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ABSTRACT
Molecular dynamics simulations of intrinsically disordered proteins (IDPs) can provide high resolution structural ensembles if the force
field is accurate enough and if the simulation sufficiently samples the conformational space of the IDP with the correct weighting of sub-
populations. Here, we investigate the combined force field–sampling problem by testing a standard force field as well as newer fixed charge
force fields, the latter specifically motivated for better description of unfolded states and IDPs, and comparing them with a standard tem-
perature replica exchange (TREx) protocol and a non-equilibrium Temperature Cool Walking (TCW) sampling algorithm. The force field
and sampling combinations are used to characterize the structural ensembles of the amyloid-beta peptides Aβ42 and Aβ43, which both
should be random coils as shown recently by experimental nuclear magnetic resonance (NMR) and 2D Förster resonance energy transfer
(FRET) experiments. The results illustrate the key importance of the sampling algorithm: while the standard force field using TREx is in
poor agreement with the NMR J-coupling and nuclear Overhauser effect and 2D FRET data, when using the TCW method, the standard
and optimized protein-water force field combinations are in very good agreement with the same experimental data since the TCW sampling
method produces qualitatively different ensembles than TREx. We also discuss the relative merit of the 2D FRET data when validating struc-
tural ensembles using the different force fields and sampling protocols investigated in this work for small IDPs such as the Aβ42 and Aβ43
peptides.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5078615

INTRODUCTION

Intrinsically disordered proteins (IDPs) are a class of
biomolecules that do not adopt a well-defined equilibrium struc-
ture in solution, instead sampling an ensemble comprised of
sub-populations of fully and/or partially disordered structures.1,2

A classic IDP example is the amyloid-β (Aβ) peptide associ-
ated with Alzheimer’s disease,3 for which recent state-of-the-art
solution-based nuclear magnetic resonance (NMR) and Förster res-
onance energy transfer (FRET) experiments have shown that the
monomeric forms of the Aβ40 and Aβ42 peptides are largely ran-
dom coils.4–6 Roche and co-workers performed multiple types of

J-coupling measurements on Aβ40 and Aβ42 to show there were no
overt differences from random coil signatures for both peptides.5
They further supported this result with very high resolution Nuclear
Overhauser effect (NOE) spectra that showed that both Aβ40 and
Aβ42 are dominated by short (i, i + 1 contacts) and to a lesser
extent medium range (i, i + 2 to i, i + 4 contacts) NOEs, and
thus, any longer-range helical or β−hairpin formation would only
be expected to appear at levels below the detection limit.5 Conicella
and Fawzi employed 1HN and 15N chemical shift data and HN-Hα
J-couplings, as well as 15N R2, 15N R1, and heteronuclear 15N−1H
NOE measurements, to show that there are no structural differences
in the N-terminus and central hydrophobic core (CHC) between the

J. Chem. Phys. 150, 104108 (2019); doi: 10.1063/1.5078615 150, 104108-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5078615
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5078615
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5078615&domain=aip.scitation.org&date_stamp=2019-March-14
https://doi.org/10.1063/1.5078615
https://orcid.org/0000-0003-3090-1240
https://orcid.org/0000-0003-2731-5777
https://orcid.org/0000-0003-0025-8987
mailto:thg@berkeley.edu
https://doi.org/10.1063/1.5078615


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Aβ42 and Aβ43 peptides, with only small structural differences in
the C-terminus.4 Since the two peptides differ only by a threonine
residue at the C-terminus, it implies that the Aβ43 monomer is also
largely random coil-like in structure, albeit with a greater propen-
sity for aggregation.4 Finally, using a single molecule and 2D FRET,
Meng et al.6 showed that both Aβ40 and Aβ42 have ensembles that
are dominated by expanded conformations with no persistent sub-
populations of secondary or tertiary structure (i.e., no long helices
or β sheets above ∼5%-10% population), in general agreement with
the NOE spectra of Roche et al.

Computational techniques are often combined with such
experimental information to create the structural ensemble and to
characterize the sub-populations of an IDP of interest.7–10 A com-
plementary approach is to generate IDP ensembles using molecu-
lar dynamics (MD) simulation without experimental information as
input, which therefore requires an accurate force field and a sam-
pling method that can describe the conformational substates of the
IDP ensemble. In early simulation studies of IDPs, research groups
relied on off-the-shelf and pairwise-additive protein and water
force fields,11 such as the Amber,12 GROMOS,13 OPLS-AA,14,15

and CHARMM16 protein force fields in combination with TIP3P,17

TIP4P,18 and TIP4P-Ew19 water models. But since standard pair-
wise additive force fields are parameterized using mostly folded pro-
tein crystallographic data,20 they have been thought to be insuffi-
cient for modeling of IDPs because they exhibit a bias toward overly
collapsed and ordered structural ensembles or poorly reproduce the
equilibrium between unfolded and native conditions for globular
proteins.21–23

Furthermore, multiple groups have shown that unfolded and
IDP structural ensembles generated using different standard force
fields vary considerably in terms of secondary structure con-
tent.24–27 For example, in studies of the Aβ16-22 peptide, Nguyen
et al. have demonstrated that Amber99 predicts more helical struc-
tures and GROMOS9628 favors more β-strand structures, whereas
OPLS-AA demonstrates no particular secondary structure prefer-
ence.24 As we have discussed before, the quality of the water model
is also critical for accurate molecular simulations of peptides and
proteins by balancing the relative strengths of water-water and
water-solute interactions.29 Several groups including Song and co-
workers,30 Amini and co-workers,31 and Viet and co-workers32

have conducted straight MD simulations on Aβ peptides on the
order of microseconds with standard protein force fields and using a
variety of three-site and four-site water models and multiple start-
ing structures. Using brute force MD, Robustelli and co-workers
simulated Aβ40 using a single 30 µs trajectory of a standard pro-
tein force field Amber99ffsb-ildn∗ and TIP3P and found close to
90% β−sheet structure in different regions of the sequence.33 In
general, all of these simulations produce overstructured ensembles,
in disagreement with the experimental results of Roche et al.5 and
Meng et al.6 for Aβ peptides. One might surmise from the accu-
mulation of evidence that the standard force fields for the protein
and water are failing to describe disordered or unfolded protein
ensembles.

To make better and more uniform predictions across different
IDPs, as well as more accurate models for protein folding equilib-
rium, a number of research labs have modified the parameters used
in standard force fields.21–23,27,34,35 These force field modifications
include adjusting the water-protein London dispersion interactions

to be more favorable,21,22 refining the peptide backbone parameters
to produce more expanded structures22,23,34 or reduce propensity
to certain ordered conformations,21 and/or changing the salt-bridge
interactions.21 Skepö and co-workers, using long MD simulations,
have shown that some of these modified force fields produce better
agreement with experimental small-angle x-ray scattering (SAXS)
data in terms of radius of gyration, Rg , for the disordered histatin
5 peptide.36,37 Huang et al.21 also found better agreement with the
SAXS profile for the RS peptide using the modified CHARMM force
field. However, Robustelli et al. simulated Aβ40 with a single 30 µs
trajectory for the recently modified A03ws force field by Best and co-
workers38 and found close to 25%-60% α−helix in large regions of
the sequence that indicate that the newer IDP force fields may also
be experiencing problems.33

But the other important and often not enough emphasized
aspect of generating IDP structural ensembles is the sampling tech-
nique itself. Because IDPs have a relatively flat energy landscape
with many local minima, it takes substantial sampling efficiency to
determine all relevant configurations with the correct weighting of
multiple small sub-populations. Enhanced sampling methods are
therefore generally applied for the simulation of IDPs, as they accel-
erate the rate of convergence to time scales that are significantly less
than possible with a brute force MD simulation.39,40 The most com-
mon enhanced sampling technique used in the IDP field at present
is the temperature replica exchange (TREx) method.39–43 In fact,
TREx simulations were used to identify perceived errors in standard
force fields, which led to some of the modified force fields developed
to improve modeling of unfolded proteins and IDPs.26,27,38,44

However, a noted deficiency of TREx for large systems is
the diffusiveness of barrier crossing due to many closely spaced
intermediate replicas when energy landscapes are dominated by
entropic barriers.39,45,46 Several alternative enhanced sampling
methods with better performance than TREx have been developed
and applied to the study of IDPs, including replica exchange with
solute tempering (REST),47 metadynamics,48 and MD combined
with the Markov State Model (MSM) analysis.49 More specifically,
Lin et al.49 performed ∼200 µs MD simulations over many ini-
tial conditions, and combined it with MSM to reach even longer
time scales, to characterize the Aβ42 structural ensemble using the
Amberff99SB protein force field and the TIP3P water model. Over
this much longer sampling time scale, they obtained far higher quan-
tities of extended, largely unstructured conformations, with the only
noteworthy structural component being ∼10%–20% observed heli-
cal content between residues 12-18. While there may be concerns
that the clustering protocols may have introduced error in secondary
structure populations, and improved clustering methods are now
available,88 it is evident that the full weighted ensemble based on
the MSM is equivalent to the raw α-helix and β propensities from
their production MD runs (as seen in their supplementary mate-
rial). Thus, this more extensive sampling produced a significant
improvement in generating random coil ensembles using a standard
peptide-water force field, in good agreement with the experimental
results of Roche et al.5 and Meng et al.6 for Aβ peptides and in sig-
nificant disagreement with previous shorter MD runs33 and TREx
studies.26,27,38,44

We have developed the temperature cool walking (TCW) tech-
nique,46,50 a non-equilibrium alternative to TREx, which uses only
one high temperature replica to generate trial moves for the target
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temperature replica. In previous studies, we have shown that TCW
converges more quickly to the proper equilibrium distribution
than TREx, and at much lower computational expense, for a 1D
rough surface46 and for alanine dipeptide and met-enkephalin—
sufficiently small systems where well-defined and quantitative met-
rics of convergence are available.50 More recently, we have been
able to apply TCW to larger systems such as Aβ through its imple-
mentation in OpenMM.50,51 In this work, we address both dimen-
sions of the IDP problem by comparing different combinations
of enhanced sampling techniques, TREx and TCW, and protein-
water force fields, unmodified and newly optimized, testing combi-
nations of each on Aβ42 and Aβ43. Again summarizing the recent
experiments,4–6 the structural ensembles of Aβ42 and Aβ43 pep-
tides should be largely the same and exhibit no persistent struc-
tural ordering or long-range contacts. Thus, one would expect the
computationally generated structural ensembles to be highly simi-
lar for Aβ42 and Aβ43 in terms of back-calculations to experimental
observables such as chemical shifts or J-couplings4,5 and that both
peptides would display largely random coil configurations, lacking
stable populations of organized structures such as β−hairpins and
extended helices, to agree with reported NOE4,5 and 2D FRET6 data
for Aβ.

Among our set of results, we attain the biggest improvement in
IDP ensemble generation by switching the sampling method from
TREx to TCW, since the latter sampling algorithm provides much
better agreement with the full range of NMR J-coupling and NOE
data4,5 as well as with the 2D FRET data,4–6 compared to the same
force fields simulated with TREx. More specifically, the unmodi-
fied force field when sampled with TCW yields Aβ ensembles that
are largely unstructured, in qualitative agreement with the robust
MD/MSM simulation49 of the Aβ42 peptide using a similar unmod-
ified force field, with only small populations of structures contain-
ing longer-range contacts at levels (∼5%-10%) that would be unde-
tectable by the NOE and 2D FRET experiments. We believe that the
presented evidence supports the conclusion that TCW is more capa-
ble than TREx of sampling the disordered protein energy landscape
and is in support of recent work by Granata and co-workers that
have shown that disordered conformations are lower in free energy
than ordered structures.52 Finally, using the TCW sampling proto-
col, we find that the newly modified force fields do produce more
extended ensembles that are in better quantitative agreement with
the 2D FRET data, whereas the standard force field is in better quan-
titative agreement with the NMR J-coupling data. We conclude that
more work is needed in regard to interpreting FRET data6,53–57 and
more extensive testing in general is needed before standard force
fields are abandoned or more force field changes are pursued for
IDPs.

METHODS
Peptide simulations

The starting Aβ42 and Aβ43 configurations were created using
the tleap module in Amber,58 and the peptides were subsequently
minimized and equilibrated in the NPT ensemble at 1 bar to obtain
the correct density. Structures at the density of maximum prob-
ability were selected as initial structures for production, produc-
ing boxes that were approximately 60 Å on each side. The Ewald

summation was used for the long-range with a cutoff of 9.0-9.5 Å for
the real space electrostatics and Lennard-Jones forces. Trajectories
were analyzed for results at 287 K.

TREx simulation protocol

The Amber14 molecular dynamics package58 was used to per-
form 100 ns TREx simulations with 58 temperature replicas in the
temperature range 287-450 K, testing both peptides with (1) the
Amber ff99SB12 force field with TIP4P-Ew19 water and (2) the
CHARMM36m21 force field with CHARMM-TIP3P water.16 The
temperature schedule was chosen such that the exchange probability
between each pair of replicas was in the range 18%-22%, which has
been shown to be optimal for TREx.59 Exchanges between neigh-
boring replicas were attempted every 0.5 ps. The TREx simulations
were performed in the NVT ensemble with a time step of 1 fs and
with constraints on the heavy atom hydrogen bonds. A Langevin
thermostat was used to maintain a constant temperature. Each set
of conditions—peptide + force field + water model—was run in
duplicate. The first 50 ns of data was discarded as equilibration,
with the last 50 ns being analyzed and presented, averaged across
the two independent simulations. TREx simulations with this setup
were also attempted for the Amber ff99SB-ILDN22,60 force field with
TIP4P-D22 water, but using the same temperature ladder and sim-
ulation package, we were unable to obtain similar exchange proba-
bilities across the entire temperature span. As we could not run an
optimal TREx simulation with this force field combination, no data
are presented for this simulation setup.

Over the last several years, several groups have run much longer
TREx simulations for IDPs, on the order of 750–1000 ns, noting that
even when optimally run, structural properties such as the radius
of gyration and secondary structure propensities can take several
hundred ns to reach apparent equilibration in TREx.6,44,61,62 To
evaluate this difference, we additionally performed one 800 ns TREx
simulation each for Aβ42 and Aβ43 using Amber ff99SB + TIP4P-
Ew water using the Amber16 molecular dynamics package.63 All
parameters were kept the same as in the original 100 ns TREx sim-
ulations with the exception of using a 2 fs time step and attempting
exchanges between adjacent pairs of replicas every 1 ps. For these
simulations, the first 300 ns of data was discarded as equilibration,
with the last 500 ns of data at 287 K analyzed. Averaging over two
250 ns blocks was done to mimic the averaging over two indepen-
dent simulations performed for the 100 ns TREx simulations and
the TCW simulations.

TCW protocol

The TCW enhanced sampling method uses only two temper-
ature replicas to generate an equilibrium ensemble at the target
temperature.46,50 Starting with expanded structures at the high tem-
perature, sequential cooling is performed to obtain structures at the
low temperature such that detailed balance is satisfied. The same
set of maximum and minimum temperatures and cooling sched-
ule was used as for all TREx simulations. The temperature was
regulated using an Andersen thermostat. Trial moves were initi-
ated every 8 ps. The cooling rate was set such that the peptides
spent 40 fs on average at each intermediate temperature, with the
first trial exchange per cooling run occurring after having annealed
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through 40 of the 56 intermediate temperature steps on average.
Additional high temperature replica propagation was performed to
further decorrelate subsequent configurations at a ratio of 8:1 to
each fs of annealing performed. TCW simulations were performed
using modifications to the OpenMM software package,64 and a code
is available upon request from the authors. TCW simulations were
performed with the (1) Amber ff99SB force field + TIP4P-Ew water
model, (2) CHARMM36m force field + CHARMM-TIP3P water,
and (3) Amber ff99SB-ILDN force field + TIP4P-D water. Simula-
tions were run in duplicate for 200 ns, with the first 50 ns of each
discarded as equilibration and results from the remaining 150 ns of
each simulation averaged together.

Trajectory analysis

The structural ensembles were analyzed using both the
cpptraj65 module of Amber and in-house codes. Contact maps were
generated by calculating the fraction of structures where pairs of
residues had at least one pair of heavy atoms within 5 Å of each
other. The DSSP criterion was used to assign secondary struc-
tures.66 Details about the back calculation of NMR observables
have been reported in previous publications by our group,10,29,67,68

including chemical shifts from ShiftX269 and J-coupling con-
stants.70 In this work, we focus primarily on J-couplings using the
Karplus equation

⟨J⟩ = ⟨A cos2� + B cos� + C⟩, (1)

where ⟨. . .⟩ denote ensemble averages. We calculate the χ2 param-
eter from the simulated J-coupling constants ( JHN-Hα) for each
ensemble as compared to the experiment,

χ2 = 1
N

N
∑
i=1

(⟨Ji⟩sim − Ji,expt)
2

σ2 , (2)

where Ji is the scalar coupling constant for the ith residue, N is
the total number of experimental JHN-Hα observables, subscripts sim
and expt refer to the simulated and the experimental values, respec-
tively, and σ2 is the RMSD error when using the Karplus parameters
introduced by Vögeli et al.71 We additionally perform a Bayesian
analysis on the scalar couplings, Experimental Inferential Structure
Determination (EISD),72 that accounts for uncertainties in the val-
ues of the Karplus parameters as well as the individual per-coupling
experimental uncertainties. The relative magnitudes of ensemble
scores for a peptide represent the relative likelihood of that structural

FIG. 1. Comparison of structural properties for Aβ42 and Aβ43 using the force field Amber99SB + TIP4P-Ew and using TREx simulated at 0.1 µs/replica. (a) Contact maps,
(b) β−strand and helix propensities, and (c) turn propensity and radius of gyration distribution. For (b) and (c), blue lines are for Aβ42 and red lines are Aβ43 and represent
the average for two independent trajectories. Error bars are plus and minus one standard deviation of the calculated propensity at the given residue for the two trajectories
and generally represent the degree of agreement between the two trajectories.
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ensemble matching the experimental data against which they
are compared with a larger score corresponding to a higher
probability.

The observable directly obtained in MD simulations of the
FRET experiments, the efficiency distribution E(t),

EFRET =
1

1 + (Ree/R0)6 , (3)

and its average EFRET , is back-calculated from the simulated end-to-
end distance, Ree of the untagged peptide across the ensemble, with a
Förster radius R0 = 5.2 nm for the dye pair of Alexa 488 and 647.6 As
in the work of Meng et al., the Ree is first calculated as the distance
between the Cα atoms of the first and last residue of each peptide
and then scaled up to approximate the additional distance between
the two fluorophores, relative to the distance between the first and
last residues.

RESULTS

We tested five different force field-sampling combinations for
each of the two peptides: (1) duplicate TREx simulations using the

standard Amber ff99SB12 protein force field and the TIP4P-Ew19

water model, (2) duplicate TREx simulations using the modified
CHARMM36m21 protein force field and the CHARMM-TIP3P16

water model, (3) duplicate TCW simulations using the standard
Amber ff99SB protein force field and the TIP4P-Ew water model
(4) duplicate TCW simulations using the modified CHARMM36m
protein force field and the CHARMM-TIP3P water model, and
(5) duplicate TCW simulations using the Amber ff99SB-ILDN60

protein force field and the TIP4P-D22 water model.
Figure 1 shows that the 0.1 µs TREx + Amber ff99SB + TIP4P-

Ew simulations predict that both peptides are very collapsed, as evi-
denced by their contact maps and Rg distributions, which originate
from the abundance of organized backbone structure that under-
lies the secondary structure propensities (Fig. 1 and Table I). In
addition, the Aβ42 and Aβ43 ensembles show significant differ-
ences, with the Aβ43 ensemble exhibiting an increased α−helical
structure in the central hydrophobic cluster (CHC) of residues
16-30, as well as increases in the turn populations at residues 36-
38 and the 6-9 region with a simultaneous increase in the β strand
formed by residues 3-5 and 10-12, structural sub-populations that
are greatly diminished (but still present) in the Aβ42 ensemble. This
result is in direct contradiction with results reported by Conicella

TABLE I. Simulated properties for the Aβ42 and Aβ43 peptides for each sampling method-force field combination. Mean and standard deviation averaged over two independent
trajectories, except for the 0.8 µs TREx simulation, where block averaging over two 250 ns blocks was used. We noted a systematic shift in J-couplings between the two
experimental datasets from Conicella and Fawzi4 and Roche et al.; we have applied a −0.4 Hz shift to the Aβ43 Ji values from Conicella and Fawzi before comparison which
would bring the Aβ42 results in line with each other to the simulated J-couplings.

Sampling method and force field combination

TREx (0.1 µs) TREx (0.1 µs) TREx (0.8 µs) TCW (0.2 µs) TCW (0.2 µs) TCW (0.2 µs)
+ TIP4P-Ew + CHARMM36m + Amberff99SB + Amberff99SB + CHARMM36m + Amber99SB-ILDN

Peptide + Amberff99SB + CHARMM-TIP3P + TIP4P-Ew + TIP4P-Ew + CHARMM-TIP3P + TIP4P-D

χ2 between simulated and experimental4,5 J-coupling constants

Aβ42 3.70 4.65 3.70 2.70 3.01 2.89
Aβ43 4.75 3.76 3.65 2.47 2.96 2.71

EISD score

Aβ42 39.479 3.858 40.014 57.833 47.741 54.937
Aβ43 23.234 25.090 36.530 47.488 39.328 45.338

Mean and standard deviation of the end-to-end-distance, ⟨Ree⟩ (in Å)

Aβ42 24.3± 0.6 39.3± 3.0 20.5± 1.7 28.4± 0.9 36.8± 1.3 33.5± 7.9
Aβ43 26.5± 3.5 44.4± 1.1 20.3± 0.7 29.1± 2.0 38.2± 1.3 31.9± 0.9

Mean and standard deviation of FRET efficiencies, ⟨EFRET⟩

Aβ42 0.93± 0.002 0.64± 0.084 0.96± 0.007 0.88± 0.009 0.71± 0.031 0.77± 0.150
Aβ43 0.92± 0.049 0.56± 0.001 0.97± 0.007 0.87± 0.034 0.69± 0.020 0.82± 0.004

Mean and standard deviation of the radius of gyration, ⟨Rg⟩ (in Å)

Aβ42 12.0± 0.3 17.2± 2.2 11.3± 0.0 12.9± 0.1 15.9± 0.5 14.9± 1.6
Aβ43 11.8± 0.6 17.8± 0.4 11.8± 0.1 13.2± 0.4 16.4± 0.2 15.7± 2.0
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and Fawzi,4 which showed that there are no major structural dif-
ferences in the N-terminus and CHC region for the two peptide
monomers.

When using the same TREx sampling method for 0.1 µs, but
changing to the CHARMM36m + CHARMM-TIP3P force field,
there is significant reduction in long-range structure and secondary
structure propensities for the two peptides, and hence, the ensembles
are less collapsed compared to the standard force field combination
for the two peptides (Table I and Fig. S1). However, the TREx sim-
ulations using the newer protein-water force field produce ensem-
bles that still predict differences in the sub-populations of structure
for both Aβ42 and Aβ43 that are not observed in the experi-
ment,4 such as the relative enrichment in β content for Aβ42. The
long-range structure evident in the contact maps shown in Fig. S1
directly contradicts the NOE data of Roche et al., which found
no evidence for long-range contacts.5 The large error bars indi-
cate that the two independent trajectories did not converge to the
same result, a sign that one or both of the independent trajecto-
ries were stuck in local minima on the 0.1 µs/replica time scale of
the TREx simulation. We show this data to emphasize the point
that TREx simulations on these non-converged time scales were
used to identify errors in standard force fields and thus informed

the development of modified force fields for unfolded proteins and
IDPs.27,38

Since more recently it has become standard to perform TREx
simulations using on the order of 1 µs/replica in recent IDP
studies,6,21,44,61,62 we conducted one additional trajectory using
a TREx simulation out to 800 ns/replica for each peptide using
Amberff99SB + TIP4P-Ew, with the resulting structural data in
Fig. 2. Our TREx simulation of 0.8 µs is generally consistent with the
1.0 µs/replica TREx simulations performed by Rosenman et al.44

With longer simulation time scales, the previously significant differ-
ences between Aβ42 and Aβ43 are reduced to being within statistical
error for all secondary structure categories. While there is a clear
improvement in some structural properties at this longer time scale
using TREx, such as reduction in the population of α−helices, the
β−sheet propensities still show a large variability of ±20% at residues
5-6, 19, and 31. As a result, their structural ensembles are in stark dis-
agreement with the available NMR and 2D FRET data by being too
collapsed and highly structured. It is therefore very understandable
why one would continue to conclude that there is a deficiency in the
standard force fields based on evidence such as Fig. 2.

Furthermore, the TREx + Amberff99SB + TIP4P-Ew Aβ
ensembles strongly disagree with the Aβ42 ensemble generated by

FIG. 2. Comparison of structural properties for Aβ42 and Aβ43 using the force field Amberff99sb + TIP4P-Ew and using Temperature Replica Exchange (TREx) simulated at
0.8 µs/replica. (a) Contact maps, (b) β−strand and helix propensities, and (c) turn propensity and radius of gyration distribution. For (b) and (c), blue lines are Aβ42 and red
lines are Aβ43. Further details are given in the caption of Fig. 1.
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Lin et al.49 In their more extensive MD/MSM simulation, they found
negligible β-sheet content, with the only persistent secondary struc-
ture being ∼10%–20% α-helical content for residues 12-18. While
the MD/MSM study used the same peptide force field as in this work
(Amber ff99SB), they performed their simulations with the TIP3P
water model17 instead of TIP4P-Ew, which likely accounts for some
quantitative differences in the Aβ ensembles. A study of the folding
of Trp-cage using Amber ff99SB found that TIP3P enriched the sam-
pling of helical content by ∼10% and reduced the sampling of β-sheet
content by a similar amount when compared to TIP4P-Ew.73 These
relatively minor population shifts are too small to explain the large
discrepancies between the TREx and MD/MSM results; so much of
the differences between the ensembles must result from the sampling
efficiency. We believe this demonstrates that even on the µs time
scale, TREx simulations are not able to fully capture the structural
ensemble of Aβ peptides.

We next consider, whether an alternative sampling, namely, the
TCW method, would converge faster on the ∼0.1-0.2 µs/replica time
scale to evaluate the different force field combinations (Fig. 3 and
Table I). We have established in previous work that TCW is supe-
rior to the TREx approach using test systems where quantitative
measures of convergence are available.46,50 In addition, Figs. S2 and

S3 show that the TCW method on the ∼0.2 µs time scale reaches
comparable convergence to the ∼0.8 µs TREx simulation for all sec-
ondary structure categories. But as seen when comparing Figs. 2
and 3, the TREx and TCW enhanced sampling methods yield very
different Aβ peptide ensembles using the same unmodified protein-
water force field combination. More specifically, the TCW + ff99SB
+ TIP4P-Ew result is far less structured than that found with TREx
and is much more similar to the MD/MSM results by Lin et al.49

Although there are regions of the sequence that exhibit larger uncer-
tainties in the turn population, this variation in turn content suggests
the transient sampling of still overall unstructured conformations
since the sampling of β and helical conformations is consistently
low rather than the more significant sampling of highly structured
conformations seen in the TREx simulations. For the unmodified
force field combination using TCW, there is a very small amount
(∼5%-10%) for the contact region formed by residues 16-20 and
30-37 for both Aβ42 and Aβ43. It is unlikely that the experimental
NOEs could absolutely rule out the presence of such a small pop-
ulation of long-ranged structure, and in fact the simulated NOEs
would support this conclusion since the average NOE distance for
these residues would be dominated by the ∼90% of the unstructured
populations.

FIG. 3. Comparison of structural properties generated for Aβ42 and Aβ43 using the force field combination Amber99SB + TIP4P-Ew and using Temperature Cool Walking
(TCW). (a) Contact maps, (b) β−strand and helix propensities, and (c) turn propensity and radius of gyration distribution. For (b) and (c), blue lines are Aβ42 and red lines
are Aβ43. Further details are given in the caption of Fig. 1.
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For completeness, we consider the newer force fields that have
been shown to improve descriptions of IDP ensembles using TREx
but now simulated with TCW. We first consider the Amber ff99SB-
ILDN + TIP4P-D combination (Fig. 4), where the force field opti-
mization is centered on increasing the strength of attractive Lon-
don dispersion forces on the water oxygen atoms by ∼50% relative
to that of other four-site water models. Using TREx simulations,
this has been reported to produce less structured IDP ensembles
by increasing the strength of protein-water attractions relative to
protein-protein attractions using standard Lennard-Jones mixing
rules.22 The results for TCW shown in Fig. 4 also confirm that this
recently introduced water model generally reduces structural order
and maintains structural similarity between the ensembles of the two
peptides, with ⟨Rg⟩ ∼ 14.9 Å and 15.7 Å for Aβ42 and Aβ43, respec-
tively (Table I). There is again, as in the TCW + ff99SB + TIP4P-Ew
result, some variability in the turn population, suggesting the sam-
pling of some different unstructured substates in the different tra-
jectories, but the β−sheet and α−helical populations are consistently
small.

Similar structural results are obtained for the CHARMM36m
+ CHARMM-TIP3P force field combination using the TCW sam-
pling method (Fig. 5), predicting more expanded structures as

evidenced by a shifted and broader Rg distribution, with ⟨Rg⟩ ∼ 15.9-
16.4 Å for the two peptides (Table I), with no long-range contacts
found using TREx as demonstrated through the absence of sec-
ondary structure signatures as well as the contact maps, in agreement
with the NOEs for Aβ42.5,6 Furthermore, the structural ensemble of
the Aβ42 and Aβ43 free monomers is seen to be nearly identical, in
agreement with the experimental results of Conicella and Fawzi.4

Experimental validation of simulated ensembles

In order to better validate these results for the different force
fields, and to better understand the differences found between TREx
and TCW, we consider back-calculations of the NMR and FRET data
as a metric for comparing Aβ42 and Aβ43 ensembles to the exper-
iment (Table I). Unfortunately, current state-of-the-art chemical
shift calculators developed specifically for protein applications have
large associated intrinsic back-calculation errors, making quantita-
tive comparisons problematic for IDPs. For example, the RMS error
for 1HN chemical shifts in the SHIFTX2 calculator is 0.17 ppm,69

which is much larger than the experimental difference (<0.05 ppm)
between the Aβ42 and Aβ43 ensembles.4 Thus, chemical shifts are
not an ideal metric to distinguish between the different simulated

FIG. 4. Comparison of structural properties generated for Aβ42 and Aβ43 using the force field Amber99SB-ILDN + TIP4P-D and using Temperature Cool Walking (TCW). (a)
Contact maps, (b) β−strand and helix propensities, and (c) turn propensity and radius of gyration distribution. For (b) and (c), blue lines are Aβ42 and red lines are Aβ43.
Further details are given in the caption of Fig. 1.
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FIG. 5. Comparison of structural properties generated for Aβ42 and Aβ43 using the force field CHARMM36m + CHARMM-TIP3P and using Temperature Cool Walking
(TCW). (a) Contact maps, (b) β−strand and turn propensities, and (c) α−helix propensity and radius of gyration distribution. For (b) and (c), blue lines are Aβ42 and red lines
are Aβ43. Further details are given in the caption of Fig. 1.

ensembles, and as expected, the simulations are unable to capture
the subtle differences in the 1HN chemical shifts in the C-terminus
of the two peptides (examples given in Fig. S4).33

Table I shows the calculated χ2 parameter from the simulated
J-coupling constants (JHN-Hα) for each ensemble as compared to the
experiment, in which lower values of the χ2 metric indicate bet-
ter agreement with experimental J-coupling constants, with values
near one indistinguishable from the scalar coupling back-calculation
error. We compare to the Roche et al. experimental dataset5 consist-
ing of 38 Ji values for Aβ42 and the Conicella and Fawzi4 exper-
imental dataset consisting of 22 Ji values for Aβ43. The simulated
J-couplings from the computational ensembles support the general
conclusion that the TCW sampling method is in better agreement
with the NMR J-couplings than found for TREx, regardless of force
field for both Aβ42 and Aβ43 peptides, with the standard force field
in best quantitative agreement.4 We note that the χ2 values appear
to be commensurate with the results of Meng et al. for Aβ42 using
750 ns TREx simulations with Amber ff99SBws (χ2 = 2.89) and
Amber ff03ws (χ2 = 4.58), two IDP-optimized force fields, using
the same experimental data and set of Karplus parameters. How-
ever, their χ2 values include a block-averaging error due to vari-
ance within the trajectories that depresses the value of the χ2 (up to

∼10%). We did not apply this block averaging error since this hides
the intrinsic sampling problem we are investigating.

The conclusion that the TCW method yields better agreement
with J-couplings is bolstered when using a Bayesian analysis we have
developed, the Experimental Inferential Structure Determination
(EISD) method.72 The EISD method is designed to assess agreement
given the available experimental J-coupling data (as well as chemical
shifts, which we ignore here given their low predictive value) that
take into account the intrinsic experimental and back-calculation
uncertainties through optimization. In this case, the optimization
occurs within the variance of the Gaussian distributed model for
the back-calculation error for Karplus parameters A, B, and C in
Eq. (1). We analyze each ensemble with EISD against the same set of
experimental data used for the χ2 analysis and find that the
ranking of the ensembles does not change from the χ2 analysis
(Table I), i.e., the available J-coupling data are sufficient for con-
cluding that the TCW ensembles are in better agreement with the
NMR data, with significant better agreement for the standard force
field.

Although we do not invoke a full scale simulation of NOE
data as we have done in previous studies,10,29,67,68 we can make
some qualitative comparisons to the NOE data for Aβ425 using the
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contact maps. Clearly, the newer force fields are in excellent agree-
ment with the NOE data. Furthermore, the standard force field using
the TCW simulations is also in good agreement with the NOE data,
unlike the TREx simulations that contain a very high percentage
of long-range contacts. For the unmodified force field combination
using TCW, there is a very small amount (∼5%-10%) for the contact
region formed by residues 16-20 and 30-37 for both Aβ42 and Aβ43,
but as we have already stated above, it is unlikely that the experi-
mental NOEs could absolutely rule out the presence of such a small
population of transient long-ranged structure.

Next, we consider the comparison of the different sampling
and force field combinations to 2D FRET that have been reported
recently for Aβ42;6 we again make the reasonable assumption that
FRET efficiencies, EFRET , for Aβ43 will be nearly identical based
on the results of Conicella and Fawzi.4 In principle, EFRET should
be calculated for all conformations using the end-to-end distance

between the dyes or tags, Rtag
ee (t), i.e., the simulations should use

the same sequence construct as the experiment that includes addi-
tional residues and the chemical specifics of the covalently bound
dye molecules. The possibility that the IDP ensemble will be per-
turbed to some degree by these tags, as we have seen previously for
the MTSL tag used in EPR studies,51 obscures the means to com-
pare Runtag

ee , from the simulation data of untagged peptides, with
experimentally derived values of Rtag

ee . Hence, a model for the miss-
ing tags must be developed to make contact with the 2D FRET
data.

It is useful to consider the FRET model used by Meng et al.6 in
which the distance between the dyes Rtag

ee (t) is implicitly accounted
for by scaling the Runtag

ee with an approximation that the effect of the
dyes is equivalent to adding Ntag additional residues to the sequence
length,74

FIG. 6. Simulated end-to-end distance
histograms (left) and corresponding
FRET efficiency histograms using
Eq. (3) (right) for all force field- sampling
combinations. For all plots, blue bars
are for Aβ42 and red bars are for Aβ43.
All simulations are for the untagged
peptides, with the results shown having
incorporated a shift to model the
additional residues and tags.
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Rtag
ee (t) = Runtag

ee (t)(N + Ntag

N
)

0.5
. (4)

The origin of the scaling model used for the missing tags [Eq. (4)]
and value for Ntag has precedent in the literature from a study
by McCarney and co-workers, who conducted 1 ns standard MD
simulations on a model of Alexa 488 attached to a single cysteine
residue; they obtained an ensemble average that does provide sup-
port for Ntag = 12 for a pair of dyes.75 However, they also noted that
this average conceals the chemical nature of the bimodal distribu-
tion, which results from an extended conformation corresponding to
Ntag ∼ 16, and a collapsed conformation due to hydrophobic inter-
actions between the dye and its linker, with Ntag ∼ 4.4. While
McCarney et al. noted that the collapsed conformation would not
likely persist in experiments with sufficient denaturants present, as
is the case in many FRET studies including their own,75 that would
not be and is not the case for native, denaturant-free studies, as in
the experiments of Meng et al.6 for Aβ42 that study the peptide in
more native-like conditions.

The resulting untagged peptide simulations that have been
scaled using Eq. (4) with Ntag = 12 show a highly skewed distribu-
tion with a dominant peak at EFRET = 1 (Fig. 6) that is in disagree-
ment with the experiment which is peaked around the average FRET
efficiency of ∼0.63 for Aβ42. This same difference between the exper-
imental and simulated result is also evident in the supplementary
material in the work of Meng et al.6 using the new IDP force fields
developed by Best and co-workers.23,27,38 The extremely high FRET
efficiency is as expected given the relatively short length of the Aβ
peptides and the large Förster radius for the dye pair of Alexa 488
and 647, i.e., as per Eq. (3), all conformations with the scaled values
of Runtag

ee less than ∼40 Å will yield EFRET ∼ 1.
Even so, the TCW simulations using the different force fields

yield FRET efficiencies for Aβ42 of ⟨EFRET⟩ = 0.71–0.88 (Table I);
to compare to the work of Meng et al. for Aβ42, the range of sim-
ulated FRET efficiencies they found using two different force fields
designed for IDPs with the same value of Ntag = 12 gave values of
EFRET = 0.68–0.83 which they state is in good agreement with the
experimental results.6 By contrast, the 0.8 µs TREx simulation using
a standard force field yields EFRET = 0.96–0.97. Increasing Ntag to 16
or even 20 would only reduce EFRET by a few percent; hence, this gen-
eral difference between sampling methods would remain the same.
Among the TCW simulations, those using modified force fields pro-
duce values of EFRET that are lower and closer to the experimental
values of Meng et al., consistent with those force fields producing
more expanded ensembles than standard ones.

Given the complete summary of the experimental validation,
we also must conclude that the secondary structure propensities for
the standard force field for the Aβ peptides are not as egregiously
incorrect as ascertained from the TREx sampling method using a
standard 0.8 µs/replica simulation. There is no question that the
newer force fields agree well with the experimental data, but the
TCW + Amber ff99SB + TIP4P-Ew also agrees as well and in fact
even slightly better for the NMR J-coupling χ2 and EISD evalua-
tion. Given the uncertainties in the 2D FRET models, we can only
conclude that the TCW simulations for the standard force fields are
acceptable based on the upper bound value reported by Meng et al.6
(EFRET = 0.83) for one of their modified force fields. Using TCW, the
standard force field yields negligible β-sheet and α-helical content,

and the only observed long-range contacts are at very low popula-
tion, and hence qualitatively consistent with the 2D FRET and NOEs
taken on the Aβ42 peptide, where the 5%-10% population of long-
range contacts will likely not be captured in the experiment.5,6 As
a result, the structural ensemble of both peptides generated using
the TCW sampling method is more extended than what was found
under the TREx protocol for the standard force field, with ⟨Rg⟩
∼ 12.9–13.2 Å for the two peptides (Table I).

DISCUSSION

Given the better agreement with all of the experimental data
using the TCW protocol over the TREx simulations, we use the
TCW results to next address the question as to whether the new
modified force fields introduce a genuine improvement over the
standard force field. One assessment is whether the force fields are
yielding structural ensembles consistent with a random coil ensem-
ble modeled as a Gaussian random chain or a self-avoiding ran-
dom walk (SARW). Although the Aβ ensemble using the standard
force field does contain a small amount of residual structure, a
rapidly interconverting unfolded or IDP ensemble will sample both
extended and compact conformations containing regions of sec-
ondary structure seen in folded proteins that are still consistent with
a random coil ensemble.76

The chain length scaling exponents for polymer models used
to interpret SAXS, NMR, and FRET measurements for unfolded
proteins and IDPs have been shown to be dependent on sequence
characteristics such as charge and hydrophobicity.77,78 Given that
Aβ has both a net positive and relatively high hydrophobicity in the
CHC region of its sequence, the scaling exponent might be expected
to reduce to the Θ-limit for this IDP,6

Rg = R0Nν, (5)

where R0 = 2.0 Å as given by Fitzkee and Rose79 and ν = 0.5 for the
Θ-limit which would yield ⟨Rg⟩ ∼ 13 Å that is consistent with the
value calculated from the unmodified force field results simulated
with TCW given in Table I. Under the Gaussian random coil model,
we would conclude that the modified force fields have resulted in an
over-correction by producing much more expanded ensembles than
is warranted. However, if we assume a SARW model, we determine a
larger value for Rg , i.e., using ν = 0.54–0.6 in a good solvent56 would
yield ⟨Rg⟩ ∼ 15–19 Å, in better agreement with the modified force
fields, thereby suggesting that the standard force fields are in fact
too collapsed. Furthermore, for a Gaussian random chain, we would
expect the following relationship to hold:

Rg = Ree/
√

6. (6)

But this correlation between Rg and Ree is poor given the simulated
data in Table I, except for the TCW + CHARMM36m + CHARMM-
TIP3P combination, which is inconsistent with the Gaussian model
based on Rg .

Thus, we view polymer physics models and analyses as largely
inconclusive for differentiating the quality of force fields for this
IDP system for several reasons. First is that the differences between
the Gaussian and SARW models are better differentiated for much
longer polymers than the small Aβ peptides investigated here. Fur-
thermore, Fuertes et al. have presented some novel analytical tech-
niques on a set of IDPs and denatured proteins using a variety of
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dyes and denaturant conditions to evaluate the relationship between
FRET and SAXS.57 They suggest that one should generally decouple
Rg from Ree and thus avoid using a simple scaling law such as Eq. (6)
that is independent of peptide chemistry.57 Finally, the field is in
need of new heteropolymer-centric theoretical models that are able
to capture sequence details to extend beyond simple scaling laws and
empirical relations, models which are now starting to be developed
in recent work for the IDP class of proteins.80,81

We next turn to a more quantitative assessment using the 2D
FRET data to ascertain the differences in force fields. The simulation
of FRET efficiencies, especially for IDPs, involves a series of assump-
tions that introduce uncertainty that must be acknowledged when
comparing to the FRET observable given the presence of the fluores-
cent dyes. As of late 2018, there is active debate on the perturbations
introduced by fluorophore tags.53–57 Fuertes et al.54 assert that there
is no perturbation of the structural ensemble across a series of dis-
ordered peptides upon addition of dye labels. Part of the basis of
their conclusion is that they did not find significant shifts in the
SAXS profiles or ⟨Rg⟩ of tagged and untagged peptides at high denat-
urant conditions.57 If this is the case, then our 2D FRET results
and analysis support the view that the standard force field for the
untagged Aβ ensembles and tags modeled using Eq. (4) is in ade-
quate to good agreement with the experiment, with the modified
force fields performing only slightly better.

By contrast, Riback et al. concluded that at native conditions
with no denaturant, the addition of tags in FRET experiments leads
to interactions with the IDP that will contribute to FRET signals
that overemphasize its contraction and thus artificially increases its
FRET efficiency under denaturant-free conditions.56 Furthermore,
the perturbative effect of the dyes was seen to be larger for the smaller
peptides in their experiments, where the addition of labels and the
residues to which they are bonded has a greater effect on the mass
and resulting dynamics and structure of the peptide. For example,
the addition of the tags produced shifts from −0.3 to +0.5 nm in the
average Rg of the two smallest peptides studied, N49 and NLS, which
are natively 36 and 44 residues.56 Even the results of Meng et al.
found an increase in EFRET upon explicit representation of the Alexa
fluorescent tags using a standard MD calculation for Aβ42,6 which is
consistent with greater compaction of the ensemble. Our own recent
work demonstrated that addition of a hydrophobic MTSL-Cys tag
to Aβ42 can perturb the structural ensemble through interactions
between the dye and the peptide that in turn leads to more a col-
lapsed structural ensemble compared to the original peptide.51 The
simulations of Fuertes et al., however, modeled the unlabeled pep-
tide using implicit solvent and then built up an ensemble of struc-
tures of the labeled peptide by stochastically adding the dyes to the
unlabeled conformers.57 While this produces a useful test for ver-
ifying that many different values of Ree can be obtained from an
ensemble with the same Rg , it does not address the potential phe-
nomenon of the dyes affecting the chain dynamics and structure
directly. If the tags do induce an artificial compaction of the ensem-
ble, then the true experimental ensembles would be more expanded
with even lower FRET efficiencies than reported for Aβ42. If that
is the case, then the standard force fields yield IDP ensembles that
are in fact too collapsed, and force field modifications are war-
ranted, especially for small Aβ42 and Aβ43 peptides studied in this
work.

CONCLUSION

We have simulated the disordered structural ensembles of the
Aβ42 and Aβ43 peptides, which according to recent experiments4–6

should be largely the same and exhibit no persistent structural order-
ing or long-range contacts. But two types of error can occur dur-
ing computational studies of IDP structural ensembles that prevent
connections to such experiments, namely, statistical sampling error
and systematic error in energy and forces. Statistical sampling error
occurs when the simulations have not been run sufficiently long
to achieve convergence, while systematic error happens when the
energy surface of the peptide-water system is not modeled with accu-
rate molecular interactions. Not surprisingly, these two potential
errors are intertwined, and hence, we have attempted to consider
them both by comparing two sampling methods, TREx and TCW,
as well as comparing a standard protein-water force field and those
that have been recently modified to yield better modeling of disor-
dered states. We have also attempted to validate the various simu-
lated ensembles by comparing to recent state of the art NMR and 2D
FRET experiments.4–6

While it is starting to become established that long MD tra-
jectories of ∼100 µs–1 ms are often necessary to reveal force field
deficiencies,11,49 simulation time scales that are largely routine only
on specialized hardware such as Anton82 or Folding@home,83 the
hope is that better enhanced or accelerated sampling methods might
converge more quickly, i.e., with one to two orders of magnitude
less effort. In this work, we have shown that even at µs time scales
there appear to be limitations in the TREx sampling method, pro-
ducing far more structured ensembles that are in disagreement with
NMR and 2D FRET validation data on Aβ peptides. Changing the
sampling method from TREx to TCW produces ensembles that are
qualitatively in agreement with J-couplings, NOEs, and FRET effi-
ciencies, regardless of the force field that is simulated. The TCW
results for Aβ42 are also in very good agreement with the very
long sub-millisecond MD/MSM results by Lin and co-workers.49

Thus, our evidence has shown that what was thought to be pri-
marily a force field problem was masked by what is at least in
part a problem of poor sampling. This work establishes that the
TCW method is more effective than TREx when entropic barriers
dominate and, when applied to IDPs, supports the recent hypoth-
esis that IDPs have an inverted free energy landscape in which
disordered conformations are lower in free energy than ordered
structures.52

Sampling is an important consideration for establishing the
transferability of any force field, by demonstrating that appropriate
conformational equilibria are reached across a range of thermody-
namic conditions in order to describe folded and unfolded states
of globular proteins as well as IDP sequences. For example, some
standard protein and water force field combinations have proven
robust for understanding mechanistic questions about protein fold-
ing,84 which requires a good model of the structure and internal
dynamics of the unfolded states in addition to the folded state of
a globular protein.85 But historically, it was the ability to sample
multiple folding and unfolding events using these standard force
fields which allowed them to gain validation through direct compar-
isons to robust folding experiments.86,87 This work rescues some of
these standard force fields in the sense that they require extensive
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sampling to definitively show whether they are also capable of
simulating accurate IDP ensembles.

The modified force fields may have had the effect of inherently
lowering the entropic barriers and, in the best case, still maintain-
ing the folded-unfolded equilibrium. However, unlike the case of
protein folding, experimental validation is more limited and under-
determined for IDPs for a variety of reasons. At present, there is
an impedance mismatch for chemical shifts and FRET data; for
chemical shifts, the fault is on the theoretical side because of the
reduced capability to back-calculate shifts from structure,72 whereas
for FRET measurements on very small IDPs, there remains the pos-
sibility that the presence of the fluorescent tags might perturb the
IDP ensemble from its equilibrium state.56 However, the impedance
match between theory and experiment for scalar couplings and
NOEs has provided strong support for the conclusion that, when
simulated with TCW or using a very long MD/MSM simulation, the
Amberff99SB + TIP4P-Ew, CHARMM36m + CHARMM-TIP3P,
and Amberff99SB-ILDN + TIP4P-D are all appropriate force fields
for IDPs. While clearly some of the new force field modifications can
promote more expanded monomer ensembles to reproduce many
experimental IDP properties more expediently, it is important to
remember that the IDP-specific force fields38 and other modified
force fields may come with their own limitations, such as now mani-
festing native state instability,33 thereby forgoing the ability to simu-
late disorder to order transitions in folding upon binding events that
are part of the greater functional repertoire of proteins with intrinsic
disorder.2

SUPPLEMENTARY MATERIAL

See supplementary material for comparison of other sampling
methods and force fields, end-to-end distance and FRET efficiency
histograms, simulated chemical shifts, and EISD results between the
Aβ43 and Aβ42 structural ensembles.
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