the expected utility from payo�s
obtained when the player uses this strategy.

We limit attention to two-player games. Section 2 presents the basic
representation theorem. We show that in a �xed game G, and given that his
opponent is playing �j, player i's preferences over his own strategies �i will
be represented by a utility function of the form

u1(�i; �j) + aGi;�ju2(�i; �j)

the representation is a weighted sum of the two players' utilities, where the
weight player i gives to player j's utility depends on j's action. This result is
a consequence of a theorem due to Harsanyi [27]. The critical assumption is
that if, given a �xed strategy of player j, two of player i's strategies lead to
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the same distribution of sel�sh expected utility for both players, then player
i is indi�erent between these two strategies. The coe�cients aGi;�j represent
the degree to which player i is willing to take person j's interests into con-
sideration. In standard theory, aGi;�j � 0. Positive values of the coe�cient
suggest that player i is willing to sacri�ce his sel�sh payo� in order to in-
crease the payo� of his opponent. Negative values suggest a willingness to
sacri�ce sel�sh payo� in order to lower the opponent's payo�. Since player i's
coe�cient depends on player j's strategy, the players may exhibit preferences
for reciprocity. A player may be willing to make sel�sh sacri�ces to increase
or decrease his opponent's payo� in the same strategic setting.

We allow the possibility that one player's preferences over outcomes can
reect concern for the well being of the other player. That is, we allow play-
ers to be intrinsically altruistic or spiteful. More important, however, is that
we permit a player's preferences over strategies to place a higher weight on
opponent's sel�sh payo�s in response to nice behavior. This is done in Sec-
tion 3, where we connect the coe�cient aGi;�j to the way player i perceives j's
behavior. The goal is to formalize the intuition that a player would respond
to nice behavior by reducing his sel�sh utility to bene�t his opponent and
respond to nasty behavior by reducing his sel�sh utility to harm his oppo-
nent. We assume that player i has preferences over his opponent's strategies,
which describe his view of their `niceness'. Section 3 we identi�es conditions
under which aGi;�j > aGi;�0

j
if and only if �i is `nicer' than �0j. This theorem

captures the idea that a player is more likely to be kind to an opponent who
treats him nicely. In order to prove the result, we introduce a Reciprocal
Altruism assumption that makes precise the intuition behind the theorem.

Section 4 discusses possible objections to our model and describes sev-
eral examples that illustrate its features. Section 5 briey reviews the most
relevant experiments in the vast literature detailing shortcomings of the ra-
tional actor model. It provides a more detailed discussion of closely related
theoretic responses to the evidence.

2 Representation Theorems

Assume two players. Let Xi be the space of outcomes to player i, i = 1; 2.
Each player has \sel�sh" preferences �sel

i over �(Xi), the space of lotteries

over Xi. A game G is a collection sGi = fsG;1i ; : : : ; s
G;nG

i
i g of strategies for
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player i, i = 1; 2, together with the payo� function OG : sG1 � s
G
2 ! X1�X2.

Let �G
i be the space of mixed strategies of player i for gameG, and extendOG

to be from �G
1 ��G

2 to �(X1)��(X2). Throughout the paper, i; j 2 f1; 2g,
and i 6= j.

Given a game G and his opponent's (mixed) strategy �j 2 �j , player
i has a complete and transitive preference relation �G

i;�j
over �G

i . As long
as G is �xed, we omit the superscript G, and use the notations si, �i, and
�i;�j . The preferences �i;�j over strategies need not be linked to the sel�sh
preferences �sel

i over outcomes. We assume that these preferences satisfy the
following axioms.1

(C) Continuity (a) For every ��i 2 �i, the sets f(�i; �j) 2 �i��j : �i �i;�j

��i g and f(�i; �j) 2 �i ��j : ��i �i;�j �ig are closed subsets of �i ��j.

(IND) Independence 8�1i ; �
2
i ; �

3
i 2 �i, 8�j 2 �j, and 8� 2 (0; 1], �1i �i;�j

�2i i� ��1i + (1 � �)�3i �i;�j ��
2
i + (1 � �)�3i .

As sel�sh preferences �sel
i are de�ned over �(Xi), these preferences exist

independently of the strategic environment. Preferences over strategies �G
i;�j

,
on the other hand, depend on the game being played. In this framework, a
Nash Equilibrium is a strategy pro�le in which each agent's strategy is max-
imal according to �G

i;�j
. Lemma 1 asserts that a Nash Equilibrium exists in

our framework. We omit the proof, which follows from standard arguments.

Lemma 1 If, for a given game G, both players' preferences satisfy the Con-
tinuity and the Independence axioms, then Nash Equilibrium exists for this
game.

We make two more assumptions.

(EU) Expected Utility The preferences �sel
i satisfy the assumptions of

expected utility theory.

It follows by this axiom that there are vN{M utility functions ui : Xi ! R

such that the preferences �sel
i over lotteries over Xi are represented by the

expected value of the utility ui from their payo�s. To simplify notation,
denote by ui(�i; �j) the expectation of the utility ui player i receives from the
lottery Oi(�i; �j) (Oi is the lottery person i receives from O). Let u(�i; �j) =
(ui(�i; �j); uj(�i; �j)).

1For part (b) of the Continuity assumption, see Section 3 below.
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(SI) Self Interest Suppose that uj(�0i; �j) = uj(�i; �j). Then �0i �i;�j �i if,
and only if, ui(�0i; �j) > ui(�i; �j).

This axiom is weaker than the one usually used. In standard game theory,
it is assumed that �0i �i;�j �i i� ui(�

0
i; �j) > ui(�i; �j). That is, the preferences

of person i over his own set of strategies, given that player j is playing �j, are
fully determined by i's payo�. Here we only require that player i's preferences
over strategies agree with his sel�sh preferences when player j is (sel�shly)
indi�erent between �i and �0i. Axiom SI implies in particular

(?) If u(�0i; �j) = u(�i; �j), then �0i �i;�j �i.

The structure of the model so far resembles that of Harsanyi's social
choice theory [27]. In his model, members of society have preferences over
(lotteries) over social states, and these preferences are expected utility. There
are social preferences over the same domain, and these preferences too are
expected utility. Finally, a Pareto assumption connects these preferences,
where it is assumed that if all members of society are indi�erent between
two social policies, then so is society. From these assumptions Harsanyi got
the \utilitarian" social welfare function

P
�iui. Similarly, we get here

Fact 1 Given the Expected Utility and Independence axioms and the (?) con-
dition, the preferences �i;�j over �i can be represented by

aii;�jui(�i; �j) + aji;�juj(�i; �j) (1)

Proof See Border [6] or Fishburn [20]. �

Note that the weights depend on j's strategy �j. In standard game theory,
aii;�j � 1 and aji;�j � 0. Here we can only retain the �rst of these two
identities.

Lemma 2 Given the Self Interest assumption, aii;�j can be chosen to be pos-
itive, i = 1; 2, j 6= i.

Proof For a given �j, the set S�j = fu(�i; �j) : �i 2 �ig is either a chord
in R2, or it is convex with a non empty interior. If the latter happens, let
�i; �

0
i 2 �i such that ui(�0i; �j) > ui(�i; �j) and uj(�0i; �j) = uj(�i; �j). Hence,
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by Axiom SI, �0i �i;�j �i. By eq. (1), aii;�jui(�
0
i; �j) > aii;�jui(�i; �j) (recall

that uj(�0i; �j) = uj(�i; �j)). Since ui(�0i; �j) > ui(�i; �j), it follows that
aii;�j > 0.

Suppose that S�j is a chord in the line kiui + kjuj = C. If ki = 0, then
similarly to above, Axiom SI implies that aii;�j is positive. If kj = 0, then aii;�j
can be any number, in particular, it can be positive. Finally, if ki; kj 6= 0,
Axiom IND implies that the order of �i;�j on S�j is either always increasing
with ui or always decreasing with ui. In the �rst case, let aii;�j = 1 and

aji;�j = 0. In the second case, let aii;�j = 1 and aji;�j > kj=ki if ki and kj have

the same sign, and aji;�j < kj=ki if ki and kj have di�erent signs. �

Conclusion 1 We may assume, without loss of generality, that aii;�j � 1.
That is, the preferences �i;�j can be represented by

ui(�i; �j) + aji;�juj(�i; �j)

Note, however, that aji;�j may be negative. For simplicity, we omit the su-
perscript j, and let ai;�j be the weight player i gives to the utility of player
j.

3 Reciprocal Altruism

We now assume that player i has continuous preferences �opp
i over �j , the

set of player j's strategies, i = 1; 2, j 6= i. (The superscript opp stands for
\opponent"). The interpretation of the statement \�1j �

opp
i �2j" is that player

i considers j to be nicer to him when j is using �1j than when she is using �2j .
In this section we analyze the connection between these preferences and the
weight ai;�j player i gives to j's utility. The main results of the section are
theorems that provide conditions that formalize the statement: The weight
player i puts on player j's utility is an increasing function of the niceness of
player j's strategy.

3.1 Nice Behavior

In this subsection we o�er some examples for what we mean by nice behavior,
but our results apply to a much larger set of preferences. Given that player
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j is using strategy �j, person i is o�ered the following vector of utilities

ui(si; �j) = (ui(s
1
i ; �j); : : : ; ui(s

ni
i ; �j)) 2 R

ni

In [45] we o�er axioms implying that the preferences �opp
i can be represented

by one of the following two functionals.

Ui(ui(s
1
i ; �j); : : : ; ui(s

ni
i ; �j)) = max

k
fui(s

k
i ; �j)g (2)

Ui(ui(s
1
i ; �j); : : : ; ui(s

ni
i ; �j)) = min

k
fui(s

k
i ; �j)g (3)

These functional forms o�er two di�erent notions of nice behavior. Ac-
cording to the �rst, person j's behavior is nicer if she o�ers player i higher
possible utility. This representation is consistent with the concept of fairness
adopted by Rabin [39]. The second notion of niceness is for player j to let
player i have high minimal utility. A possible justi�cation for this is that if
player j believes that i does not understand the game, she can protect him
by increasing his security level.2

A more general evaluation of the niceness of the opponent's behavior may
involve the opponent's outcome. Consider the following game.

3; 3 0; 4 3; 5
4; 0 1; 1 4; 2

Choosing left may indicate a nicer behavior by person j (the column player)
than choosing right, because the latter bene�ts her as well as i. Such prefer-
ences may be represented by

Ui(u(s
1
i ; �j); : : : ; u(s

ni
i ; �j)) = max

k
fui(s

k
i ; �j)g �max

k
fuj(s

k
i ; �j)g

We do not consider such preferences in our analysis, and will assume through-
out that the preferences �opp

i depend only on the vector ui(si; �j).
Below we introduce two axioms. The �rst, called Reciprocal Altruism,

connects the preferences �i;�j player i has over his set of strategies, to the

2Another possibility is Ui(ui(s1i ; �j); : : : ; ui(s
ni

i ; �j)) =
P

k ui(s
k
i ; �j). This notion sug-

gests that player j is interested in maximizing player i's average utility. The reason may be
that since she believes that i does not know what to do, it is best to o�er him the highest
possible utility assuming that he will randomize. It is inconsistent with the Irrelevance
axioms we make below.
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preferences �opp
i he has over j's behavior. The second, called Irrelevance,

connects the preferences �i;�j in di�erent games. The combination of the
two axioms rules out some possible preferences �opp

i , but it is lenient enough
to permit the functional forms of eq. (2) and eq. (3).

3.2 The Reciprocal Altruism Axiom

In this subsection we describe the Reciprocal Altruism axiom. This axiom
formalizes the idea that players are willing to reward nice behavior, and to
punish mean behavior.

(RA) Reciprocal Altruism Suppose

(a) u(�1i ; �
1
j ) = u(�2i ; �

2
j ) and u(��1i ; �

1
j ) = u(��2i ; �

2
j );

(b) �2j �
opp
i �1j [resp. �

2
j �

opp
i �1j ];

(c) �1i �i;�1
j
��1i .

Then �2i �i;�2
j
��2i i� uj(�2i ; �

2
j ) > uj(��2i ; �

2
j ) [resp. �

2
i �i;�2

j
��2i ].

The axiom requires that if \all things are equal," then when player j
plays a nicer strategy, player i will prefer strategies that lead to larger sel�sh
payo�s to player j. In this way, the axiom formalizes the notion that player
i repays kindness with kindness. The conditions in the statement of the
axiom formalize the notion of what it means for all things to be equal. The
axiom places a restriction on player i's ranking in one situation, indicated
by the superscript 2 on strategies, using information about his ranking in
another situation, indicated by the superscript 1 on strategies (condition (c)).
Condition (a) requires that the information about �1i and ��1i is comparable to
the information about �2i and ��2i . It states that when player j switches from
�1j to �2j neither players' sel�sh utility changes when player i changes from
�1i to �2i or from ��1i to ��2i . If conditions (a) and (c) hold, then Reciprocal
Altruism requires that if player i likes player j's new behavior better than
her old behavior, then i should follow j's preferences, in the sense that �2i
should be preferred to ��2i if, and only if, j's sel�sh utility under �2i is higher
than her utility under ��2i .

One can check that if player i has conventional sel�sh preferences, so
that �i �i;�j ��i i� ui(�i; �j) > ui(��i; �j), then RA is satis�ed provided that
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player i views all of j's strategies as equally kind (�2j �
opp
i �1j for all �

k
j ). To

see this, simply note that condition (c) implies that ui(�1i ; �
1
j ) = ui(��1i ; �

1
j ).

Condition (a) now implies ui(�
2
i ; �

2
j ) = ui(��

2
i ; �

2
j ), hence �

2
i �i;�2

j
��2i . In the

appendix we describe a nontrivial example of preferences that satisfy all of
our assumptions.

Condition (a) in the Reciprocal Altruism axiom is restrictive. For ex-
ample, when ni = 2 it is possible to satisfy condition (a) for �1j 6= �2j only
for nongeneric payo�s. Put di�erently, if for a given strategy �j of player j,
the utility opportunity set that can be generated by i strategies is a line in
the two-dimensional sel�sh utility space, then it is impossible to determine
the value of ai;�j used by person i. The restrictive nature of condition (a)
suggests that the Reciprocal Altruism axiom is relatively weak. We must
combine it with other assumptions to link player i's preferences over his op-
ponent's choice of strategy to ai;�j , the weight person i is gives to j's utility.

Since all the relevant information of a game is summarized by the sel�sh
utility payo�s the two players receive, we can view games as elements of
R

2�n1�n2 . On the set of games Gn1�n2 with ni pure strategies for player i,
i = 1; 2, we use the Euclidean topology. The set of mixed strategies �i for
a game Gni�nj can be viewed as the simplex �ni = f(p1; : : : ; pni) 2 R

ni
+ :P

pk = 1g. With a little abuse of notation, we will write �i 2 �ni .

(C) Continuity (b) Fix ni and nj. For every ��i 2 �ni and �j 2 �nj , the
sets f(�i; G) 2 �ni �Gni�nj : �i �G

i;�j
��i g and f(�i; G) 2 �ni �Gni�nj :

��i �
G
i;�j

�ig are closed subsets of �ni � Gni�nj .

AxiomC(a) requires that preferences are continuous within a �xed game.
The present axiom requires that �G

i;�j
be continuous as G changes (but with

�j held �xed).

3.3 Theorems

As we have mentioned above, the set of sel�sh utility payo�s may be too thin
to apply the RI axiom. To solve this problem, we will replace the game G
with a game that will duplicate one of player i's strategies. Then we will use
Axiom C(b), and create a thicker set of possible utility payo�s by changing
this new strategy in a small neighborhood.
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Given a game G, let G`
i be the enlarged game obtained from G by adding

the strategy s
G`
i ;n

G
i +1

i , where

u(s
G`
i ;n

G
i +1

i ; s
G`
i ;k

j ) = u(sG;`i ; sG;kj )

for each k (recall the notation sG;kh , which is the k-th pure strategy of person
h in game G). The game G`

i is obtained from G by duplicating strategy `
of person i. For h 2 fi; jg, there are natural isomorphisms between �G

h and

�
G`
h

h , so we will let e�h denote the strategies of player h in �G`
h

h that correspond
to �h in �G

h . The following axiom states that a player's preferences between
any two strategies will not change if a strategy of any one of the players is
duplicated.3

(IR) Irrelevance (a) e�1i �G`
i

i;e�j e�2i i� �1i �
G
i;�j

�2i .

This axiom states that a player's preferences between any two strategies
will not change if a strategy of any one of the players is duplicated. This
axiom trivially rules out the functional form for nice behavior of footnote 2,
where person i is interested in the average value of the weighted sum of his
and his opponent utility levels. The reason is that duplicating a strategy will
change the average payo�, hence, by Axiom RI, it will also change player i's
ranking of his own strategies.

Our aim is to prove that ai;�1
j
> ai;�2

j
i� �1j �

opp
i �2j . The Irrelevance (a)

axiom is su�ciently strong for this, provided we restrict attention to the case
where the preferences �opp

i are monotonic on the segment connecting �1j and
�2j . Formally, we de�ne:

De�nition 1 The two strategies �1j and �2j are linearly ordered by �opp
i if

either for all 0 6 � 6 � 6 1, ��1j + (1��)�2j �
opp
i ��1j + (1� �)�2j , or for all

such � and �, ��1j + (1 � �)�2j �
opp
i ��1j + (1� �)�2j .

Theorem 1 Given the Continuity, Independence, Expected Utility, Self In-
terest, Reciprocal Altruism, and Irrelevance (a) axioms, if the two strategies
�1j and �2j are linearly ordered, then ai;�1

j
> ai;�2

j
i� �1j �

opp
i �2j .

3The second part of the Irrelevance axiom appears after Theorem 2 below.
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For a given �j 2 �j, let Si(�j) = fu(�i; �j) : �i 2 �ig be the utility
opportunity set player i can generate given �j. Let �1j ; �

2
j 2 �j, and de�ne

S� = Si(�
1
j ) \ Si(�

2
j ).

There are three parts to the proof of this theorem. In the �rst part,
we assume that the utility opportunity sets are su�ciently rich that we can
apply Axiom RA directly. In this case, it is possible to �nd strategies that
satisfy the condition of RA. The desired conclusion is a straightforward
computation. To carry out this argument, we need S� to have a nonempty
interior. The second part of the part uses the linear ordering property to
obtain the conclusion of the theorem when S� has an empty interior, but
Si has a nonempty interior for all strategies on a segment connecting �1j
to �2j . Finally, in the third part of the proof, we use the Irrelevance and
Continuity assumptions to approximate an arbitrary game by a game in
which the richness property used in the second part of the proof holds.

Proof Let �1j ; �
2
j 2 �j , and suppose �rst that S� = Si(�1j ) \ Si(�2j ) has

a non-empty interior. It follows that there exist �1i , �
2
i , ��

1
i , ��

2
i , and two

distinct points t and t0 in S� such that t = (ti; tj) = u(�1i ; �
1
j ) = u(�2i ; �

2
j ),

t0 = (t0i; t
0
j) = u(��1i ; �

1
j ) = u(��2i ; �

2
j ), tj 6= t0j,

4 and

ti + ai;�1
j
tj = t0i + ai;�1

j
t0j (4)

Hence, by Fact 1, �1i �i;�1
j
��1i . By the same Fact, �2i �i;�2

j
��2i if and only if

ti + ai;�2
j
tj > t0i + ai;�2

j
t0j (5)

Subtract inequality (5) from eq. (4) to obtain

(ai;�1
j
� ai;�2

j
)(t0j � tj) > 0 (6)

Suppose now that �1j �
opp
i �2j . Then, by RA, inequality (5) holds if and only

if

tj = uj(�
2
i ; �

2
j ) 6 uj(��

2
i ; �

2
j ) = t0j (7)

4If the condition tj 6= t0j cannot be satis�ed, then by Fact 1, indi�erence curves of �i;�1
j

are constant in person j's utility. In other words, �xing j's strategy and utility while
changing i's (strategy and) utility will not change the desirability of i's strategy in the
�i;�1

j
order, a violation of Axiom SI.
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Since tj 6= t0j, it follows from inequalities (6) and (7) that ai;�1j > ai;�2j .

Similarly, if �1j �
opp
i �2j , then RA implies that both (5) and (6) hold as

equations. Since tj 6= t0j, ai;�1j = ai;�2
j
, which establishes the result when S�

has a nonempty interior.
Assume now that for every � 2 [0; 1], Si(��1j+(1��)�2j ) has a non-empty

interior. By the compactness of [0; 1] and AxiomC, there are 0 = �1 < � � � <
�ni = 1 such that for k = 1; : : : ; ni � 1,

Si(�k�
1
j + (1 � �k)�

2
j ) \ Si(�k+1�

1
j + (1 � �k+1)�

2
j ) 6= ?

The claim now follows from the �rst part of this proof. For example, if
�1j �

opp
i �2j , then by linear ordering, for k = 1; : : : ; ni � 1,

�k�
1
j + (1� �k)�

2
j �

opp
i �k+1�

1
j + (1 � �k+1)�

2
j

For k = 1; : : : ; ni, let

ak = ai;�k�1j+(1��k)�2j

and obtain that ai;�1
j
= a1 > � � � > ani = ai;�2

j
.

Suppose now that for some �, the interior of Si(��1j +(1��)�2j ) is empty.
Then consider the game G`

i for some 1 6 ` 6 ni and a sequence Gm ! G`
i in

G(ni+1)�nj such that for every � 2 [0; 1] and for every m, Si(��
1
j +(1��)�2j )

for the game Gm has a non-empty interior. The Theorem now follows by
C(b), IR(a), and the �rst part of this proof. �

Theorem 1 shows that when combinedwith other assumptions, Reciprocal
Altruism implies that there is a link between the coe�cient a and player i's
preferences over his opponent's strategies. The next result proves that RA
is exactly the assumption we must make in order to establish this link.

Theorem 2 Suppose that the Continuity (a), Independence, Expected Util-
ity, and Self Interest axioms are satis�ed. If ai;�1

j
> ai;�2

j
i� �1j �

opp
i �2j , then

the Reciprocal Altruism axiom holds.

Proof Let �1 = (�1i ; �
1
j ), �

2 = (�2i ; �
2
j ), ��

1 = (��1i ; �
1
j ), and ��2 = (��2i ; �

2
j )

satisfy conditions (a) and (c) of RA. By (c) and Fact 1,

ui(�
1
i ; �

1
j ) + ai;�1

j
uj(�

1
i ; �

1
j ) = ui(��

1
i ; �

1
j ) + ai;�1

j
uj(��

1
i ; �

1
j )

11



and therefore by (a)

ui(�
2
i ; �

2
j ) + ai;�1

j
uj(�

2
i ; �

2
j ) = ui(��

2
i ; �

2
j ) + ai;�1

j
uj(��

2
i ; �

2
j ) (8)

If �1j �
opp
i �2j , then, by assumption, ai;�1

j
= ai;�2

j
and therefore eq. (8) implies

that

ui(�
2
i ; �

2
j ) + ai;�2

j
uj(�

2
i ; �

2
j ) = ui(��

2
i ; �

2
j ) + ai;�2

j
uj(��

2
i ; �

2
j ):

Hence, �2i �i;�2
j
��2i by Fact 1.

If �1j �
opp
i �2j , then, by assumption, ai;�2j > ai;�1j . By Fact 1, �2i �i;�2j

��2i if

and only if

ui(�
2
i ; �

2
j ) + ai;�2

j
uj(�

2
i ; �

2
j ) > ui(��

2
i ; �

2
j ) + ai;�2

j
uj(��

2
i ; �

2
j ) (9)

Therefore, by eq. (8) and eq. (9), �2i �i;�2
j
��2i if and only if

(ai;�2
j
� ai;�1

j
)(uj(�

2
i ; �

2
j )� uj(��

2
i ; �

2
j )) > 0: (10)

Since ai;�2
j
> ai;�1

j
, RA follows from eq. (10). �

The analysis is more complicated when the strategies are not linearly
ordered. The reason is that if Si(�1j ) \ Si(�2j ) = ?,

5 then it is not possible
to use the RA axiom to compare ai;�1

j
with ai;�2

j
. However, if the preferences

�opp
i can be represented by either eq. (2) or by eq. (3), then they satisfy in

particular the following more general conditions.

(??) 1. If �1j �
opp
i �2j , then Si(�1j ) and Si(�2j ) share (at least one) utility

level for person i.

2. For every �1j and �2j there is a �nite sequence 0 = �1 < � � � <
�n = 1 such that for i = 1; : : : ; n � 1, �i�

1
j + (1 � �i)�2j and

�i+1�
1
j + (1� �i+1)�2j are linearly ordered.

When preferences are represented by either eq. (2) or eq. (3), the �rst
condition of (??) follows immediately. Since the utility function of eq. (2)
is quasi convex and that of eq. (3) is quasi concave, the second condition of
(??) can be satis�ed with n = 3.

5As before, Si(�j) is the utility opportunity set given �j .
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The assumption that follows permits us to conclude that Si(�1j ) and Si(�2j )
share at least one utility level for player j as well. To do so, we introduce
our second way to compare games with di�erent strategy sets.

According to our analysis, the preferences �opp
i are concerned with what

is available to person i. Therefore, changing the utility level available to j
will not a�ect these preferences. We create the game G`

i(!) by adding a
new strategy for player i that gives player i the same sel�sh utilities as the
existing strategy �`

i , but leads to a constant utility ! for player j. That is,
for every k = 1; : : : ; nGj ,

u(s
G`
i(!);n

G
i +1

i ; s
G`
i(!);k

j ) = (ui(s
G;`
i ; sG;kj ); !)

As before, we denote by e�h the strategy of player h in G`
i(!) that is corre-

sponding to �h in G. De�ne

!j(G) = min
n
uj(�

ki
i ; �

kj
j )
o

ki = 1; : : : ; nGi ; kj = 1; : : : ; nGj

to be the minimal utility level person j can reach in game G. We add another
axiom.

(IR) Irrelevance (b) For ! 6 !j(G), e�1i �G`
i(!)

i;e�j e�2i i� �1i �
G
i;�j

�2i .

This axiom requires that if we add a strategy to player i that from his
sel�sh perspective is the same as a strategy he already has, and such that
this strategy yields player j always the same `bad' outcome, then it will not
change the way player i chooses from the old set of strategies. This does not
mean that he is not going to choose the new strategy, only that its existence
does not a�ect his ranking of the other strategies.

Theorem 3 Assume that conditions (??) 1{2, and the Continuity, Indepen-
dence, Expected Utility, Self Interest, Reciprocal Altruism, and Irrelevance
(both parts) axioms are satis�ed. Then ai;�1

j
> ai;�2

j
i� �1j �

opp
i �2j .

Proof As before, for a given �j 2 �j , let Si(�j) = fu(�i; �j) : �i 2 �ig. If
the interior of S� = Si(�1j ) \ Si(�2j ) is not empty, then the proof is the same
as the �rst part of the proof of Theorem 1. So suppose that the interior of
S� is empty. Invoking IR(a) and C(b), we may assume that the interiors of
Si(�1j ) and Si(�2j ) are not empty.

13



We prove �rst that if �1j �
opp
i �2j , then ai;�1j = ai;�2j . Note that by the �rst

part of condition (??), �1j �
opp
i �2j implies that there is a utility level u�i and

u1j ; u
2
j such that (u�i ; u

k
j ) 2 Si(�k

j ), k = 1; 2. Denote the strategies of player i
that may make this utility level possible `1 and `2.

De�ne now a new game as follows. Let ! < !j(G), and add to G two
strategies sni+ki , k = 1; 2, where sni+ki is the same for person i as `k, but
always yields player j the sel�sh utility level !. That is, consider the game
G� = (G`1

i (!))
`2
i (!). This game has the required non-empty intersection.

Therefore,6 e�1j �opp
i

e�2j i� ai;e�1
j
= ai;e�2

j
. By IR(b) it follows that the weights

ai;e�2
j
from G� apply to G and that e�1j �opp

i
e�2j if and only if �1j �

opp
i �2j .

Therefore �1j �
opp
i �2j implies ai;�1

j
= ai;�2

j
.

Suppose next that �1j �
opp
i �2j . For � 2 [0; 1], let �j(�) = ��1j +(1��)�2j .

We construct inductively a sequence 0 = �0; : : : ; �m as follows. Suppose we
already de�ned �0; : : : ; �k such that �1j �

opp
i �j(�k), and there is no � > �k

for which �j(�) �
opp
i �j(�k) (except maybe for k = 0). De�ne �0k+1 > �k to

be the maximal number such that

1. �j(�k) and �j(�0k+1) are linearly ordered, and

2. �1j �
opp
i �j(�0k+1).

De�ne �k+1 to be the maximal number for which �j(�k+1) �
opp
i �j(�0k+1). By

Theorem 1 and the �rst part of this proof it follows that ai;�j(�k) > ai;�2
j
for

all k, and if �j(�k) �
opp
i �1j , then ai;�j(�k) > ai;�2

j
. By the second part of

condition (??), there is a step k where �k = 1, that is, �j(�k) = �1j , hence
the theorem. �

Remark Theorem 3 holds under weaker conditions than (??){2. All we
need is that for each � there is a segment [�1; �2] with nonempty interior
containing � such that �j(�1) and �j(�2) are linearly ordered by �opp

i .

4 Discussion

This section discusses some possible questions and objections that relate to
our model.

6Here e�
�
denote strategies in the two-step extension game G�.
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In what sense is this model different from standard game the-
ory? One possible response to this question is that the present model per-
mits players to use strategies that are dominated with respect to their sel�sh
payo�s in equilibrium. It is straightforward to construct preferences over
strategies, consistent with our assumptions, that permit the joint coopera-
tion outcome to be an equilibrium in the prisoner's dilemma.7 Intuitively,
cooperation is a way of responding nicely to nice behavior.

Precisely the same prediction would follow, however, if we rede�ned the
payo�s associated with outcomes, and use standard game theory. For exam-
ple, if we treat the players in the prisoner's dilemma as risk-neutral agents
who maximize monetary payo�s, the game matrix may look like

3; 3 0; 4
4; 0 1; 1

However, if we permit more general preferences over outcomes, for example,
if preferences are over payo� distributions, then the strategic environment
may be represented by

3; 3 0; 0
0; 0 1; 1

(In this example, both players' utilities are functions of the joint income
distribution, and are given by ui(xi; xj) = uj(xi; xj) = minfxi; xjg).

Our approach does more than can be done by simply rede�ning prefer-
ences over outcomes. The following example demonstrates that, in contrast
to standard game theory, if a strategy is a unique best response to every pure
strategy, then it need not be a dominant strategy. Consider the following ex-
ample.

15,30 9,10
20,20 10,20

The players are going to cook dinner together. Player i will bring the main
course, either beef (U) or pheasant (D). Player j will bring the wine, either
red (L) or white (R). Player i prefers red wine to white and pheasant to beef.

7The standard equilibrium outcome would continue to be an equilibrium.
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Player j prefers to drink red wine with beef, but hates a beef-white wine
menu. If the weight that player i gives to player j's utility when j brings
red wine is su�ciently positive (greater than 1

2
), then the optimal response

of player i to red wine is to supply beef. On the other hand, if player j
brings white wine, player i will give j's utility a negative weight, and if it is
su�ciently negative (that is, less than � 1

10
), he will \punish" her by making

her eat beef with the wrong wine. Under standard analysis, this means that
player i should always play U. However, if player j uses a non-degenerate
mixed strategy, player i may give j's utility zero weight, and eat pheasant. If
player j always places zero weight on her opponent's utility, then we get two
Nash equilibria, one is up{left, the other is down for player i and a mixed
strategy (say 1

2
� 1

2
) for player j.

It is easy to verify that such a set of equilibriumpoints cannot be obtained
under standard game theory.

Maybe it is better to extend the set of strategies and as-
sume a violation of the reduction of compound lotteries axiom
(RCLA)? Suppose we consider all mixtures as pure strategies. That is, strat-
egy s� for player i is \play a lottery where with probability � you choose
beef, and with probability 1 � � you choose pheasant." Similarly, strategy
� for player j is to play a lottery where with probability t� she will bring
a bottle of white wine, and with probability 1 � � she will bring a bottle
of red wine. Of course, if player i is indi�erent between the mixed strategy
\s� with probability p and s�0 with probability 1� p" and the pure strategy
sp�+(1�p)�0, then this extra structure will make no di�erence. So assume that
this last indi�erence is (sometimes) violated. In other words, assume that
players' preferences violate RCLA.8

Permitting arbitrary violations of RCLA would provide an alternative
explanation of the pheasant-beef example. There is no systematic theory of
violations of RCLA that would account for the example, however. Indeed,
although many experiments show widespread violations of the reduction of

8For models where decision makers violate the reduction of compound lotteries axiom,
see Kreps and Porteus [32], or Segal [43]. As Kreps and Porteus show, violations of the
reduction axiom do not imply violations of expected utility within each stage. Of course,
preferences over two or more stages must violate expected utility. For an example where
at each stage the preferences can be represented by the same expected utility functional,
but not between the stages, see Segal [43, Exp. 1].
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compound lotteries axiom (see references in [43]), all experiments that we
know show nonindi�erence between

1. A lottery that yields with probability pk a ticket to a lottery that yields
xk with probability 1, k = 1; : : : ;m.

2. A lottery that with probability 1 yields a ticket to a lottery that with
probability pk pays xk, k = 1; : : : ;m.

In other words,9 the pure strategy s0:5 must be indi�erent in player i's prefer-
ences to the mixture (s1;

1
2; s0;

1
2). So even if we now have two pure-strategies

equilibria (s1; t1) and (s0; t0:5), there is still the mixed strategy equilibrium
where player i plays down, and player j plays left or right with probability
1
2 each. As before, s1 is the unique best response to both pure strategies of
player j, but there exists an equilibrium in which player i uses his other pure
strategy.10

Are there solutions to games that cannot be explained by this
model? In other words, is this model at all restrictive? Yes. Consider a 2�2
game of two players, and suppose that the following are equilibrium points
of this game (the pair (pi; pj) means that player k plays s1k with probability
pk, k = i; j): (1; 0:5), (0; 0:5), (0:5; 1), (0:5; 0). It follows that if player i plays
0:5, then j's best response includes 0 and 1, hence by Axiom IND, it must
also include 0:5. Likewise, if j plays 0:5, i's best response must include 0:5,
hence (0; 5; 0:5) is also an equilibrium.

Is this model sensitive to the choice of the utility functions?
In standard models, where players care only about their own utility, taking a
positive a�ne transformation of person i's utility will not change the nature
of the game. Since eq. (1) involves utility levels of more than one player, will
changing the vN{M utility index of a player change the nature of the game?
This turns out to be one of the major obstacles in social choice theory, where
one person's manipulation of utility may change the social optimum (see
Weymark [47]). Despite its similarity to Harsanyi's utilitarian framework,

9The requirement that the last two are always indi�erent is called time neutrality in
Segal [43].

10If the preferences over outcomes are not linear in probabilities, then we can explain the
example without our theory. For more on games with nonlinear utilities, see Crawford [14].
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our model does not su�er from this problem. It is straightforward to check
that if for k = i; j, euk = �kuk + �k with �k > 0, then the utility function
ui(�)+ai;�juj(�) represents the same preferences as eui(�)+ eaji;�j euj(�), whereeaji;�j = �i

�j
ai;�j .

Can this model be extended to more than two players? Tech-
nically yes. Suppose there are N players. Let � = (�1; : : : ; �N), and let
��i = (�1; : : : ; �i�1; �i+1; : : : ; �N ). By �xing the strategies of all players but
i and j, we can use the structure of this paper to conclude that player i
maximizes a function of the form

ui(�) +
X
k 6=i

aki;��i
uk(�)

When there are more than two players, new issues arise involving how to
de�ne preferences over opponents' strategies. Probably the most di�cult of
them is how should player i evaluate person j's utility, when person j is nice
to k but mean to `. We do not deal with these issues here.

5 Related Literature

There is a large literature that documents instances in which agents reward
kindness and punish nastiness in ways that are di�cult to explain using
conventional economic models of agents maximizing their material payo�s.11

This section describes some of this literature and indicates, informally, the
extent to which our approach is consistent with empirical �ndings.

11While this section discusses the relationship between the theoretical model and ex-
periments conducted by economists, we should note that anthropologists have contributed
several classic ethnographic studies describing exchange in non-market societies (Mali-
nowski [35], Mauss [36], Sahlins [42], and Service [46]). These works have rich discuss
reciprocal behavior in `primitive' cultures. While economic theorists would be tempted
to use repeated games to explain many of the observations because reciprocity arises in
the context of repeated, non-anonymous interaction, some examples, in particular Mali-
nowski's discovery that reciprocity occurs through extended and indirect chains, suggest
an explanation based on non-sel�sh preferences would be less contrived. Gintis [23] reviews
further evidence from other disciplines.
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Many papers have been written on the ultimatum game and its simpler
relation, the dictator game.12 In the ultimatum game, one player o�ers a
division of a �xed surplus, and the other player can either accept or reject.
If it is accepted, player one's o�er determines material payo�s for both play-
ers. Otherwise, neither player receives anything. In the dictator game, the
second player must accept the �rst player's o�er. Experiments �nd that the
�rst player o�ers a positive amount to the second player in dictator games
(amounts are sensitive to how the game is framed), and that in ultimatum
games the �rst player o�ers even more, with the second player rejecting rel-
atively small o�ers. Informal notions of fairness appear to play a role in
the experiments (with equal division given prominence that it would not
receive in a conventional theory). If the second player can make a counter-
proposal after rejecting the initial o�er, disadvantageous countero�ers (o�ers
in which player two rejects player one's o�er only to make a countero�er that
yields him a lower monetary payo� than the rejected o�er) arise (Ochs and
Roth [37]). If agents have preferences that are described by eq. (1), then
disadvantageous countero�ers arise for the same reason that unfair o�ers are
rejected in the ultimatumgame: In response to a nasty strategy, a player puts
negative weight on his opponent's material payo� and is therefore willing to
sacri�ce his own material payo� in order to reduce his opponent's material
payo�.

In models of gift exchange,13 the second agent to move rewards behav-
ior that is kind and, to a greater extent, punishes unkind behavior. The
moonlighting game of Abbink, Irlenbusch, and Renner [2] is a paradigmatic
example. Player one �rst decides on a transfer to player two. The trans-
fer can be positive or negative. Positive transfers to player two are tripled
(for every $1 player one donates, player two receives $3). The second player
observes the �rst player's decision and can either reward or punish the �rst
player. Rewards to player one are tripled. However, in order to reduce player
one's payo� by $1, player two must sacri�ce $1. In the unique subgame per-
fect equilibrium for this game (when players are motivated solely by their
material payo�s), player two neither rewards nor punishes player one (be-

12References include: Bolton [7], Bolton and Zwick [9], Camerer [11], Costa-Gomes and
Zauner [13], Eckel and Grossman [16], G�uth [24], G�uth, Schmittberger, and Schwarze [25],
Ho�man, McCabe, and Smith [29, 30], and Roth [40].

13Experimental studies include Abbink, Irlenbusch, and Renner [2], Berg, Dickhaut, and
McCabe [5], Fehr and G�achter [17], and Fehr, G�achter, and Kirchsteiger [18].
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cause both actions are costly, but yield no material gain), while player one
takes the maximumpossible amount from player two. In experiments, player
one typically makes a positive transfer to player two. Player two tends to re-
ward positive transfers and punish negative ones. The results are consistent
with equilibrium behavior under the assumptions that player two places a
negative weight on player one's material payo� when player one takes money
from player two and places a positive weight on player one's material payo�
when one gives money to two.

There are games in which experimental results are more consistent with
the predictions of equilibrium behavior of sel�sh players.14 Games that op-
erate like markets or auctions tend to replicate conventional equilibrium pre-
dictions for two reasons. First, the predictions of market models remain
valid if only a small number of participants in the model behave sel�shly.
Since experimental results con�rm the existence of some individuals that be-
have sel�shly, the outcomes are consistent with other market participants
having a preference for reciprocity. Second, in some games the kindness or-
dering �i is likely to be degenerate. For example, in the best-shot game
in which two players sequentially make contributions ci and material payo�s
are f(max(c1; c2)) � ci, for f(�) increasing and f 0(0) > 1, the theoretical
prediction that player one makes no contribution and player two's contribu-
tion solves: maxc2 f(c2)� c2 is consistent with experimental �ndings. These
�ndings are also consistent with a model in which agents have a preference
for reciprocity. Partial contributions from player one do not inuence player
two's maximumpayo�, so our theory would not predict that player two would
sacri�ce material payo� in order to punish player one if player one contributes
nothing.

Interesting attempts to explain these �ndings using models of learning
and bounded rationality15 or cognitive psychology (for example, Jacobsen

14Andreoni [3], Andreoni, Brown, and Vesterlund [4], Harrison and Hirschleifer [26], Led-
yard [33], and Prasnikar and Roth [38] perform and or describe some of these experiments.

15Evolutionary models (for example, Gale, Binmore, and Samuelson [21]) and learning
models (for example, Roth and Erev [41]) are useful ways to understand some of the
experimental results. These models provide useful explanations of the failure to play
the subgame perfect equilibrium in ultimatum games, but are less able to explain why
agents make disadvantageous counterproposals in multi-period bargaining games. Abbink,
Bolton, Sadrieh, and Tang [1] describe experiments that suggest fairness considerations
better explain outcomes in experimental ultimatum games than learning models.
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and Sadrieh [31]) contribute ideas that complement our approach. Most re-
lated to our approach, however, are models that assume equilibrium behavior
of optimizing agents, but relax the assumption that agents seek to maximize
their material utility. Bolton and Ockenfels [8],16 Fehr and Schmidt [19],
Levine [34], and Rabin [39] introduce models of this kind. The main contri-
bution of our paper is that it provides an axiomatic foundation for using ex-
tended preferences of this sort in strategic settings; the other papers provide
no formal justi�cation for the functional forms that they use. The di�erent
papers provide similar, but distinct, predictions. It may be useful to contrast
the approaches. Bolton and Ockenfels [8] and Fehr and Schmidt [19] present
models in which agents have preferences that exhibit inequality aversion. In
these models, agents are willing to sacri�ce their own material payo� if by
doing so they obtain a payo� that is closer to (some measure of what) other
agents receive. In contrast to our approach, therefore, one player's prefer-
ences do not depend on the intentions of his opponents. Provided that it is
possible to identify the comparison group to which an individual compares
his payo�, it should be possible to distinguish the predictions between these
theories and ours.17

The intentions of other players are important in Rabin's [39] model.
He uses the theory of psychological games (Geanakoplos, Pearce, and Stac-
chetti [22]) to allow beliefs about an opponent's intentions to determine an
equilibrium. Our approach demonstrates that intentions can be included in
a game-theoretic analysis without using psychological games. Rabin makes
restrictive assumptions about the weight that one player places on his oppo-
nent's utility.18 Under these assumptions, he is able to derive some general
properties of the fairness equilibria that he studies. These properties would
not hold universally in our model.

Rabin explicitly assumes that an agent cares about his opponent's ma-
terial payo� only as a response to intentions. For this reason, his approach

16Bolton [7] introduces a related approach.
17Experiments conducted by Blount [10] and Charness [12] �nds evidence for reciprocal

behavior in situations where �rst-move in ultimatum and gift-exchange games are ran-
dom. These results suggest that the desire to reciprocate is not simply a response to an
opponent's intentions.

18The functional forms Rabin chooses to describe fairness reduce his model's ability to
explain some observations. Hausman [28] argues that Rabin's approach does not provide
a satisfactory prediction in gift-exchange models.
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can be distinguished from the inequality aversion models of Bolton and Ock-
enfels [8] and Fehr and Schmidt [19] or from our approach, which places few
restrictions on the weight placed on opponent's utility. Nothing prevents a
combination of the two approaches, however.

Rabin's use of psychological games permits his model to include one qual-
itative phenomena that would not arise using our approach. His paper pro-
vides an example of a game in which a player could use the same strategy in
two distinct strict psychological equilibria. This cannot happen using con-
ventional Nash equilibrium. In his analysis of the battle of the sexes, there
are two strict equilibria in which j plays right. What is peculiar about this
is that up is a strict best response to right in one situation, but down is a
strict best response to right in another. This can happen for Rabin because
in psychological games expectations matter. So, if i thinks that j is playing
right because j thinks that i is playing down, then i thinks that j is being
nice, and is willing to be nice (and play down). If i thinks that j is playing
right because j thinks that i is playing up, then i thinks that j is being nasty,
and is willing to be nasty (and play up).

In Levine's [34] model, the weight a player places on his opponents' mate-
rial payo�s depends on what he thinks opponents' preferences are. Levine's
players are inclined to make material sacri�ces to bene�t agents they be-
lieve to be altruistic and to harm agents they believe to be spiteful. These
preferences do not depend on the behavior of opponents | unlike our ap-
proach the weight placed on opponents' strategies does not depend on the
opponents' strategy choice. It should therefore be possible to identify the
preferences of the agents in Levine's model using information from behavior
in non-strategic settings.

The functional forms used by Bolton and Ockenfels [8], Fehr and Sch-
midt [19], and Rabin [39] all permit an explicit comparison between one
player's payo�s and those of his opponents'. In this way, these models incor-
porate informal notion of fairness into their analyses. Some kind of fairness
seems necessary to explain the prominence of particular distributions (for
example, equal division) across experimental studies. Our approach does
not restrict the way in which relative material payo�s inuence aGi;�j . Hence,
we cannot explain the prominence of equal-division outcomes in ultimatum
games without making further restrictions to our theory.19

19The linear speci�cation of inequality aversion used in Fehr and Schmidt [19] lacks the
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Appendix A: A Numerical Example

This section provides an example to demonstrate the consistency of our main-
tained assumptions. Let ai;�j represent the relation �

opp
i over �j, such that

1. 8�j, ai;�j 2 [�1; 1], and

2. 9�j such that ai;�j = 0.

For example, let �1j �
opp
i �2j i� max�i ui(�i; �

1
j ) > max�i ui(�i; �

2
j ), and let

ai;��
j
=

2 exp
�
max
�i

ui(�i; �
�
j )
�

exp
�
max
�j

max
�i

ui(�i; �j)
� � 1

Lemma 3 Let �1i �i;�j �
2
i i�

ui(�
1
i ; �j) + ai;�juj(�

1
i ; �j) > ui(�

2
i ; �j) + ai;�juj(�

2
i ; �j)

where ai;� represent �
opp
i on �j. Then the Reciprocal Altruism axiom is sat-

is�ed.

Proof Conditions (a){(c) of the axiom imply:

(a) For strategies as in the axiom,

(i) ui(�1i ; �
1
j ) = ui(�2i ; �

2
j ).

(ii) uj(�1i ; �
1
j ) = uj(�2i ; �

2
j ).

(iii) ui(��1i ; �
1
j ) = ui(��2i �

2
j ).

(iv) uj(��1i ; �
1
j ) = uj(��2i ; �

2
j ).

(b) ai;�2j > ai;�1j .

(c) ui(�1i ; �
1
j ) + ai;�1juj(�

1
i ; �

1
j ) = ui(��1i ; �

1
j ) + ai;�1juj(��

1
i ; �

1
j ).

ability to describe the dispersion of o�ers typically observed in ultimatum games even
when players are assumed to have heterogeneous preferences, but non-linear speci�cations
are exible enough to �t the data.
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We want to show that �2i �i;�2j
��2i i� uj(�2i ; �

2
j ) > uj(��2i ; �

2
j ). By the

de�nition of �i;�2
j
and by (a-i) and (a-iii),

�2i �i;�2j
��2i ()

ui(�
2
i ; �

2
j ) + ai;�2

j
uj(�

2
i ; �

2
j ) > ui(��

2
i ; �

2
j ) + ai;�2

j
uj(��

2
i ; �

2
j )()

ui(�
1
i ; �

1
j ) + ai;�2juj(�

2
i ; �

2
j ) > ui(��

1
i ; �

1
j ) + ai;�2juj(��

2
i ; �

2
j )

Subtract (c) from the last inequality to obtain, together with (a-ii) and (a-iv),
that

[ai;�2
j
� ai;�1

j
]uj(�

2
i ; �

2
j ) > [ai;�2

j
� ai;�1

j
]uj(��

2
i ; �

2
j )

Which is equivalent to

[ai;�2
j
� ai;�1

j
][uj(�

2
i ; �

2
j )� uj(��

2
i ; �

2
j )] > 0

It is therefore su�cient to prove that ai;�2j > ai;�1j , which follows by (b). �
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