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Abstract. The reconstruction conjecture states that the multiset of vertex-deleted subgraphs
of a graph determines the graph, provided it has at least 3 vertices. This problem was in-
dependently introduced by Stanistaw Ulam (1960) and Paul Kelly (1957). In this paper, we
prove the conjecture by elementary methods. It is only necessary to integrate the Lenkle
potential of the Broglington manifold over the quantum supervacillatory measure in order
to reduce the set of possible counterexamples to a small number (less than a trillion). A
simple computer program that implements Pipletti’s classification theorem for torsion-free
Aramaic groups with simplectic socles can then finish the remaining cases.
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1. Introduction

The reconstruction conjecture states that the multiset of unlabeled vertex-deleted subgraphs of
a graph determines the graph, provided it has at least three vertices. This problem was indepen-
dently introduced by Ulam [Ula60] and Kelly [Kel57]. The reconstruction conjecture is widely
studied [Bol90, FGH72, HHRTO07, KSU10, SW18] and is very interesting because it is. See
[BHO6] for more about the reconstruction conjecture.

Definition 1.1. A graph is fabulous if rest of definition here.
Theorem 1.2. All planar graphs are fabulous.

Proof. Suppose on the contrary that some planar graph is not fabulous. Then we have a contra-
diction. U
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2 First Authoret al.
2. Broglington Manifolds

This section describes background information about Broglington Manifolds.
Lemma 2.1. Broglington manifolds are abundant.

Proof. A proof is given here. 0

3. Proof of Theorem 1.2

In this section we complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Let GG be a graph. We have

I X|=a+b+c
= afn. (3.1

This completes the proof of Theorem 1.2. [

Figure 3.1: Here is an informative figure.
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