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ABSTRACT OF THE DISSERTATION

New Operations Research Models for Emerging Problems in Service Operations

By

Ali Hassanzadeh Kalshani

Doctor of Philosophy in Management

University of California, Irvine, 2021

Associate Professor Luyi Gui, Chair
Associate Professor John Turner, Chair

With the goal of exploiting theoretical and practical advancements in operations research

to solve important problems in production, service, and sports, this dissertation studies two

problems in particular using optimization: proposing a plan to conclude a suspended sports

league in a shortened time frame, and analyzing pricing mechanisms in resource exchange

economic models.

First, we study the problem of concluding a suspended sports league in a shortened time

frame. Professional sports leagues may be suspended due to various reasons such as the

recent COVID-19 pandemic. A critical question arises when the league decides to select a

subset of the remaining games to conclude the season in a shortened time frame. Despite

the rich literature on scheduling an entire season starting from a blank slate, concluding an

existing season is quite different. Our approach attempts to achieve rankings similar to that

which would have resulted had the season been played out in full. We propose a data-driven

model which exploits predictive and prescriptive analytics to produce a schedule for the re-

mainder of the season comprised of a subset of originally-scheduled games in anticipation of

the future outcomes. This not only requires us to introduce novel rankings-based objectives,

but also requires us to consider stochastic modeling approaches as well as a predictive model

xiii



for estimating the parameters in the stochastic optimization model. In comparison, all of

the sports scheduling optimization models in the literature are deterministic. We study the

efficacy of our approach through comprehensive computational and simulation experiments.

We present simulation-based numerical experiments from previous National Basketball As-

sociation (NBA) seasons 2004–2019, and show that our models are computationally efficient

and produce interpretable results. Our approach provides a data-driven decision-making

framework for concluding suspended sports leagues by taking uncertainties into account.

We also provide suggestions on how to conclude the 2019–20 NBA season. As an addition to

this chapter, we study the problem of concluding a season after a suspension while there are

no prior games played. In other words, when the hiatus happens to be at the beginning of

the season, and the league starts late which makes a shortened season inevitable, a natural

question is that which games or matchups should be included in the shortened season. The

main challenge in this scenario is the fact that there are no prior games played in the same

year and the idea of employing a predictive model does not work, unless we find a way to

use past season(s) games to train a predictive model. In order to overcome this challenge,

we add player–level features to the training dataset which enables us to train a predictive

model using only the previous season games to predict the outcome of the new season. Once

we have a predictive model, we can use a similar approach as presented at the beginning of

this chapter.

Second, we study an economic system where there are multiple agents each endowed with

certain amount of resources, aiming to make profit either by producing their unique product

and selling it to the spot market or by trading their endowed resources to other agents. All

agents use the same type of resources for production (and exchange) purposes, possibly with

different usage rates. The total profit in the system depends on the allocation of resources

among agents and the production quantity of all agents. This problem can be studied

from two lenses: centralized and decentralized. From a central planner’s perspective, it is

desirable if resources are shared among all agents and they are distributed according to the

xiv



production plan with the maximum profit. However, achieving this optimal distribution of

resources can be challenging in practical settings since resource sharing is typically carried

out in a decentralized way, i.e., each agent, independent of, or even oblivious to, other

agents’ decisions, determines her resource exchange quantity. In this thesis, we study how

to coordinate the resource exchange decisions among decentralized agents through resource

pricing approaches. Motivated by the operations of practical resource sharing alliances (e.g.,

capacity sharing in transportation alliances, equipment sharing in medical networks), we

consider a framework where the central planner determines the prices at which the agents

exchange resources, collects and fulfills agents’ resource exchange requests. We assume the

existence of a spot market where imbalance between resource supply and demand within the

alliance can be addressed.

The objective of the agents is to maximize their own profit which is formulated as a function

of the resource price, as well as production and exchange variables. Hence, the choice of

resource prices influence how much resource each agent is willing to sell/buy and accord-

ingly the overall distribution of the resources in the decentralized problem. We measure the

profitability of the decentralized resource exchange system through an efficiency ratio, which

is defined as the worst case ratio between the aggregate profit in the decentralized system

and its centralized counterpart. An efficiency ratio of one indicates that the total profit from

the centralized and decentralized problems match, and the centrally optimal distribution of

resources can be attained in the decentralized system. The problem of finding the resource

prices under which the efficiency ratio is maximized is called the coordination problem. Co-

ordinating decentralized resource exchanges via pricing approaches has been studied in the

literature, which largely focuses on linear pricing, i.e., a constant unit price is applied for

each resource. Our work first shows that linear pricing does not guarantee an efficiency ratio

of one. Nonlinear price functions studied in the literature can potentially achieve an effi-

ciency ratio of one,, but they suffer from two drawbacks: price discrimination (i.e., different

agents pay according to different pricing schemes) and the need to subsidize the exchange

xv



transactions by the central planner. In this thesis, we study whether an efficiency ratio of

one can be achieved under nonlinear pricing functions that apply the same unit price to all

agents and that requires no subsidization from the central planner. We focus on a quadratic

pricing function, and show that under certain conditions, (i.e., a constant term plus the

product of another constant term and the exchange quantity) it achieves an efficiency ratio

of one without discriminating among agents and with minimal subsidy. We finally extend

our analysis to stochastic cases where the agents’ revenue information is not fully–known

when the resources pricing scheme is determined. We show that uncertainty undermines the

effectiveness of the quadratic pricing scheme we proposed in the deterministic case in that it

does not guarantee an efficiency ratio of one even under the conditions previously proposed.

Nevertheless, we can numerically identify the quadratic pricing function that maximizes the

efficiency ratio in the stochastic case, and we show the usefulness of our approach based on

extensive numerical results.
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Chapter 1

Concluding a Suspended Sports

League

1.1 Introduction

The novel coronavirus named SARS-CoV-2, the causative agent of COVID-19 (Ayres 2020),

emerged in December 2019, and the World Health Organization (WHO) declared the out-

break a pandemic with over 178 million individuals worldwide, and over 33 million cases in

the US, infected by the disease as of June 22, 2021 (WHO 2021). The outbreak disrupted

many social activities at a global scale, exposed stark problems in the healthcare systems

with governments enforcing unprecedented quarantine, lockdowns, travel restrictions, and

social distancing measures to reduce transmission of the virus (Dorsett 2020, Kaplan 2020).

As a result of the lockdown, many entertainment industries and professional sports leagues

worldwide ceased activity indefinitely. With the rapid spread of COVID-19, the National

Basketball Association (NBA) was the first professional sports league in the US to suspend

games, effectively pausing the season as of March 11, 2020 (NBA 2020a). The goal in this
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chapter is to propose a policy to conclude the suspended season.

Professional sports leagues around the world adopt various tournament formats, with round-

robin and elimination as the two widely used tournament styles. In a round-robin tournament

each contestant plays against all other contestants in turn. The structure of some leagues

(e.g., soccer) consists only of a round-robin tournament with the highest-ranking team at

the end of each season recognized as the champion. In contrast, other sports leagues (e.g.,

basketball, football, hockey, and baseball) have a round-robin regular season followed by

an elimination tournament (postseason or playoffs) in which only a subset of teams qualify

based on their regular season performance. The most popular sports associations in the US

including NBA, National Football League (NFL), National Hockey League (NHL), and Major

League Baseball (MLB) follow an asymmetrical round-robin structure, in that the number of

games between any two teams depends on their conference and divisional affiliations, followed

by playoffs. Even though our focus in this chapter is on the NBA, because of similar league

structure, our results can be extended to the NFL, NHL, MLB, or any sports league with

asymmetrical round-robin tournament format.

In an NBA regular season, there are a total of 1,230 games. Once the schedule is set, all

teams, venues, broadcasters and the press know their schedule for the entire season, and

can plan their activities accordingly. Adjustments to the schedule are required when the

league is suspended for any reason, such as lockouts due to player strikes. Consequently,

our methodology can also be applied to resuming a season after such a lockout. There have

been four lockouts in the history of the NBA in which the league was forced to start late

(e.g., December of that year) due to the expiration of the Collective Bargaining Agreement

(CBA) between league owners and the National Basketball Players Association (NBPA). In

two of those four lockout instances, the regular season was shortened to 50 and 66 games

per team in the seasons 1998–99 and 2011–12, respectively. Apart from these four lockouts,

the recent COVID-19 pandemic is the fifth league suspension in the NBA’s history. Overall,
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suspensions are an occasional occurrence of significant consequence in major sports leagues;

in Table 1.1 we tally the number of suspensions and shortened seasons for the NBA, NFL,

NHL, and MLB.

League NBA NFL NHL MLB

Suspension instances 5 8 4 8
Shortened Season instances 2 2 2 3

Table 1.1: The number of disruptions in regular season games.

After the NBA’s COVID-19 suspension, there has been much speculation in the media on

the possible subsequent actions by the NBA, whether the 2019–20 regular season will be

resumed, and how it will be concluded. The teams and players benefit financially when

games are actually played, and their profit is dependent on the total number of games

played. On the other hand, the league is also concerned with concluding the season fairly

and in a timely manner which does not force the next season to start late or to be shortened.

These objectives are mostly in agreement, but some conflicts of interest arise. The main

plausible directions that the NBA can take to conclude the current season are the following:

1. The NBA cancels the regular season along with the playoffs. In this scenario, which is

not likely to happen, a champion will be determined by vote.

2. The league cancels the remaining games, and the top-ranked teams as of the suspension

date qualify for the playoffs. This scenario, also unlikely, would be regarded as unfair.

3. The NBA resumes the regular season with all 259 remaining games scheduled to play.

4. The NBA selects a subset of the remaining 259 games to be played (shortened season).

Options 3 and 4, which we compare extensively throughout the chapter, are illustrated in

Figure 1.1. Note that the rankings of the teams (by number of wins over the played games)

depends on the specific set of games that are played.
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Full
Season
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0
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Suspension!

Shortened	Season

1.	LAL
2.	MIL
3.	TOR
4.	BOS
5. 	... 

1.	MIL
2.	LAL
3.	TOR
4.	LAC
5. 	...

Figure 1.1: Two strategies to conclude the league: full season vs. shortened season after
resuming the league

Our focus in this study is to propose a method which chooses a subset of games to conclude

a shortened season that remains an asymmetrical round-robin tournament while producing

end-of-season rankings that are as close as possible to the rankings that would result had the

full season been played (i.e., no games cancelled). There are, of course, many considerations

that come into play when constructing a sports schedule. While our approach is less detailed

than constructing a full timetable which incorporates not only the set of games to play but

also their sequence (and corresponding travel schedule), our model is sufficiently general to

allow for any logical constraints on the subset of games chosen, which can be driven by

specific practical considerations. Moreover, our focus on providing a fair final ranking is

both new in the academic literature and aligns well with the league’s primary concern to

conclude a shortened season in an equitable yet timely fashion.

At a high level, our model selects which games to include and which ones to exclude in the

remainder of the season. To make these decisions, we develop several model components.

First, we use a predictive model to predict the outcomes of all games in the season that have

not yet been played. Then, we use these predicted outcomes to produce a projected ranking

which is our best estimate of how the season would conclude if all games were played; this

is used as a target ranking. We then use a prescriptive model to select games so that, in

expectation, the resulting ranking is as close to the target ranking as possible.

The organization of the rest of the chapter is as follows. We review the related works in
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the literature in section 1.2, followed by a description of the problem under study and back-

ground in section 1.3. In section 1.4.1 we introduce our predictive methodology and the

feature selection procedures. In section 1.4.2, we lay out the prescriptive model assump-

tions, notation, as well as four possible choices for the objective function, each resulting in

a stochastic optimization problem. In section 1.5 we introduce two approximation schemes,

namely, mean value approximation and sample average approximation, as well as variable

fixing techniques for solving two of our stochastic models, followed by an exact deterministic

counterpart for solving the third stochastic model. Computational experiments and sugges-

tions for concluding the 2019–20 season are presented in section 1.6, followed by discussions,

limitations, and future work in section 1.7. Finally, we conclude the chapter in section 1.8.

1.2 Literature Review

A distinguishing attribute of this study is the two-phase analytics approach combining pre-

dictive and prescriptive models. In this section, we review existing literature in both direc-

tions: predicting the game outcome in sports using predictive models, and scheduling sports

leagues using optimization and algorithm design techniques.

Predictive models. There is an extensive literature on predicting the outcome of games

in sports. Thabtah et al. (2019) have studied three binary classifiers including Näıve Bayes,

Logistic Regression, and Neural Networks using team statistics (e.g., offensive and defensive

performance metrics). Igiri and Nwachukwu (2014) used the same classifiers to make predic-

tions in soccer. Brown and Sokol (2010) combined logistic regression with a Markov chain

model in predicting National Collegiate Athletic Association (NCAA) basketball games, in

an attempt to capture the causal effect between games throughout the season. In a similar

work, Arkes and Martinez (2011) studied the effect of momentum in the performance of dif-

ferent teams in the NBA. Other papers using binary classifiers to make predictions in sports
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leagues include (Magel and Melnykov 2014, Loeffelholz et al. 2009).

Scheduling basketball games. There is a stream of articles addressing some of the chal-

lenges in scheduling sports leagues including fairness of schedule, broadcasting, and travel

distances. While some papers focus on one aspect of the scheduling problem as the main

objective, others propose multi-objective models. Using optimization-based approaches in

scheduling basketball games, Bean and Birge (1980) considered traveling costs and player

fatigue as the main goals, Weiss (1986) studied the schedule bias between the regular season

and post-season, while Westphal (2014) considered venue availability and broadcasting con-

siderations as the main objectives. To propose a schedule for the NCAA basketball games,

Nemhauser and Trick (1998) and Henz (2001) have applied integer programming and con-

straint programming, respectively. There are also papers that develop tailored algorithms,

often based on graph theory, for scheduling basketball games including (Wright 2006, Lewis

and Thompson 2011, Januario et al. 2016, Drexl and Knust 2007, Briskorn and Drexl 2009).

We suggest survey papers (Rasmussen and Trick 2008, Kendall et al. 2010) for an overview

of round robin scheduling studies. For a comprehensive list of articles in the broader scope

of analytical methodologies applied to sports, including optimization and probabilistic mod-

eling, see (Fry and Ohlmann 2012a,b).

Other sports. Even though the main focus in this study is the NBA, it can be extended to

other sports leagues with similar asymmetric round-robin formats such as football, baseball,

and hockey. In an asymmetric round-robin tournament, the number of games between

two teams depends on their division affiliations, as opposed to the symmetrical tournament

format where each pair of teams play exactly twice in each season. The following papers

use mixed integer programming (MIP) formulations to schedule games in different leagues:

Fleurent and Ferland (1993) in hockey, Kostuk and Willoughby (2012) in football, Trick

et al. (2012) and Jiaqi Xu et al. (2019) in baseball. There are a stream of articles addressing

the scheduling problem in symmetrical round-robin sports (e.g., soccer and volleyball), using
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optimization formulations, including (Durán et al. 2012, Goossens and Spieksma 2009, Cocchi

et al. 2018). For examples of papers studying the same type of scheduling problem in non-

sports applications see (Freeman et al. 2016, Gans et al. 2015).

Although there have been many optimization models proposed for scheduling an entire season

starting from a blank slate, the problem that we consider (that of concluding an existing

season) is quite different and to the best of our knowledge has not been previously studied.

A significant difference is that our model attempts to achieve rankings similar to that which

would have resulted had the season been played out in full; this not only requires us to

introduce novel ranking-based objectives, but also requires us to consider stochastic modeling

approaches as well as a predictive model for estimating the parameters in the stochastic

optimization model. In comparison, all of the sports scheduling optimization models that

we cite in our literature review are deterministic.

1.3 Problem

In this section, we first provide an overview of how regular season games function in the

NBA and describe the main points of concern after the recent COVID-19 suspension. We

then frame the conclusion of the season as a problem of selecting a subset of the remaining

games, which requires us to introduce several ranking similarity metrics.

1.3.1 Background

The NBA is composed of 30 teams which are divided into two conferences of three divisions

with five teams each. The list of teams, respective divisions and conferences are given in

Figure 1.2. In an NBA regular season which spans approximately 180 days starting in

October and finishing in April of each year, a team plays a total of 82 games, according to
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the following formula: four games against the other four division opponents (4 × 4 = 16

games), four games against six (out-of-division) conference opponents (4 × 6 = 24 games),

three games against the remaining four conference teams (3×4 = 12 games), and finally two

games against teams in the opposing conference (2 × 15 = 30 games). A five-year rotation

determines which out-of-division conference teams are played only three times. After five

seasons, each team will have played 20 games against each in-division opponent, 18 games

against each out-of-division opponent, and 10 games against each team from the opposing

conference.
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Los Angeles Clippers

 (LAC)

Los Angeles Lakers
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 (MIN)

Oklahoma City Thunder

 (OKC)

Portland Trail Blazers

 (POR)

Utah Jazz

 (UTA)

Dallas Mavericks

 (DAL)
Houston Rockets

 (HOU)

Memphis Grizzlies

 (MEM)

New Orleans Pelicans
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Miami Heat
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Orlando Magic
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Washington Wizards
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Figure 1.2: The NBA is composed of two conferences, six divisions and 30 teams. The
Eastern Conference is comprised of the Central, Atlantic, and Southeast divisions, while the
Western Conference consists of the Northwest, Pacific, and Southwest divisions.

At the conclusion of the regular season, the 8 top-ranked teams in each conference (16 in

the league) advance to the playoffs. In each conference, the team with rank i is matched

to the team with rank 8 − i, for i ∈ {1 . . . 8}, and each matchup winner proceeds to the

next round, with all matchups occurring within-conference until the final matchup which

pits the winning team of the Eastern conference against the winning team of the Western

conference. All playoff matchups are best-of-seven series, i.e., a team needs to win four out of

seven games against the same opponent to win the matchup. Moreover, the highest-ranked

team is given home court advantage and hosts games 1, 2, 5, and 7, while the lower-ranked
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team hosts games 3, 4, and 6 (with games 5–7 played only if needed). Note that due to how

teams are matched, the top-ranked four teams in each conference are always given home

court advantage in the playoffs.

There is a strong connection between a team’s regular-season ranking and its playoff per-

formance, which can be seen by looking at the history of 73 completed NBA seasons. More

than 75% of playoff series are won by the team with home court advantage. In only five

seasons did an 8th-ranked team win a playoff series against a 1st-ranked team. Of the 73

NBA champions, 71 were ranked among the top three teams in the league. Only three teams

with winning percentage less than 0.5 have ever reached the NBA finals, and none have won

the championship (NBA 2020c).

To the extent that end-of-season rankings give teams preferential treatment in the playoffs

which can boost a team’s chances of winning a championship, it is in the league’s best

interest to ensure that the ranking is fair, i.e., reflects to the greatest extent possible which

teams are truly the best. Fairness can be in question when the season ends early. This is

because when a specific subset of games are chosen to conclude a shortened season, it is

possible for some teams to be matched with relatively easy-to-beat teams while others are

matched with harder-to-beat teams, and this may result in a ranking that is quite different

than one which would have resulted had the season been played in full. (We assume the full

season’s ranking is fair, since the league constructs the full season schedule in a balanced

and equitable manner, and in general the public accepts the ranking at the end of the full

season as fair).

Figure 1.3 shows the NBA ranking at the time of the 2019-20 COVID-19 suspension. There

are a number of reasons to believe that the ranking resulting from playing the full season

would be considerably different than the ranking in place at the time of suspension. In

particular:
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  Western Conference       Eastern Conference    

League West  Wins Losses Win%  League East  Wins Losses Win% 

2 1 Los Angeles Lakers 49 14 0.778 
 

1 1 Milwaukee Bucks  53 12 0.815 
4 2 Los Angeles Clippers  44 20 0.688 

 
3 2 Toronto Raptors  46 18 0.719 

6 3 Denver Nuggets  43 22 0.662 
 

5 3 Boston Celtics  43 21 0.672 
7 4 Utah Jazz  41 23 0.641 

 
8 4 Miami Heat  41 24 0.631 

9 5 Oklahoma City Thunder 40 24 0.625 
 

11 5 Indiana Pacers  39 26 0.600 
10 6 Houston Rockets  40 24 0.625 

 
12 6 Philadelphia 76ers  39 26 0.600 

13 7 Dallas Mavericks  40 27 0.597 
 

15 7 Brooklyn Nets  30 34 0.469 
14 8 Memphis Grizzlies  32 33 0.492 

 
16 8 Orlando Magic  30 35 0.462 

17 9 Portland Trail Blazers 29 37 0.439 
 

22 9 Washington Wizards  24 40 0.375 
18 10 New Orleans Pelicans 28 36 0.438 

 
23 10 Charlotte Hornets  23 42 0.354 

19 11 Sacramento Kings  28 36 0.438 
 

24 11 Chicago Bulls  22 43 0.338 
20 12 San Antonio Spurs 27 36 0.429 

 
25 12 New York Knicks 21 45 0.318 

21 13 Phoenix Suns  26 39 0.400 
 

26 13 Detroit Pistons  20 46 0.303 
28 14 Minnesota Timberwolves  19 45 0.297 

 
27 14 Atlanta Hawks  20 47 0.299 

30 15 Golden State Warriors 15 50 0.231 
 

29 15 Cleveland Cavaliers  19 46 0.292 
 

Figure 1.3: NBA ranking at the time of suspension on March 11, 2020.

• The race for clinching the last playoff spot is very much alive in the western conference,

where the teams ranked 8 through 11 have all won between 28–32 games. They are

within 1–4 games of each other and any one of them could be ranked 8th at the end of

the season (recall the top 8 teams in each conference advance to the playoffs).

• The Philadelphia 76ers was considered a title contender at the beginning of the

season, yet is currently ranked only 6th in the eastern conference. Despite some early

losses, the 76ers are expected to bounce back and rank among the top 4 teams in the

east, which would give it home court advantage in the playoffs. This is noteworthy,

since the 76ers historically perform disproportionately better at home than on the

road. Their win ratio thus far in 2019-20 is 29/31 at home, while they have lost almost

half of their away games.

• The Memphis Grizzlies (currently ranked 8th in the west) have a very difficult sched-

ule in the remainder of the season, while some teams chasing the Grizzlies, namely

the New Orleans Pelicans (currently ranked 10th), have a much easier remaining

schedule. For this reason, ranking projections from multiple sources (ESPN 2020,

Sports Illustrated 2020) claim the Pelicans have a higher chance of qualifying for the

playoffs than the Grizzlies.

• The Orlando Magic (currently 8th in the east) is expected to improve its performance
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in the remainder of the season, which will allow it to swap places in the ranking with

the currently 7th-place Brooklyn Nets. This will prevent the Magic from meeting the

powerful Milwaukee Bucks in the first round of the playoffs (recall that the 7th-ranked

team is matched with the 2nd-ranked team, and the 8th-ranked team is matched with

the 1st-ranked team).

Finally, it is worth noting that the order in which teams pick rookie players in each year’s

NBA draft is also tied to the final ranking, with the lowest-ranked teams having a higher

chance of winning the lottery and drafting the best rookie player. Therefore, the specific

ranking of teams outside of the top 8 in each conference is also important. The quality of

the players in the draft varies from season to season, but some first-pick rookie players have

included generational talents LeBron James, Magic Johnson, and Hakeem Olajuwon, who

have had a huge impact in leading their respective teams to win multiple championships.

1.3.2 Problem Description

At the time of the 2019-20 suspension, 971 games in the 1230-game season were played

leaving 259 games remaining. Given a target number of games that each team should play

in the full season, we are interested in selecting a subset of the remaining 259 games that

satisfies these targets. Typically, each of the 30 teams plays 41 home and 41 away games

for a total of 82 games in the season. Shortening the season involves reducing the target

from 82 games/team to a lower number (e.g., 70), with half the games at home and half

away. Since the results of the 259 remaining games are uncertain, both the ranking produced

by playing the full 82 game/team season and the ranking produced by playing a shortened

(e.g., 70 game/team) season are uncertain. Our problem is to select a subset of games that

minimize the expected dissimilarity between the ranking of the full season and the ranking

of the shortened season. Before we introduce our models, we introduce several metrics that
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may be used for measuring the similarity of rankings.

1.3.3 Measures of Similarity/Dissimilarity between Rankings

We represent a ranking of n teams as a vector, with the components 1..n permuted in

order of highest-to-lowest percentage of games won during the regular season. Throughout

the chapter, we follow the convention that r̂ represents a ranking resulting from playing

all games in the full season, while r represents a ranking resulting from playing a specific

subset of the remaining games (i.e., the shortened season case). Furthermore, when we

wish to notationally distinguish between multiple rankings in the shortened season case, we

use a superscript. For example, r(1) and r(2) represent two distinct rankings resulting from

concluding a shortened season with two different sets of games.

Three widely used measures of similarity/dissimilarity between rankings are Kendall’s co-

efficient (τ), Spearman’s coefficient (ρ), and Manhattan distance. We will now define these

metrics, using the following small 4-team example to illustrate.

Example 1: Assume there are only four teams in the league: LAL, MIL, LAC, and BOS. Table

1.2 contains the full-season ranking r̂, and two alternative rankings r(1) and r(2) (which is

simply the reverse of r(1)).

Teams Ranking (r̂) Ranking (r(1)) Ranking (r(2))

LAL 1 1 4
BOS 2 4 1
MIL 3 2 3
LAC 4 3 2

Table 1.2: Example 1: Three different rankings.
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1.3.3.1 Kendall’s τ .

Kendall’s rank correlation coefficient, or simply Kendall’s τ , introduced in Kendall (1938),

is a metric used to measure the ordinal association between two measured quantities. Intu-

itively, Kendall’s τ is high (maximum +1) when observations in two variables have similar

ranks, and it is low (minimum -1) when observations have dissimilar (opposite) ranks. Let us

consider Kendall’s τ in the context of team rankings in the NBA. For a given pair of rankings

(r, r̂), we call a pair of teams (i, j) concordant if the preference between these two teams

agrees in both rankings; that is, if both r̂i > r̂j and ri > rj, or if both r̂i < r̂j and ri < rj.

The pair of teams (i, j) is said to be discordant if r̂i > r̂j and ri < rj, or if r̂i < r̂j and ri > rj.

If r̂i = r̂j or ri = rj, the pair of teams is neither concordant nor discordant. For instance in

Table 1.2, when we compare rankings r̂ and r(1), the pair (LAL, BOS) is concordant, since in

both rankings LAL stands higher than BOS. The pair (BOS, LAC) however is discordant, since

BOS has the higher rank in r̂, while LAC gets the higher spot in r(1).

Using the number of concordant and discordant pairs and the total number of teams in the

ranking, Kendall’s τ is defined as

τCD =
(number of concordant pairs)− (number of discordant pairs)(

n
2

) (1.1)

For the rankings presented in Example 1, τCD(r(1), r̂) = 4−2
6

= 0.33, because there are 6 pairs

of teams in total, two of which are discordant (i.e., MIL–BOS, LAC–BOS), and the other four

pairs are concordant. Similarly, τCD(r(2), r̂) = −0.33 since the ranking r(2) is the reverse of

r(1). Because r(1) has a higher Kendall’s τ than r(2), it more closely resembles the full-season

ranking r̂.

Since our goal is to propose a ranking that best resembles the end-of-season ranking, r̂, we

count the pairs of teams with identical positions in r̂ and r as concordant pairs. Consequently,

provided that the number of discordant and concordant pairs add up to the total number of
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pairs of teams in the league (i.e., 1
2
n(n− 1)), we redefine Kendall’s τ so that it depends only

on the number of concordances. Moreover, for the sake of interpretability, we also divide

the number of concordant pairs (the maximum is n
2
(n− 1)) by n

2
to obtain the concordance

per team, which results in a number between 0 and n− 1. Concordance per team represents

the number of opponents with the same position in two alternative rankings relative to an

arbitrarily chosen team, and is defined as:

τC =
number of concordant pairs

n/2
. (1.2)

Continuing our example, the concordance per team is τC(r(1), r̂) = 4
2

= 2 between (r(1, r̂)

and it is τC(r(2), r̂) = 2
2

= 1 between (r(2, r̂). Also note that, in general, τCD = 2
n−1

τC − 1.

1.3.3.2 Euclidean distance (Spearman’s ρ).

Spearman’s rank correlation coefficient, or simply Spearman’s ρ, introduced in Spearman

(1904), is another measure of rank correlation, which is high (maximum +1) when obser-

vations in two variables have similar ranks, and it is low (minimum -1) when observations

have opposite ranks. Spearman’s ρ takes the Euclidean distance between two rankings and

transforms it into a value between -1 and 1 using the following equation

ρ(r, r̂) = 1− 6

n3 − n

n∑
i=1

(ri − r̂i)2 . (1.3)

It can be easily verified that ρ(r̂, r(1)) = 0.4 and ρ(r̂, r(2)) = −0.4, which is consistent with

our conclusion based on Kendall’s τ that r(1) is the most similar to r̂.
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1.3.3.3 Manhattan distance.

Similar to Spearman’s ρ, the Manhattan distance (or `1-distance) between two rankings r and

r̂ measures the absolute value of the differences in these rankings. As in (1.2), we divide the

Manhattan distance by n, which gives us the average number of places an arbitrarily-chosen

team switches between the two rankings.

Manhattan Distance(r, r̂) =
1

n

n∑
i=1

|ri − r̂i| (1.4)

The Manhattan distances between (r(1), r̂) and (r(2), r̂) in Example 1 are 4 and 5, respectively.

1.3.3.4 Practical implications.

We now present an example to illustrate the magnitudes of our similarity/dissimilarity mea-

sures that we observe when using real data. Our example, shown in Table 1.3, is based

on several anticipated changes to the ranking that pundits believe would occur between

the suspension date of the 2019–20 NBA season and the end of the season assuming it is

played in full. We have omitted Spearman’s ρ from the table, as we have found it a difficult

metric to optimize directly and therefore we have based our numerical results on concor-

dance (as measured by the concordance-per-team metric, (1.2)) and Manhattan distance

(1.4). Nevertheless, a model we introduce later in the chapter refers to Spearman’s ρ in its

derivation, and it is worth pointing out that the Manhattan distance metric is also similar

in spirit to Spearman’s ρ. Finally, given there are n = 30 teams, the maximum concordance

is n− 1 = 29.
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Anticipated changes in the ranking Concordance Manhattan

The Pelicans, with improved roster after Zion Williamson returns from his
injury, replace the 8th-ranked Grizzlies to clinch the last playoff spot in the
west.

28.73 0.26

The 76ers move up to replace the 4th-ranked Heat in the east, recovering after
a bad performance for two months due to multiple injuries.

28.73 0.26

The Hawks outperform the Knicks and the Pistons in the remainder of the
season, and move up to 12th spot in the east, after improving their roster and
acquiring Clint Capela and Nene Hilario.

28.86 0.13

The Magic steal the 7th-ranked spot in the east from the Nets, who lost their
two key players, Kevin Durant and Kyrie Irving, due to injury before the
suspension and they will miss the remainder of the season.

28.93 0.06

All of the above changes combined 28.13 0.73

Table 1.3: Anticipated changes in the 2019–20 ranking with corresponding similar-
ity/dissimilarity values considering rankings before and after each change.

1.4 Models

As schematically depicted in Figure 1.4, our modeling approach consists of two phases. To

determine the best subset of games to include in the shortened season, we need to have

estimates of the outcomes of each of the remaining games. Hence, in the first phase, we

develop predictive models to predict which teams win the remaining games. Using historical

data from all games in the regular season that were played before the suspension, we train

a binary classification model to predict the outcome of each remaining game. Instead of

including team labels while training the predictive model, we focus on game-related features

(e.g., win percentage, point differential, and home-away indicator, among others). This way,

we take into account the toughness of the schedule for different teams throughout the regular

season.

Phase	I:	Predictive	Model

Predicting	outcome	of	the	remaining	games
using	a	binary	classification	model

Phase	II:	Prescriptive	Model

Selecting	a	subset	of	the	remaining	games	to
include	in	the	shortened	season,	using

stochastic	optimization

Figure 1.4: Two main phases of our methodology
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Our goal in the second phase (i.e., prescriptive model) is to determine which games to

include and which games to cancel in the shortened season. We minimize the expected

dissimilarity between the shortened season’s ranking and the full season’s ranking, where this

expectation is taken over multiple possible scenarios which reflect the random chance each

team has for winning each game. Specifically, we treat the outcomes of games as Bernoulli

random variables whose parameters are estimated in the first (predictive modeling) phase,

and formulate our prescriptive models as stochastic optimization problems.

1.4.1 Predictive Model

In this section, we present a model for the probabilistic outcome of the games which are

postponed due to the suspension. Since the response variable (i.e., whether the home team

wins or loses) is binary, the prediction problem is a binary classification task. In a binary

classification task, one is interested in separating a set of data points G with class labels 0

or 1. Each training data point g ∈ G is represented by (~xg, yg) with ~xg = (xg,1, . . . , xg,D) and

yg ∈ {0, 1} denoting the features and the class label of the data point, respectively, where

D is the dimension of the feature space. The goal of the classification problem is to learn

a discrimination rule p : RD → [0, 1], which represents the probability that the data point

belongs to class 1 (“home team wins”). The class label of observation ~x is then determined

by comparing p(~x) with a predefined threshold (e.g., 0.5). A large number of explanatory

variables are available in the dataset among which we choose the most significant features

for the predictive model, listed in Table 1.4.

Features Definition

x1 (resp. x5) home (resp. guest) team win percentage
x2 (resp. x6) home (resp. guest) team average point differential
x3 (resp. x7) home (resp. guest) team win percentage in the last 8 games
x4 (resp. x8) home (resp. guest) team win percentage at home (resp. as guest)

Table 1.4: Features used in our binary classification method.
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As illustrated in Figure 1.5, the suspension day splits the entire set of games in an NBA

regular season into training and test datasets.

0 82	games15 30 . 	. 	.

Suspension!

Day	1:	(TOR	vs.	NOP) 	 ::	win 
Day	1:	(LAL	vs.	LAC) 	 	 ::	loss
Day	2:	(DAL	vs.	WAS) 	::	win 
Day	2:	(MIA	vs.	MEM) 	::	win 

...

Training	Dataset Test	Dataset
Day	143:	(OKC	vs.	UTA) 	 ::	?? 
Day	143:	(MIL	vs.	BOS) 	 ::	?? 
Day	144:	(CHA	vs.	CLE) 	 	::	?? 
Day	144:	(SAS	vs.	DEN) 	 ::	?? 

...

. 	. 	.

Figure 1.5: Training/test datasets in an NBA regular season

We use two metrics to evaluate the predictive performance of a classifier: accuracy and

predictive power. Let G be the set of remaining games, yg the true outcome of game g,

pg the predicted probability that the home team wins game g, and ŷg = I(pg ≥ 0.5) the

predicted class label (i.e. most likely outcome) for game g, where I(·) is the indicator

function. Accuracy, defined below in (1.5), is a commonly-used metric for assessing the

performance of a predictive model (Tharwat 2018); in our context, it measures the fraction

of games that are correctly predicted according to the most likely outcome ŷg.

Accuracy =
1

|G|
∑
g∈G

(
yg × ŷg + (1− yg)× (1− ŷg)

)
(1.5)

Since we are less interested in making a single best prediction, and are more interested in

solving a prescriptive model based on our predictions, we introduce the predictive power

metric which is a modification of the commonly-used accuracy metric and we expect has

independent value apart from the application in this study:

Predictive Power =
1

|G|
∑
g∈G

(
yg × pg + (1− yg)× (1− pg)

)
. (1.6)

The superiority of the predictive power metric in selecting a predictive model becomes clear

when the prescriptive model that uses its predictions is a stochastic optimization model.

In this case, we may generate several scenarios, and consequently each game may have
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several predictions (one for each scenario). What becomes relevant in this context is the

average predictive accuracy over generated scenarios (each gets treated like an independent

prediction), rather than the predictive accuracy of a single “best bet”. Formally, we model

the outcome of each game g as a Bernoulli random event with probability pg determined

by our predictive model. As presented in Proposition 1.1 below, predictive power measures

the expected prediction accuracy of a classifier, when these Bernoulli random processes are

replicated infinitely many times.

Proposition 1.1. Predictive power as defined in (1.6) measures the expected accuracy pro-

vided that the outcome of game g ∈ G, denoted Wg, follows a Bernoulli distribution with

probability pg.

Proof. Proof. See Appendix A.1 for the proof.

We examine five different binary classifiers including Logistic Regression (Logit), Gaussian

Näıve Bayes (NB), Support Vector Machine with a linear kernel (SVM), Random Forest

(RF), and Multilayer Perceptron (MLP). We provide results in section 1.6.2.

1.4.2 Prescriptive Models

In a league with n teams, let T denote the set of teams in the league. Assume that at the

time of suspension, a set G of regular-season games remain to be played, and each team

i ∈ T has won a total of y0
i games before the suspension. We represent each game g ∈ G

with a tuple g = (i, j, k), where i(g) ∈ T and j(g) ∈ T denote the host and guest teams,

respectively, and k(g) the kth match between these two teams (recall the same pair of teams

may play each other more than once in the season). We also define Gh
i ⊂ G and Ga

i ⊂ G as

the set of remaining home and away games for team i, respectively.
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We model the outcome of game g using the Bernoulli random variable Wg, which is one if the

host team i(g) wins, and zero if the guest team j(g) wins. For each game g, we estimate the

parameter pg = P (Wg = 1) using historical data as discussed in section 1.4.1. Formally, we

also denote the set of all possible outcomes of all games in the remainder of the full season by

Ξ, and use ξ ∈ Ξ to index a specific realization of all games’ outcomes. When appropriate,

we will explicitly write Wg(ξ) to indicate Wg’s dependence on ξ. For a given outcome ξ ∈ Ξ,

the total number of wins for team i after playing all remaining games (i.e., at the end of the

full regular season) is ŷi(ξ), where

ŷi(ξ) = y0
i +

∑
g∈Ghi

Wg(ξ) +
∑
g∈Gai

(1−Wg(ξ)). (1.7)

We continue to use the caret (̂ ) to denote quantities which correspond to the full regular

season.

For each game g ∈ G, we define a binary decision variable xg which takes the value of one if

we choose to include this game in the shortened season, and zero otherwise.

Note that these x-variables must be made prior to us knowing the realization of ξ. We define

X as the set of feasible solutions, i.e., restrictions placed on the x-variables expressed by

tactical considerations such as having an equal total number of home/away games for each

team as well as the integrality requirements on the x-variables, i.e.,

X =


∑

g∈Ghi
xg = mh

i , ∀i ∈ T∑
g∈Gai

xg = ma
i , ∀i ∈ T

xg ∈ {0, 1}, ∀g ∈ G

 , (1.8)

where mh
i and ma

i denote the targeted number of home and away games for team i, re-

spectively. For instance, if team i has played 33 home and 31 away games so far before the

suspension, and we decide to conclude the season with a total of 72 games for each team, then
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this team must play an additional mh
i = 72

2
−33 = 3 home and ma

i = 72
2
−31 = 5 away games.

Another alternative would be to combine the constraints on the number of home/away games

for each team into a single constraint of the form
∑

g∈Ghi ∪Gai
xg = mh

i +ma
i that sets a target

for the total number of games to play without specific home/away sub-targets.

For a given shortened season x ∈ X and realization ξ ∈ Ξ, we denote the total number of

wins for team i at the end of the shortened regular season as yi(x, ξ), where

yi(x, ξ) = y0
i +

∑
g∈Ghi

Wg(ξ)xg +
∑
g∈Gai

(1−Wg(ξ))xg. (1.9)

Let d(y(x, ξ), ŷ(ξ)) be a measure of dissimilarity between the vectors y(x, ξ) and ŷ(ξ), i.e.,

a measure that compares the wins accumulated by each team over a full season with the

wins accumulated by each team over a shortened season, for a specific shortened season x

and outcome ξ. Note that there is a one-to-one correspondence between ŷ(ξ) and the team

rankings at the end of the full season, and between y(x, ξ) and team rankings at the end

of the shortened season. Therefore, d(y(x, ξ), ŷ(ξ)) can also be viewed as a dissimilarity

measure between these rankings, and our goal is to find a shortened season x that minimizes

the expected value of this dissimilarity. That is, we are interested in solving stochastic

optimization problems of the general form

min
x∈X

Eξ[d(y(x, ξ), ŷ(ξ))],

for different choices of the dissimilarity measure d. We now introduce several such formula-

tions.
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1.4.2.1 Maximizing concordance per team.

For a given outcome ξ, let r̂(ξ) denote the ranking vector we get when the full season

is played, and r(x, ξ) denote the ranking vector we get when the shortened season x is

played. To maximize the expected similarity between r(x, ξ) and r̂(ξ) according to the

average concordance per team metric as defined in (1.2), we solve the following stochastic

optimization problem:

max
x∈X

Eξ [τC (r(x, ξ), r̂(ξ))] . (1.10)

While this formulation is compact, its objective function is highly nonlinear; consequently,

we linearize it as follows. First, we define a parameter ẑij(ξ) which takes value one if team i

is above team j in the full-season ranking r̂(ξ), and zero otherwise. Similarly, we introduce

a binary variable zij(x, ξ) which takes value one if team i is above team j in the shortened-

season ranking r(x, ξ), and zero otherwise. Since zij(x, ξ) + zji(x, ξ) = 1, we introduce only

the zij-variables where i < j and use 1− zij(x, ξ) in place of zji(x, ξ) whenever it is needed.

As well, we introduce continuous variables yi(x, ξ), i ∈ T , to keep track of the number of

wins team i makes in the shortened season x under realization ξ. Finally, since it is clear that

the solution to this optimization problem encodes a single x-vector, we henceforth suppress

the x-argument for the y- and z-variables. Using these parameters and variables, we restate

problem (1.10) as the following stochastic MIP:

[PC] max
2

n
Eξ

[∑
i∈T

∑
j∈T :j>i

(zij(ξ)ẑij(ξ) + (1− zij(ξ))(1− ẑij(ξ)))

]
(1.11)

s.t. yi(ξ) = y0
i +

∑
g∈Ghi

Wg(ξ)xg +
∑
g∈Gai

(1−Wg(ξ))xg ∀i ∈ T,∀ξ ∈ Ξ

(1.12)
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−M ij(ξ)(1− zij(ξ)) ≤ yi(ξ)− yj(ξ) ≤M ij(ξ)zij(ξ) ∀i, j ∈ T : i < j, ∀ξ ∈ Ξ

(1.13)

zij(ξ) ∈ {0, 1} ∀i, j ∈ T : i < j, ∀ξ ∈ Ξ

(1.14)

x ∈ X. (1.15)

The objective function (1.11) counts the expected number of concordant pairs per team.

Constraint (1.12) counts the number of wins for each team under each realization as defined

by equation (1.9), and constraint (1.13) establishes the relationship between the number

of wins and relative positions of teams, in which M ij(ξ) and M ij(ξ) are parameters with

sufficiently large values (we show how to compute approproate values in section 1.5.1.3).

We remark that this formulation may be viewed as a stochastic program with recourse,

where the x-variables are first-stage variables (for which there is only one choice to be made)

and the y- and z-variables are second-stage “recourse” variables (for which there is one such

variable for each possible outcome ξ). Note, however, that in our application there is no true

recourse. Rather, y and z are auxiliary variables whose purpose is to linearize the objective

function.

1.4.2.2 Minimizing Euclidean distance between rankings.

As introduced in section 1.3.3.2, Euclidean distance between rankings is a metric for measur-

ing dissimilarity of two rankings. To find a ranking r(x, ξ) that best resembles r̂(ξ) according

to this measure, one needs to select a solution x ∈ X that minimizes
∑

i(ri(x, ξ) − r̂i(ξ))2.

Thus, we select the subset of games to be played after the suspension by solving the following
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stochastic optimization problem:

min
x∈X

Eξ

[∑
i

(ri(x, ξ)− r̂i(ξ))2

]
. (1.16)

Measuring the dissimilarity between two rankings using their Euclidean distance poses two

challenges. First, it is difficult to analytically compute the expected value in (1.16) based

on the ranking differences. Second, computing ri(x, ξ) for a given shortened season x and

realization ξ requires a large number of binary variables zij(ξ), the linking constraints (1.13),

and constraints of the form

ri(x, ξ) = n−
∑
j>i

zij(x, ξ)−
∑
j<i

(1− zji(x, ξ)) ∀i ∈ T, (1.17)

which conjointly with the quadratic objective function in (1.16), make solving even moderately-

sized instances of the problem challenging. To circumvent these difficulties, we propose two

alternative representations for problem (1.16) in the following two subsections.

1.4.2.3 Minimizing Manhattan distance between rankings.

In the first alternative measure of dissimilarity, we replace the Euclidean distance between

rankings with Manhattan distance to cast the problem as a simpler stochastic MIP of the

following form:

[PM] min
1

n
Eξ

[∑
i∈T

di(ξ)

]
(1.18)

s.t. yi(ξ) = y0
i +

∑
g∈Ghi

Wg(ξ)xg +
∑
g∈Gai

(1−Wg(ξ))xg ∀i ∈ T,∀ξ ∈ Ξ

(1.19)
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−M ij(ξ)(1− zij(ξ)) ≤ yi(ξ)− yj(ξ) ≤M ij(ξ)zij(ξ) ∀i, j ∈ T : i < j, ∀ξ ∈ Ξ

(1.20)

di(ξ) ≥ n−
∑
j>i

zij(ξ)−
∑
j<i

(1− zji(ξ))− r̂i(ξ) ∀i ∈ T,∀ξ ∈ Ξ

(1.21)

di(ξ) ≥ r̂i(ξ)− (n−
∑
j>i

zij(ξ)−
∑
j<i

(1− zji(ξ))) ∀i ∈ T,∀ξ ∈ Ξ

(1.22)

zij(ξ) ∈ {0, 1} ∀i, j ∈ T : i < j, ∀ξ ∈ Ξ

(1.23)

x ∈ X. (1.24)

The objective function (1.18) minimizes the expected Manhattan distance between the full-

season and shortened-season ranking, i.e., constraints (1.21) and (1.22) imply di = |ri(x, ξ)−

r̂i(ξ)|. All other constraints and parameters are the same as in PC, with the sole addition

of the r̂i(ξ) parameters.

Finally, we also note the following connections between PC and PM. First, the Manhattan

distance between two rankings is zero if and only if the rankings are fully concordant. Sec-

ond, the following proposition establishes another interesting connection between these two

objectives:

Proposition 1.2. For any shortened season x ∈ X and realization ξ ∈ Ξ, let ϕC(x, ξ) and

ϕM(x, ξ) be the objective values of PC and PM, respectively. The following relationship holds:

ϕM(x, ξ) ≤ (n− 1)− ϕC(x, ξ). (1.25)

Proof. Proof. See Appendix A.1.
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As a result of Proposition 1.2, (n−1)−Eξ[ϕC(x, ξ)] is an upper bound on Eξ[ϕM(x, ξ)], which

means that maximizing Eξ[ϕC(x, ξ)] effectively minimizes Eξ[ϕM(x, ξ)]. But the opposite

does not necessarily hold.

1.4.2.4 Minimizing win percentage distance.

A second alternative objective which is similar in spirit to minimizing the expected Eu-

clidean distance between rankings keeps the quadratic nature of the objective but replaces

the ranking vectors with the win count vectors. That is, we consider the Euclidean distance

between the number of wins at the end of the shortened season y(x, ξ) and the number of

wins at the end of the full season ŷ(ξ). Since the number of games played is different in the

shortened and full seasons, we define the dissimilarity between y(x, ξ) and ŷ(ξ) in terms of

win percentage as

∑
i∈T

(
yi(x, ξ)

m
− ŷi(ξ)

m̂

)2

,

where m is the target total number of games for each team in the shortened season (e.g.,

70), and m̂ is the number of games played by each team in the full season (e.g., 82). To

minimize this dissimilarity measure, we solve the following stochastic mixed integer quadratic

program:

[PW] min Eξ

[∑
i∈T

(
yi(ξ)

m
− ŷi(ξ)

m̂

)2
]

(1.26)

s.t. yi(ξ) = y0
i +

∑
g∈Ghi

Wg(ξ)xg +
∑
g∈Gai

(1−Wg(ξ))xg ∀i ∈ T,∀ξ ∈ Ξ (1.27)

x ∈ X. (1.28)

Note that this formulation does not require the binary variables zij(ξ) and the associated

linking constraints, making it a lighter formulation than PM. Moreover, as we shall show in
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section 1.5.2, unlike for PM, we may derive a closed-form expression for the expected value

in the objective function (1.26), which results in a much simpler deterministic equivalent

problem, despite the objective being quadratic rather than linear. On the other hand, as

possible downside of this formulation, it does not model rankings directly, which are more

closely tied to league outcomes than win percentages.

1.5 Solution Methodology

The stochastic optimization problems introduced in section 1.4.2 contain 2|G| realizations of

ξ, each with their own set of second-stage decision variables and constraints. As the full

stochastic optimization problems are too large to solve directly, we introduce two methods

which approximately solve PC and PM, as well as an exact deterministic counterpart for

PW.

1.5.1 Solution Methods for the Stochastic Models PC & PM

For PC and PM, we approximately solve the stochastic optimization problems using (i)

mean value approximation, and (ii) sample average approximation. Moreover, we introduce

a variable fixing technique which accelerates our solution methods.

1.5.1.1 Mean value approximation.

Replacing all random parameters in a stochastic optimization problem by their expected

values yields a deterministic problem known as the Mean Value Problem (MVP). In our

case, we may produce MVP’s for PC and PM by replacing the random variables Wg which

represent the outcome of each game g with their means pg = E[Wg]. The y and z variables
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are then interpreted as expected values over all outcomes ξ ∈ Ξ, given the shortened season

x. The MVP corresponding to PC is:

[PC-MVP] max
2

n

∑
i∈T

∑
j∈T :j>i

(zij ẑij + (1− zij)(1− ẑij)) (1.29)

s.t. yi = y0
i +

∑
g∈Ghi

pgxg +
∑
g∈Gai

(1− pg)xg ∀i ∈ T (1.30)

−M ij(1− zij) ≤ yi − yj ≤M ijzij ∀i, j ∈ T : i < j (1.31)

zij ∈ {0, 1} ∀i, j ∈ T : i < j (1.32)

x ∈ X. (1.33)

The MVP counterpart of the stochastic optimization problem PM, which we denote PM-

MVP, can be obtained similarly.

1.5.1.2 Sample average approximation.

Sample Average Approximation (SAA) is a Monte Carlo simulation-based technique for

approximating stochastic optimization problems (Kleywegt et al. 2002), which has been a

prominent technique widely used in various applications (Begen et al. 2012, Gans et al. 2015,

Freeman et al. 2016, Lu et al. 2018). Let S = {ξ(1), ξ(2), . . . , ξ(|S|)} be an independently

and identically distributed random sample of ξ. SAA reduces the size of the problem by

approximating the expected value in the objective function with the sample average function.

In the following, we use the superscript s to reference the second-stage variables and random

parameters under scenario s ∈ S. For instance, under scenario s, W
(s)
g refers to outcome of

game g, ŷ
(s)
i refers to the total number of wins for team i at the end of the full season, and

y
(s)
i refers to the decision variable counting the total number of wins for team i at the end

of the shortened season. We construct the SAA counterpart of the stochastic program PC

by replacing the full set of outcomes Ξ with the sample set S. The SAA counterpart of PM,
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denoted PM-SAA, can be formulated similarly.

[PC-SAA] max
1

|S|
∑
s∈S

2

n

∑
i∈T

∑
j∈T :j>i

(
z

(s)
ij ẑ

(s)
ij + (1− z(s)

ij )(1− ẑ(s)
ij )
)

(1.34)

s.t. y
(s)
i = y0

i +
∑
g∈Ghi

W (s)
g xg +

∑
g∈Gai

(1−W (s)
g )xg ∀i ∈ T,∀s ∈ S

(1.35)

−M (s)
ij (1− z(s)

ij ) ≤ y
(s)
i − y

(s)
j ≤M

(s)

ij z
(s)
ij ∀i, j ∈ T : i < j, ∀s ∈ S

(1.36)

z
(s)
ij ∈ {0, 1} ∀i, j ∈ T : i < j, ∀s ∈ S

(1.37)

x ∈ X. (1.38)

As the sample size increases, the optimal solution and the optimal value of the SAA prob-

lems converge to their ‘true’ stochastic counterparts with probability one (Kleywegt et al.

2002). It should also be noted that, since the outcome of the games are assumed to be

independent Bernoulli random variables, in the SAA procedure one is effectively sampling

from the individual Bernoulli distributions. Hence, although the total number of possible

realizations is 2|G|, a significantly smaller sample size |S| should suffice for estimating the

sample proportion with high confidence.

1.5.1.3 Variable fixing and preprocessing.

We may improve the computational efficiency of both the SAA and MVP counterparts of

PC and PM by fixing certain variables at their optimal values and eliminating redundant

constraints, as described by the following proposition.

Proposition 1.3. Let ξ̃ be an arbitrary realization or expected value of ξ. For each team i,
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sort Gh
i and Ga

i in the non-decreasing order of W (ξ̃). Let Uh
i and Lhi be the summation of

Wg(ξ̃) values corresponding to the first and last mh
i games in Gh

i , respectively. Similarly, let

Ua
i and Lai be the summation of Wg(ξ̃) values corresponding to the first and last ma

i games

in Ga
i , respectively. Define yUi = y0

i + Uh
i + (ma

i − Lai ) and yLi = y0
i + Lhi + (ma

i − Ua
i ) to be

the optimistic and pessimistic number of wins for team i under ξ̃, respectively. For each pair

of teams (i, j), define Mmax
ij = yUi − yLj and Mmin

ij = yLi − yUj . Then:

(i) If Mmax
ij < 0, then zij(ξ̃) = 0, and the corresponding linking constraints are redundant.

(ii) If Mmin
ij > 0, then zij(ξ̃) = 1, and the corresponding linking constraints are redundant.

(iii) Otherwise, M ij(ξ̃) = −Mmin
ij and M ij(ξ̃) = Mmax

ij serve as the big-M values in the

linking constraints.

Proof. The statements follow from the definition of optimistic and pessimistic number of

wins (i.e., yUi and yLi ) for each team and definition of the z-variables.

1.5.2 Exact Solution Method for the Stochastic Model PW

We now show how the stochastic problem PW from §1.4.2.4 can be solved using an equivalent

deterministic problem. We will use the notation V to refer to the variance of a random

variable.

Theorem 1.1. The stochastic model PW can be solved using the following equivalent deter-

ministic linearly-constrained quadratic mixed-integer optimization problem:

[PW-DQIP] min
∑
i∈T

(
1

m2
(vi + µ2

i ) +
1

m̂2
(v̂i + µ̂2

i )−
2

mm̂
(vi + µiµ̂i)

)
(1.39)

s.t. µi = y0
i +

∑
g∈Ghi

pgxg +
∑
g∈Gai

(1− pg)xg (1.40)
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vi =
∑

g∈Ghi ∪Gai

pg(1− pg)xg (1.41)

x ∈ X, (1.42)

where the decision variables, in addition to x = {xg, g ∈ G}, include µi and vi which encode

the mean and variance of the number of wins for team i in the shortened season, respectively.

Moreover, the following parameters represent the mean and variance of the number of wins

for team i in the full season, respectively:

µ̂i = Eξ [ŷi(ξ)] =y0
i +

∑
g∈Ghi

pg +
∑
g∈Gai

(1− pg)

v̂i = Vξ [ŷi(ξ)] =
∑

g∈Ghi ∪Gai

pg(1− pg).

Proof. Proof. See Appendix A.1.

1.6 Computational Experiments

We performed comprehensive computational experiments to assess the performance of our

predictive and prescriptive models. We coded our predictive models in Python 3.7 using the

scikit-learn package (Pedregosa et al. 2011). For the prescriptive models, we coded the

mathematical models in C# and solved the mixed integer programs using the ILOG Concert

library and CPLEX 12.10 solver with all solver settings left at their default values. For

visualizing the distribution of performance metrics, we used the vioplot R package. All

experiments were conducted on a Dell desktop equipped with Intel Core i7-6800K at 3.40

GHz CPU and 16 GB of memory running a 64-bit Windows 10 operating system.
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1.6.1 Dataset Description

We use historical data from 14 NBA regular seasons (2004–2010, 2012–2018), which are

precisely the years that the regular season had the same structure as today; that is, 30 teams,

each playing 82 games with schedules constructed using the same formula we described in

section 1.1. Prior to 2004, the NBA consisted of fewer teams and as a result the regular

season schedule had a different structure. We also omit 2010–11 from our study, since this

regular season was suspended for two months, and a 66-game shortened season was adopted.

We used the box score datasets publicly available for all seasons on NBA’s official website

(NBA 2020c) which contains the detailed information for each game, team and player statis-

tics. We then created 14 training datasets considering three different alternatives for the day

at which the season is suspended (i.e., days 100, 120, 140 of the regular season). Note that

each regular season takes between 170–180 days. The features input to our predictive model

are listed in Table 1.4; see section 1.4.1.

1.6.2 Predictive Model Results

To select a predictive model, we evaluate several binary classifiers using both the widely-used

accuracy metric and our variant, the predictive power metric, as defined in section 1.4.1.

We believe accuracy is a good model selection metric when the number of scenarios in

the optimization model is small (it measures the predictive accuracy of a single “best”

scenario), whereas our predictive power metric is a more powerful model selection metric

when the number of scenarios in the optimization model grows large (recall from Proposition

1.1, predictive power may be interpreted as an “expected accuracy” which in the limit is

achievable by the prescriptive model when the number of scenarios grows large).

According to Figure 1.6, which shows the distribution of accuracy and predictive power
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for 5 different classifiers across 14 NBA seasons, while all classifiers exhibit similar accuracy

values, the predictive power for the Näıve Bayes classifier is significantly higher than the other

classifiers. Hence, we build our prescriptive approach based on the Näıve Bayes predictions.

For details of the Näıve Bayes classifier (i.e., predictive model and parameter estimates), see

Appendix A.2.
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Figure 1.6: Comparison between accuracy and predictive power for 5 different classifiers
across 14 NBA seasons

1.6.3 Prescriptive Model Results

In this section, we present the computational results for our proposed prescriptive models

PC-MVP, PC-SAA, PM-MVP, PM-SAA, and PW-DQIP. We start by analyzing the impact

of the number of scenarios on our SAA-based models. Figure 1.7 presents the performance of

PC-SAA across four choices of sample size |S| ∈ {5, 15, 25, 50}. Each boxplot corresponds to

50 replications of the SAA algorithm. The concordance values are obtained after evaluating

the solution x proposed by each model on 10,000 randomly-generated scenarios. The panel

on the right presents the optimality gaps of the SAA problems after reaching a time limit

of 500 seconds. As the number of scenarios increases, one should expect to obtain a closer

approximation of the true stochastic problem via SAA. However, a larger sample amounts to

solving a more challenging SAA problem. As depicted in Figure 1.7, initially as the sample

size increases, the quality of the solution improves in the simulation phase. However, after

surpassing 25 scenarios, the SAA becomes computationally intractable, amounting to large
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optimality gaps and a degradation in the quality of the solution. Hence, the trade-off between

the quality of the solution and the runtime is balanced at 25 scenarios. Thus, we select 25

scenarios for the SAA counterparts of our PC and PM models in our main experiments.

Concordance per Team

|S |=5 |S |=10 |S |=25 |S |=50

28.2

28.3

28.4

28.5

28.6
Optimality Gap (%)

|S |=5 |S |=10 |S |=25 |S |=50
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1.5%
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Figure 1.7: Performance of the SAA algorithm across different choices of sample size.

Table 1.5 summarizes the results of applying our variable fixing technique, introduced in

Proposition 1.3, in prescriptive models involving the zij decision variables (i.e., PC and PM).

Note that the set of fixed variables is the same between PC and PM models in both solution

methods MVP and SAA. The high percentages under the columns “Percentage” in Table 1.5

highlight the effectiveness of the variable fixing technique in eliminating a large proportion

of the z-variables across different scenarios in both MVP and SAA. More importantly, the

technique is able to eliminate between 7,000–9,000 binary variables in the SAA problems.

We also observe that as the suspension day increases (i.e., the season is suspended later),

more pairs of teams become impossible to switch ranking positions, given the limited number

of remaining games. For instance, when the season is suspended on day 140, the prescriptive

model has control over only 17% of these binary variables in a 74-game shortened season,

with the remaining 83% of the variables fixed (i.e., eliminated).

Table 1.6 reports the runtime in seconds, objective function value, and optimality gap for

all five prescriptive models under different suspension days and target number of games,

averaged over 14 seasons. All MVP instances are solved to optimality. For SAA, most

instances have not converged to optimality by the 500-second time limit; hence, we report

the optimality gaps. For the sake of interpretability of the gaps from our PM-SAA model,

inspired by Proposition 1.2, we transform the lower-bound (LB) and upper-bound (UB)
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Sus. Day MVP SAA

(Target) Percentage Variables Percentage Variables

100 (66) 67.4% 293.1 64.5% 7,009.9
100 (70) 72.4% 315.1 70.3% 7,642.9
100 (74) 79.9% 347.4 78.4% 8,527.8
120 (66) 72.5% 315.2 69.6% 7,573.1
120 (70) 74.3% 323.1 72.0% 7,835
120 (74) 80.1% 348.4 78.2% 8,508.9
140 (70) 82.4% 358.3 80.6% 8,761.3
140 (74) 83.9% 365.1 82.3% 8,953

Table 1.5: Number of z-variables eliminated by our variable fixing technique, reported for dif-
ferent suspension days (100, 120, 140) and target number of games/team (66,70,74). Results
are averaged over 14 seasons.

obtained by the solver using the formulae n− 1−LB and n− 1−UB, respectively, yielding

the optimality gap of UB−LB
n−1−UB , which is on the same scale as the gap from PC-SAA. What we

notice is that as the suspension day increases, the solution space becomes smaller with fewer

games to choose from; thus, all models perform better. Moreover, SAA and PW-DQIP are

antagonistic with respect to the target number of games; as the target increases, SAA is able

to close the gap more easily, whereas the problem becomes more challenging for PW-DQIP.

Sus. Day PC-MVP PC-SAA PM-MVP PM-SAA PW-DQIP
(Target) Time Obj. Time Gap Obj. Time Obj. Time Gap Obj. Time Gap Obj.

100 (66) 0.12 29 500 1.43% 28.59 0.10 0 500 2.48% 0.70 500 1.93% 52.9
100 (70) 0.10 29 500 0.88% 28.75 0.08 0 500 1.40% 0.40 500 4.00% 31.3
100 (74) 0.07 29 473 0.21% 28.94 0.08 0 500 0.72% 0.21 500 7.85% 17.6
120 (66) 0.10 29 500 1.19% 28.63 0.09 0 500 2.84% 0.82 147 0.13% 90
120 (70) 0.08 29 500 0.77% 28.77 0.08 0 500 1.61% 0.47 427 1.00% 45.4
120 (74) 0.07 29 491 0.38% 28.88 0.06 0 500 0.95% 0.28 500 3.76% 22.7
140 (70) 0.09 28.9 500 0.86% 28.50 0.07 0.11 500 1.34% 0.61 1.34 0.00% 106.5
140 (74) 0.07 29 500 0.53% 28.76 0.06 0 500 0.90% 0.32 35.5 0.00% 36.7

Table 1.6: Performance of the prescriptive models, averaged over 14 seasons

1.6.4 Monte Carlo Simulation Results

Recall that the output of our prescriptive models PC-MVP, PC-SAA, PM-MVP, PM-SAA,

and PW-DQIP, is a shortened season x. As a benchmark, we also implement a greedy
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heuristic which selects games according to their original scheduled dates, with earlier games

assigned first until the constraints on the number of games per teams are met. To isolate

and measure the performance of the prescriptive model, independent of the predictive model,

we assume that the Bernoulli distributions fit by the predictive model are correct. Since we

are interested in measuring the expected performance of each model, we obtain a statistical

bound (c.f., Kleywegt et al. 2002) on the expected performance metric by conducting a

Monte Carlo simulation using a large sample, i.e., we generate 1,000 game outcomes from

these Bernoulli distributions. Each realization yields two rankings, one at the end of the

shortened season x, and the other at the end of the full season assuming all games are

played. We then compare these rankings using our two main metrics, namely, the number

of concordant pairs and the Manhattan distance between rankings.

Figure 1.8(a) illustrates the effect of increasing the suspension day, while Figure 1.8(b) shows

the impact of using a different target length of the season. Each plot in Figure 1.8 represents

the distribution of the simulation results across 14 NBA seasons when measuring the number

of concordant pairs per team, and the inner boxes represent the boxplots. Results for the

Manhattan distance metric are similar, and so we omit them here but provide them in

Figure A.2 in Appendix A.3.1.

According to Figure 1.8, in terms of the average concordance per team, all five proposed

models outperform the baseline greedy algorithm in most cases. Comparing the SAA and

MVP approximation schemes, we observe that the SAA counterparts of the stochastic models

PC and PM perform considerably better than their MVP counterparts, which highlights the

effectiveness of SAA in approximating the true underlying distributions. This is particularly

pronounced for PC, for which the SAA counterpart dominates MVP in all cases.

For our top three prescriptive models (i.e., PC-SAA, PM-SAA, and PW-DQIP), we perform

paired t-tests for each pair of models to quantitatively measure which model outperforms
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Figure 1.8: Distribution of the simulation results (concordance per team) across 14 NBA
seasons

the other. For any two models, m1 and m2, our hypothesis test is as follows:

H0 : µm1 − µm2 = 0 Null Hypothesis

Ha : µm1 − µm2 6= 0 Alternative Hypothesis

The outcome of each test using significance level α = 5% is one of the following three cases:

(i) we cannot reject the null hypothesis, i.e., p-value ≥ α which means m1 and m2 have

statistically similar performance, (ii) we reject the null hypothesis and µm1 − µm2 > 0, i.e.,

we conclude model m1 is better, or (iii) we conclude model m2 is better. Figure 1.9 shows

that PC-SAA and PW-DQIP each outperform PM-SAA in three out of five instances, and

are tied in the remaining two (note that the leftmost panels are identical in Figures 1.9(a)

and 1.9(b)). Moreover, PW-DQIP yields higher concordance than PC-SAA in two instances,

is lower in one instance and the two models are tied in the remaining two instances. We
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observe similar results when comparing our top three models using the Manhattan distance

metric; see Figure A.3 in section A.3.1.

To summarize, we observe that PW-DQIP predominantly outperforms PC-SAA, particularly

when the league is suspended earlier, i.e., there are more remaining games which makes the

instance more computationally challenging for SAA. Recall that while our SAA models ap-

proximate the optimization problem using samples but maintain a ranking-based objective

(e.g., concordance), PW-DQIP approximates the objective function but explicitly models

the full distribution of game outcomes. In our tests, we have found it is generally best

to approximate the objective function rather than the distribution of outcomes. Further-

more, PC-SAA tends to produce better solutions than PM-SAA when evaluated on both the

Manhattan distance and concordance objectives; this we conjecture is due to the fact that

PC-SAA closes the optimality gap faster than PM-SAA.
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Figure 1.9: Results of paired t-tests and the p-value for our three top performing models

1.6.5 Suggestions for the 2019–20 Season

In this section, we present the results of our two-phase analytics approach applied to the

2019–20 NBA regular season which was suspended on March 11, 2020. We consider 74

games per team as the target length of the shortened season, thus canceling 8 games per

team from the remainder of the season. As a result, out of 259 remaining games, we select

139 games to be played in the shortened season. After the COVID suspension, the NBA was

considering multiple alternatives to resume the league, including playing games in a single
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venue with no fans. The ESPN Wide World of Sports Complex, a Walt Disney property in

central Florida, was the front-runner for hosting the remainder of the 2019–20 season (NBA

2020b), and it eventually hosted the NBA shortened season and playoffs in 2020. To model

this possibility, in addition to providing results for our base model which has home/away

considerations, we also produce an alternative model which replaces the constraints on the

number of home/away games per team (1.8) with constraints on the total number of games

per team.
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(b) Policy 2: 74-game shortened season without home/away considerations

Figure 1.10: Selected games for the remainder of the 2019–20 season.

To present robust recommendations, we produce an ensemble model which tallies the votes
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from our three best prescriptive models (i.e., PC-SAA, PM-SAA and PW-DQIP). Figures

1.10(a) and 1.10(b) show the number of models which select each game when home/away

considerations are in force (policy 1) and relaxed (policy 2), respectively. For each policy,

we solve an optimization problem using the number of votes for each game as weights to

obtain a feasible game plan while maximizing the total number of votes. The games with

red borders are our final selections. We find that 101 games are selected by both policies

and 82 games are selected by neither policy.

To analyze the projected ranking at the end of the shortened season, we calculate the ex-

pected number of wins by each team using the final game plans shown in Figure 1.10, and

obtain the projected rankings for each policy based on the expected number of wins. The

results, as shown in Figure 1.11, not only confirm the effectiveness of our predictive model,

but also address some of the fairness challenges regarding the conclusion of the current

season widely discussed by the media and mentioned in section 1.3.1. We compare our pro-

jected rankings in Figure 1.11 with the ranking at the time of suspension from Figure 1.3

in section 1.3.1. Doing so, we find that in both of our projected rankings, the Pelicans

replace the Grizzlies as the last (8th-ranked) team to qualify for the playoffs in the west-

ern conference. The improved performance of the Pelicans in the remainder of the season

is widely anticipated by pundits, owing to the fact that the Pelicans started to improve

their performance during the weeks leading to the suspension after their number one pick

rookie, Zion Williamson, rejoined the team after missing the first 50 games due to injury.

The toughness of the remaining schedule is also reflected in our results. The Grizzlies and

the Nuggets, who both have a difficult remaining schedule, are ranked lower in both our

projected rankings, as compared to their ranking at the time of suspension.

Our analysis also shows that there can be significant changes to the end-of-season ranking

if the league chooses, for logistical reasons, to hold all games in one physical location. As

an example, the Philadelphia 76ers, known to be a dominant team at home with a home
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Western Conference League (West)   Eastern Conference League (East) 
 Policy 1 Policy 2    Policy 1 Policy 2 

Los Angeles Lakers 1 (1) 2 (1) 
 

 Milwaukee Bucks  2 (1) 1 (1) 
Los Angeles Clippers  3 (2) 3 (2) 

 
 Toronto Raptors  4 (2) 4 (2) 

Denver Nuggets  13 (7) 13 (7) 
 

 Boston Celtics  5 (3) 5 (3) 
Utah Jazz  9 (4) 9 (4) 

 
 Miami Heat  7 (5) 6 (4) 

Oklahoma City Thunder 8 (3) 7 (3) 
 

 Indiana Pacers  11 (6) 12 (6) 
Houston Rockets  12 (6) 10 (5) 

 
 Philadelphia 76ers  6 (4) 8 (5) 

Dallas Mavericks  10 (5) 11 (6) 
 

 Brooklyn Nets  16 (8) 16 (8) 
Memphis Grizzlies  20 (12) 17 (9) 

 
 Orlando Magic  15 (7) 15 (7) 

Portland Trail Blazers 18 (10) 18 (10) 
 

 Washington Wizards  25 (11) 23 (10) 
New Orleans Pelicans 14 (8) 14 (8) 

 
 Charlotte Hornets  26 (12) 25 (12) 

Sacramento Kings  19 (11) 20 (12) 
 

 Chicago Bulls  28 (14) 28 (14) 
San Antonio Spurs 17 (9) 19 (11) 

 
 New York Knicks 22 (9) 22 (9) 

Phoenix Suns  21 (13) 21 (13) 
 

 Detroit Pistons  29 (15) 29 (15) 
Minnesota Timberwolves  24 (14) 26 (14) 

 
 Atlanta Hawks  23 (10) 24 (11) 

Golden State Warriors 30 (15) 30 (15) 
 

 Cleveland Cavaliers  27 (13) 27 (13) 
 

Figure 1.11: Projected rankings based on policies in Figure 1.10 (conference ranks are inside
parentheses)

win ratio of 29/31 and road win ratio of 10/34, is ranked 6th in the league by policy 1 (4th

in the East), while ranked 8th in the league by policy 2 (5th in the East). In policy 2, the

76ers will lose home court advantage in the playoffs, as opposed to policy 1 which grants

them the right of hosting first in the playoffs.

1.7 Discussion, Limitations and Future Work

On occasion, world events such as COVID-19 make shortening a sports season necessary.

When this occurs, it is difficult if not impossible to select a subset of games which all parties

– the league, the teams, and the fans – will consider a “fair” compromise. While our model is

not perfect, we believe that by maximizing the expected concordance between the shortened

season’s ranking and that of the full season, we may produce a shortened season which is

as similar to the full season as possible, and by this measure may be deemed as the fairest

practical compromise.

Moreover, it is important to note that our methodology is very different from one which

takes the ranking at the suspension date and tries to sustain this ranking through the end
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of the shortened season. Despite the fact that our predictive model uses pre-suspension

data to calibrate our model’s parameters, and our prescriptive model optimizes based on

these parameters, it is also the case that a team with a high win rate pre-suspension will

not necessarily have a high win rate post-suspension. The nature of the shortened season

and its impact on rankings is much more complex, owing to the relative difficulty of the

schedules before and after the suspension (i.e., precisely when a team faces easy or hard-

to-beat competitors). Indeed, because our prescriptive model aims to produce a shortened

season with a ranking similar to that of the full season, if a team had a relatively easy schedule

pre-suspension it would generally have a relatively difficult schedule post-suspension, and our

prescriptive model will naturally attempt to maintain this difficult schedule in the shortened

season post-suspension. Figure 1.12 shows that the ranking at the time of suspension is

markedly different than the rankings of our shortened seasons, and moreover, concordance

(relative to the end-of-season ranking) is much higher for our shortened seasons.
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Figure 1.12: Comparison between the ranking at the time of suspension and the shortened
season rankings (at various target number of games/team). Concordance of all rankings
listed is with respect to the end-of-season ranking. Suspension day is 100 with 48 games on
average played per team pre-suspension.

We envision several directions for the future research. First, under different circumstances,

apart from the fairness of the schedule, other objectives (e.g., travel cost and distances,

broadcasting restrictions, venue availability) may be deemed as the top priority. Alterna-

tively, the problem can be framed as a multi-criteria decision making problem. Second,

more sophisticated predictive models may help in devising more informative decisions. For
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instance, one can exploit more accurate representative features (e.g., player-level statistics)

or temporal aspects (e.g., chronological dependencies between the games) in the predictive

analytics phase. Moreover, when a league suspension occurs before the season starts (as

is the case with most player strikes), historical data from the previous season(s) would be

required to fit the predictive model’s parameters. Third, from a computational point of

view, solution methods based on large-scale optimization techniques (e.g., generalized Ben-

ders decomposition) may be designed to tackle large instances of the stochastic optimization

problems (e.g., SAA with a larger sample).

1.8 Conclusion

Professional sports leagues may be suspended due to various reasons, requiring the league

to select which games to play in a shortened season. In this study, we proposed a two-phase

analytics approach for this problem. In phase one, we predicted game outcomes using a

Näıve Bayes classifier. In phase two, we used stochastic optimization techniques to prescribe

a data-driven decision which maximizes the expected similarity between the ranking at the

end of the shortened season and the full season had it been played in full. To solve two

of our stochastic optimization problems (PC and PM), we proposed approximation schemes

(MVP and SAA), and variable fixing techniques. For our third model (PW), we introduced

a deterministic equivalent reformulation (i.e., PW-DQIP). Our SAA models approximate

the distribution but have an exact objective, while PW-DQIP has an exact distribution but

approximates the objective. We evaluated the quality of the solutions produced by each

approach using Monte Carlo simulation. Our computational experiments suggest that PW-

DQIP outperforms SAA even for reasonably-large 25-scenario instances. Finally, we suggest

two alternative policies for the remainder of the 2019–20 NBA season which differ in whether

teams play their games in the original cities as-planned or are played all at the same venue.
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Chapter 2

Analysis of Pricing Mechanisms in a

Resource Exchange Economy

2.1 Introduction

In recent years, resource sharing has become increasingly popular in multi–agent settings

such as airline alliances, liner shipping alliances, and equipment sharing platforms (e.g.,

construction, health care, and scientific laboratories). With the rapid growth in size of

such industries in the past 100 years, forming alliances have become more popular, and

alliance members can never achieve such increased profitability by focusing on their internal

decisions alone. According to Hu et al. (2013), around 75% of all the passengers in the

world have flown with one of the three major airline alliances (i.e., Star, Sky Team, and

Oneworld). According to Hingorani et al. (2005), the top 10 sea cargo carriers control about

80% of the sea transportation market. In the health care sector, medical equipment sharing

has helped hospitals and health service providers save millions of dollars annually (Sanborn

2018, Cohealo 2021). Prior to the emergence of novel resource sharing platforms, companies
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had been either purchasing and taking the ownership of their resources and equipment, or

renting equipment from rental companies (e.g., Herc Rentals, Yard Club, United Rentals in

heavy equipment rentals) for specific uses and periods of time.

There are many reasons why companies would like to share their resources as it helps each

member of a formed alliance among these companies to reduce overall cost, lower lead time,

and increase asset utilization. All of these benefits become crucial for profitability especially

given the challenges of owning equipment or renting equipment from rental companies. With

the significant growth in use of recent technological advancements, tools and equipment are

becoming heavier, bulkier, and more expensive, while also delivering better quality services

and multiple tasks. Therefore, nowadays owning an equipment comes with major risks

and possible costs. Affordability is one of these challenges. Whether business owners can

afford purchasing specialty equipment, which are usually very expensive, is oftentimes a very

complex question. A potential owner of a specialty equipment needs to assess the usage

frequency and the potential benefits that can be generated and decide whether the benefits

match the purchase cost. Each company, at some point, needs a specialty equipment for

a specific job, and if she owns this specialty equipment, it sits idle for months or even

years after the job is complete. Of course she needs to take into account depreciation cost,

and the fact that not only idle equipment does not contribute to revenue of the company,

but also adds to maintenance and inventory holding costs. Renting equipment from rental

companies also presents its own challenges. The main challenges are the lack of control over

equipment availability and potential high volatility in prices. Another problem with rental

companies is their sensitivity to economic conditions which might leave them as unreliable

options at the times of economic difficulties. After the COVID–19 pandemic for instance,

and almost a year of inactivity in some businesses, several rental companies have filed for

bankruptcy (Frommer’s 2021).

To counter these risks, the idea of sharing economy marketplaces can be appealing. Instead of
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limiting ourselves to a strict dichotomy (e.g., to purchase or to rent from rental companies),

there is a third option which is to exchange resources between businesses who are at the

same level of hierarchy in the economic system. By borrowing necessary equipment from

other businesses (e.g., construction companies, medical facilities), and paying for the actual

usage time is much more affordable compared to ownership. Maintenance is less of an issue

either, since the maintenance cost can be shared among all businesses that use a particular

equipment. Whether the resource to be shared is consumable and/or perishable (e.g., a seat

on a flight, a segment of a container on a sea cargo carrier, wood or metal for a manufacturing

project) or a specialty equipment (e.g., an expensive medical equipment) which is shared by

other agents for an allocated time frame, we can always quantify the amount of such shared

resources. As an example, one unit of a shared resource can be 1 pound of a fluid material, 1

wooden desk, or 1 hour of usage time on an equipment. In the next section, we will discuss

how resource sharing decisions are made and can be coordinated in practice.

2.1.1 Resource Pricing Problem

In an economic system where there are multiple agents (e.g., airlines, liner shipping com-

panies, equipment owners) endowed with multiple types of resources (e.g., seats on flights,

specialty equipment), resource sharing decisions are typically made in a decentralized way,

i.e., each agent make its own decision independent of or even oblivious to those of others’. A

major approach to coordinate these decisions is through resource pricing mechanisms. The

pricing mechanism, which is the announcement of a resource price function by a central

planner, followed by a settlement process, is the means by which decisions of agents and the

central planner interact to determine the distribution of resource endowments among agents.

To design a pricing mechanism, a key question is What resource exchange price function will

induce decentralized agents to exchange their resources in such a way as to maximize the

sum total of the profits generated by all agents? In other words, under what resource pricing
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policy will the mismatch between supply and demand due to the conflict of interest among

decentralized agents be at a minimum?

Specifically since the decentralized problem is a collection of individual optimization prob-

lems, when combining the production and exchange quantities, the total supply and demand

of different resources may or may not match. Moreover, decentralized resource exchange

decisions reflect individual profit maximizing incentives, which may not necessarily give rise

to efficient resource allocations for the entire system. To address these problems, resource

prices would be chosen in such a way that the collection of agents’ solutions match the cen-

tralized solution (also known as the first best solution), in which case the solution of the

decentralized problem is called a coordinating solution. In case of any mismatch, unsatisfied

buy/sell orders can be addressed using spot market options as it is often the case in practice.

We call this process the settlement process. This helps satisfy all agents’ resource needs and

restores the feasibility of the resource exchange solution. Note that in this case, due to addi-

tional transaction and prices paid to the spot market, the total profit may be lower than that

under the first best solution. The decentralized solution in this case is called an approximate

coordinating solution. Figure 2.1 shows the sequence of events by the central planner and the

agents (i.e., those businesses involved in the alliance and would like to exchange resources)

that we consider in this chapter.

Time

Central planner
announces a resource

pricing policy

Problem parameters
(e.g., profit margins)
are shared with the

central planner

Agents solve their profit
maximizing problems for
production and exchange

quantities

Agents exchange
resources and

payments with other
agents

Agents exchange
resources and

payments with spot
market

Aggregate profit and
the efficiency ratio

are calculated

Settlement Process
Initiated

Figure 2.1: Timeline of events in the coordination problem

There are two main streams of papers studying the effectiveness of resource pricing policies.

Some studies consider the best–case decentralized solution in comparison to the first best

solution (Hu et al. 2013, Agarwal and Ergun 2008, Chun et al. 2016). Other papers study

the worst–case decentralized solution (Baumol and Fabian 1964, Jennergren 1972, 1973,
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Houghtalen et al. 2011, Roels and Tang 2016). We focus on the latter case and take into

account the possibility of supply-demand mismatch in decentralized resource sharing, which

leads to approximate coordinating solution for the decentralized problem in the worst case.

Our resource price function may be linear or nonlinear. In a linear price function, a simple

price value for each resource is announced which allows agents to buy or sell any amount of

those resources at that price tag. Any other form of a price function with a price schedule,

varying by the quantity bought or sold, is called nonlinear pricing (Van Zandt 2012). There

are advantages and disadvantages to nonlinear pricing. With a nonlinear price function,

we can ensure that all agents have unique optimal solutions, thus helping to coordinate

the agents to a globally optimal solution. On the other hand, a nonlinear price function

is less intuitive and more difficult to communicate, compared to a linear price function.

Specifically, as we will show in later sections, with a nonlinear price function, all agents’

problems are guaranteed to produce a unique optimal solution. Hence, nonlinear price

function provide a method of controlling the outcome of the decentralized problem. Apart

from nonlinearity of the resource price function, price discrimination is another way of

controlling the agents’ decisions. Price discrimination exists when identical resources are

bought and sold by the agents at different prices. For the worst–case decentralized solution,

it is well–established that linear pricing without price discrimination cannot coordinate the

agents to produce exactly the first best solution (Baumol and Fabian 1964). According to

our results, with price discrimination, linear pricing can always achieve an efficiency ratio of

one, circumventing the multiple optimal solutions problem in agents’ problems by choosing

different prices for different agents. On the other hand, Jennergren (1972) has proved that a

quadratic price function with price discrimination can achieve the first best solution in the

decentralized problem. Our goal in this chapter is to study whether a price function without

price discrimination can be designed to achieve the first best solution in the decentralized

problem. Figure 2.2 illustrates the four cases mentioned with the focus of this chapter

highlighted in red in the bottom right corner.
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Coordination is not guaranteed in general

The first best solution can be achieved Our research focus in this chapter

With Price Discrimination

Without Price Discrimination

Linear Pricing

Nonlinear Pricing

Figure 2.2: Four possible cases with respect to the shape of the price function and the
existence of price discrimination

Our main contributions to the literature of operations research and resource sharing is two–

fold:

1. We establish the effectiveness of nonlinear pricing mechanisms with no price discrim-

ination. Specifically, we show that the first best solution can be achieved in the de-

centralized system under such pricing mechanisms under certain conditions, and we

provide a full characterization of those conditions.

2. We highlight the usefulness of nonlinear price functions in improving the system effi-

ciency of decentralized resource exchange decisions under uncertainty.

The remainder of this chapter is organized as follows. We begin with an overview of lit-

erature in section 2.2. In section 2.3, we introduce the mathematical formulations for the

centralized, decentralized and the overall pricing mechanism problem, and we present the

main properties of each model. We introduce the concept of efficiency ratio as a metric to

gauge the effectiveness of any price function. We analyze the efficiency ratio that can be

achieved under quadratic price functions without price discrimination. In section 2.5, we

introduce an extension of the model in which the profit margins of the agents are not fully–

known and the central planner only knows a probability distribution of those coefficients
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while designing the resource prices. We present our numerical analysis in section 2.4. We

conclude this chapter in section 2.6.

2.2 Literature Review

The Oxford English Dictionary1 has defined the Sharing Economy as an economic system

in which assets or services are shared between private individuals, either free or for a fee,

typically by means of the internet. Since our focus in this study is on those instances in

which a payment is required for sharing resources, we use the term resource exchange to

distinguish between the two cases (i.e., sharing resources for free and for a fee). In other

words, resource exchange is the practice of sharing resources, owned by (or endowed to)

players of an economic system, when the amount of exchange is determined by a cost/benefit

analysis, which typically involves solving an optimization problem, and it depends on the

resource price function. Players will then use the resources to produce a product or a service

package to sell to the outside market. Therefore, there is one source of cost (i.e., buying

additional resources from other players) and two sources of profit (i.e., selling endowed

resources to other players and selling the final product to the customers). In this section,

we review the extensive literature on the coordination problem in resource exchange models

with different configurations, assumptions, methodologies and results.

Owen (1975) has defined the linear production game in a cooperative game setting. Our

problem, even though similar in spirit to the linear production game, uses non–cooperative

game theory to address the coordination problem. The resource exchange setting with linear

production (i.e., linear resource constraints and linear profit function) is studied in detail

in Baumol and Fabian (1964) and Jennergren (1972). The main players are: i) the central

planner (e.g., alliance manager in airline or liner shipping alliances, platform designer for

1See https://www.lexico.com/definition/sharing_economy
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equipment sharing), and ii) agents, as economic entities, endowed with certain amount of

resources, each having a different profit coefficients and resource usage rates. Much of the

attention in the operations research community has gone to the case where multiple agents

buy resources from a central pool, including in applications such as the unit commitment

problem in electrical power production, and the federated cloud computing problem in traffic

management of cloud computing systems (Feizollahi et al. 2015, Fu et al. 2005, Maheswari

and Vijayalakshmi 2012, Gomes et al. 2012, Voos 2007, Johari and Tsitsiklis 2003, Maillé and

Tuffin 2008, Cachon 2003), and not enough has been discussed about exchanging resources

directly between agents (Guo et al. 2007, Houghtalen et al. 2011, Hu et al. 2013, Chun et al.

2016, Roels and Tang 2016). We use the term resource exchange to distinguish between

exchanging resources across agents in one hand, and the traditional model of buying from a

central pool. In the remainder of this section, we review the main streams of papers in the

literature.

Game theory and contract design concepts have been used extensively in the resource

sharing and resource exchange literature to address the coordination problem in multi–agent

economic models. Roels and Tang (2016) investigate bidirectional alliances that occur be-

tween only two companies. They discuss a bargaining framework to allocate resources and

the total revenue between a manufacturer and a marketer in the car manufacturing sector.

Houghtalen et al. (2011) introduce an inverse optimization method to address the coordi-

nation problem using duality theory, and compare their solution with the Nash bargaining

solution. While employing non–cooperative game theory techniques, they make two key

assumptions about the behavior of consumers, each resulting in a different analytical solu-

tion for the decentralized problem. One method of controlling the behavior of the agents,

which is relatively common in the literature, is to consider an upper bound on the amount

of resource exchanges each agent can make. Chun et al. (2016) study alliances consisting of

competing firms. Their main research question is whether it is guaranteed that all alliance

members always benefit by being a member of the alliance, and if so, how the profit should
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be allocated among agents. They propose an alliance structure with two main properties: i)

it allocates resources among agents using a Mathematical Program with Equilibrium Con-

straints (MPEC), and ii) their allocation satisfies several axioms including Pareto optimality.

Perakis and Roels (2007) study a contract form called the price–only contract (i.e., a linear

price function), and examine its efficiency in different supply chain configurations (e.g., push

or pull inventory positioning). Hu et al. (2013) introduce a two–stage analysis for the prob-

lem of sharing revenues in airline alliances. In stage one of the analysis, airlines as agents

negotiate the terms of the agreement and revenue sharing rules. In the second stage (op-

erational level), each airline solves her own optimization problem, and announces her own

resource sharing policy. Revenue is distributed according to the terms of the agreement.

Agarwal and Ergun (2008) study a multicommodity flow network with multiple players,

each with certain amount of capacity on the edges of the network as resource endowment.

Players exchange capacities with other players in an alliance. Inverse optimization and a

cooperative game theory framework have been used to solve the coordinating problem. In-

stead of working with detailed contract designs and behavioral assumptions for the agents,

our goal is to focus on the simplest contract possible, i.e., a resource price function, which

will allow the agents to make production/exchange decisions independently (not sharing the

decision making phase with other agents or the central planner) and obliviously (not being

concerned about other agents’ decisions). This allows us to derive structural results that

characterize the advantages of nonlinear vs linear pricing functions and the impact of price

discrimination, which has not been studied in the literature before.

Early optimization studies and especially papers addressing the decomposition of

large mathematical programs have presented great potential to advance the theoreti-

cal foundations of the mechanism design problem in resource sharing and resource exchange

economic settings. The idea of decomposing linear programs into smaller problems was first

introduced by Dantzig and Wolfe (1961). A large number of scholarly works followed suit

to advance the theory on decomposition techniques. Baumol and Fabian (1964) proved that
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with the presence of local constraints, linear pricing cannot solve the coordination problem.

Jennergren (1972) proposed the idea of using a nonlinear price function to coordinate such

systems. After almost three decades, with the advent of computers, a new attention has

been paid to the old decomposition theories, and among those Jose et al. (1997) revisited

Jennergren’s methods, proving that the idea works even when the agents are assumed to

have a nonlinear profit function. Guo et al. (2007) introduce a market–based optimiza-

tion algorithm, inspired by decomposition algorithms, for the coordination problem in the

resource exchange setting. In their analysis, the central planner is called dealer, and she

owns some endowments, as well. Through an iterative approach, similar to Dantzig–Wolfe

decomposition, each agent determines the bundle of resources to trade with other agents

in a problem called sub–problem, and then the dealer solves the settlement problem to re-

solve the mismatch between supply and demand of different resources and announces new

set of resource prices, identical for all agents. This process continues until agents reach the

globally optimal solution in a finite number of iterations. In this chapter, even though our

proposed price function is inspired by the nonlinear price functions of the form introduced

in Jennergren (1972) and Jennergren (1973), we focus on those price functions without price

discrimination, and we aim to propose a price function that solves the coordinating problem

in one step, without relying on multiple stages of an iterative approach, as in Guo et al.

(2007).

Auction theory is another relevant concept that has been used to address the problem

of finding the best resource prices. Instead of solving a single–shot optimization problem,

auction theory proposes an iterative approach in which the prices as well as resource alloca-

tion are being updated until a convergence has been declared (i.e., agents’ solutions match

the first best, i.e., central planner’s, solution). The problem of buying and selling resources

has a long history in the chain of great economists. Leon Walras has studied the iterative

approach by which sellers and buyers reach an equilibrium state, and he calls the process

tâtonnement (French for “trial and error”) (Walras 1969). Tâtonnement is not guaranteed
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to solve the coordinating problem between buyers and sellers in a finite number of iterations.

Arrow (1951) and Debreu (1951) introduced the concept of competitive equilibrium (other-

wise known as Walrasian equilibrium to acknowledge the works of Leon Walras) which is

an equilibrium state in a commodity market with multiple traders and flexible prices. The

crucial assumption about this competitive environment is the fact that small exchanges by

the agents do not impact the overall resource price function. There are various ways of

computing Walrasian equilibrium prices and equilibrium distribution of the resources, and it

is a difficult problem in general, which has been studied in economics and computer science

communities. One of the prominent methods of finding the prices and resource distribution

is through an ascending auction, where the prices are initially set to zero, and they rise over

time until the convergence has been declared. This mechanism has few names in auction

theory literature including Walrasian auction and English auction.

Walrasian equilibrium prices have a remarkable property in that they allow each buyer to

purchase a bundle of goods that she finds the most desirable, while guaranteeing that the

induced allocation over all buyers will globally maximize social welfare. However, there are

two caveats. First, the prices may induce indifferences which result in multiple optimal solu-

tions. In fact, the minimal equilibrium prices necessarily induce indifferences. Accordingly,

buyers may need to coordinate with one another to arrive at a socially optimal outcome.

Indeed, the prices alone are not sufficient to coordinate the market (Arrow 1974). Second,

although tâtonnement–type procedures converge to Walrasian equilibrium prices on a fixed

population, in practice, buyers typically observe prices without participating in a price com-

putation process (Arrow and Hurwicz 1958). These prices may not be the perfect Walrasian

equilibrium prices, but instead somehow reflect distributional information about the mar-

ket (Arrow and Debreu 1954). Hsu et al. (2016) investigate different conditions under which

Walrasian equilibrium prices will be the resulting solution for an auction. They assume

specific conditions on the value function used by each agent in their optimization problem,

and prove that minimal Walrasian equilibrium prices are optimal under these conditions.

54



They also study how the central planner learns about agents’ problem parameters and their

solution dynamics over time and the minimum number of iterations of the auction that is

required for the central planner in order to approximately learn the true behavior of each

agent in terms of resource demand and production plan. This minimum number is called

sample complexity which is also a popular topic among computer scientists. Also related to

the behavioral assumptions about agents, a mechanism is called incentive-compatible (IC)

if every player can achieve their best possible outcome just by acting according to her true

preferences. Note that there are two types of incentive compatibility: dominant-strategy

incentive-compatibility (DSIC) and Bayesian-Nash incentive-compatibility (BNIC). In the

first case, one fares best or at least not worse by being truthful, oblivious to others’ strate-

gies. According to the second concept however, “if” all other agents are being truthful, the

best strategy is to be truthful. It is important to note that the problem setting that we

are interested in is of DSIC type in which strategic considerations cannot help achieve a

better profit. Malakhov and Vohra (2009) have studied an example of BNIC auction which

is explained by a simple network flow. See Ertogral and Wu (2000), for more details.

2.3 Mathematical Model Description

2.3.1 Centralized vs. Decentralized Decision Making

The problem of determining resource exchange quantities can be studied from two different

angles:

1. Centralized Problem: We can look at the resource exchange problem from a central

planner ’s perspective which considers the combined profits of all the agents as the

objective function. In this problem, resource endowments are shared in a single pool,

and there is no cost associated with exchanging resources among agents in the objective
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function. Therefore, the central planner’s problem determines production (and possibly

exchange) quantities while maximizing the overall production profit, subject to a set

of linear resource constraints.

2. Decentralized Problem: We can also look at this problem from each agent’s per-

spective, considering only the net gain of that specific agent as an objective function

for planning purposes. Each agent has two components in her objective function:

objective function = production profit− net payment for exchanged resources

Agents are assumed to be making their production/exchange decisions, independently

of (or oblivious to) other agents’ decisions, and this is the main reason why centralized

and decentralized solutions might not be in agreement. As an example, for a resource

that is in high demand, multiple agents might place buying orders and there may not

be enough supply to satisfy all such orders. On the other hand, for a resource with

high exchange price, there might be multiple sellers and not enough demand to satisfy

the selling requests. In these situations, we assume a Spot Market where agents can

buy/sell resources, incurring some additional cost. In other words, exchange prices

within the economic system are designed in such a way that, it is always beneficial to

satisfy buy/sell orders within the network of agents, if possible, rather than relying on

the spot market.

We explain the practical relevance of the modeling framework based on the example of

airline alliances. Imagine different airlines (e.g., KLM, Delta, American, Korean) are agents,

alliances (e.g., Star, Sky Team, Oneworld) are resource sharing platforms or central planners,

seats on different flights are resources, and finally flight itineraries are products or services

which may require multiple resources. To further illustrate this example, let us go over two

of the common resource sharing practices in airline alliances:
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• Codesharing: A codeshare agreement is a business arrangement in which two or

more airlines publish and market a flight under their own airline designator and flight

number (the “airline flight code”) as part of their published schedule. Typically, a

flight is operated by one airline (technically called an “administrating carrier”) while

seats are sold for the flight by all cooperating airlines using their own designator and

flight number.

• Interlining: Interlining is an agreement between individual airlines to handle passen-

gers traveling on itineraries that require multiple flight legs on multiple airlines. Such

agreements allow passengers to change from one flight on one airline to another flight

on another airline without having to gather their bags or check-in again.

Multi-city flight itineraries for passengers and a pack of codeshare and interline seats for

travel agencies can be considered a profitable product of an airline in which multiple types

of resources are required to be able to offer the final product. That is why the nature of

resource sharing in the airline industry is very similar to a production setting where multiple

agents exchange different resources to produce their final product, while considering the net

profit through the exchange of resources.

In the rest of this section, first we introduce the notation and the basic definitions of the

mathematical models. Then, we formulate the central planner’s problem (i.e., centralized

problem) and agents’ problems (i.e., decentralized problem). We discuss possible resource

pricing strategies and formulate the problem with a specific form of a nonlinear price function,

and we introduce theorems and lemmas characterizing the instances in which a nonlinear

price function solves the coordinating solution without price discrimination.
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2.3.2 Definitions and Problem Statement

Basic notation: Table 2.1 contains the description of all the basic parameters of the math-

ematical model (i.e., agents, resources, profit and resource usage coefficients, endowments).

Parameter Description

J Set of all the agents
R Set of all the resources
πj Per unit production profit for agent j
aij Amount of resource i needed for one unit of product j (aij > 0,∀(i, j))
bij Endowment amount of resource i for agent j

b̄ij =
∑

j′ 6=j bij′ Total endowment of resource i owned by all agents except agent j

bi =
∑

j bij Total endowment of resource i among all agents

Table 2.1: Parameters of the resource exchange mathematical model

Decision variables: There are two sets of decision variables in this problem: production

and resource exchange quantities. The production quantity is denoted by x, and the exchange

quantity is denoted by t. We use a superscript c on those variables associated with the central

planner’s problem.

• xj, x
c
j = the amount of final product produced by agent j;

• tij, t
c
ij = the net amount of resource i that agent j buys from other agents. A negative

value means agent j sells that amount to other agents. Note that this exchange variable

is unrestricted in sign, and it is possible to use two non–negative decision variables (e.g.,

θij, γij), instead (i.e., tij = θij − γij, where θ and γ are buying and selling quantities,

respectively).

Optimal value of each decision variable are indicated with an asterisk, e.g., x∗j , t
∗
ij.

Central planner’s objective function: The central planner’s objective function value is

denoted by zc and it is equal to the total profit that agents make through production. From
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the central planner’s perspective, the contribution of resource exchanges to the objective

function is zero, as the buy/sell prices cancel out in the central planner’s problem. The

mathematical formulation of the objective function in the central planner’s problem is given

in (2.1), below.

zc =
∑
j

πjx
c
j (2.1)

Central planner’s resource constraint: There are two ways to formulate the resource

constraint in the central planner’s problem. The most natural way is to assume all resource

endowments of each type to be in the same pool (i.e., amount bi =
∑

j bij for each resource

i) and distribute that sum among all agents, based on the production quantities.

∑
j

aijx
c
j ≤ bi ∀i (2.2)

According to inequality (2.2), the total amount of resource i used for production purposes

cannot exceed the total endowment of resource i.

We can also model the resource constraint, while keeping track of the exchange quantities

among agents. After committing exchange decisions, the original endowment values (i.e., bij)

may either increase, decrease, or stay the same, and the new upper bound for the resource

usage will be an adjusted bound using the exchange quantities. Constraint (2.3) ensures

that each agent can use resources for production purposes up to that adjusted endowment

value (i.e., bij + tcij). Finally, constraint (2.4) is the market clearing constraint, as it makes

sure that the total supply and demand of all the resources match.

aijx
c
j ≤ bij + tcij ∀i, j (2.3)∑

j

tcij = 0 ∀i (2.4)
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Linear dual prices: One of the prominent choices in the literature for resource prices in

coordination problems is the optimal value of the dual variable for the resource constraint.

Since the optimization problem is a linear programming (LP) problem, we call the use of

optimal dual values as resource prices, linear dual pricing. The dual variables for constraints

(2.2), (2.3), (2.4) are pi, qij, hi, respectively.

General form of resource price function: Price function fij(x, t,Φ) is a general form

of resource price function which depending on our choice of the function, may depend on

production and/or exchange quantities, as well as some external parameters denoted by Φ.

According to the original scholarly works discussing the general concept of a price mechanism,

Coase (1937), Saari and Simon (1978), there are mainly three properties for a good price

function:

• Signalling: changes in the price function, the value and the form, impacts agents’

decision making process;

• Incentives: the total demand of a resource by all agents may change the price of that

resource, which in turn has an effect on the production quantity of all agents;

• Rationing: the price function serves as a tool to ration scarce resources when demand

is larger than supply.

It is not difficult to see that a quadratic pricing policy, as a function of exchange quantity,

satisfies signalling and rationing properties. Regarding the incentive property, note that

our goal is to eventually propose a price function inspired by the first best solution, and

the desired production quantity in the centralized solution provides enough incentives as

demand point for the agents to make decisions in a globally optimal way. Therefore, the

quadratic pricing policy is the basis of our analysis in this chapter. We can ensure that with

a nonlinear objective function, agents’ problems will not have multiple optimal solutions.
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Moreover, using inverse optimization introduced by Ahuja and Orlin (2001), we can direct

all agents’ problems to a globally optimal solution using a nonlinear price function. Even

though there is no demand constraint in our problem setting, the production acts as a

demand point, as the agents may need to acquire more resources to produce. Therefore,

a production quantity dictates how much resource exchange needs to happen to facilitate

the desired production quantity, and as we will see in the following sections, the optimal

exchange quantity in the central planner’s problem may impact our choice of the nonlinear

price function. Finally, the nonlinear price function of the form described below is the most

natural choice to manage any rationing requirements in the case of scarce resources, as the

overall payment depends on the amount of exchanged resource.

In the price function (2.5), which is called an “augmented price function”, the parameter Φ

includes the constant part of the augmented price function, rij, and a scalar, k, which is a

small number multiplied by the exchange quantity, a decision variable of agents’ problems.

The first constant value, rij, can be interpreted as a per unit base price, and the resource

price is adjusted based on the exchange quantity and the second constant value, the scalar

k. When k is positive/negative, the unit price of resources increases/decreases in exchange

quantity.

fij(t,Φ) = fij(t, r, k) = rij + k × tij (2.5)

Price discrimination: Note that in the price function (2.5), the base price of the same

resource can be different for different agents. In other words, agents may pay/receive differ-

ent amounts for acquiring/selling the same quantity of a resource. This is known as price

discrimination. We study a similar price function, presented in (2.6), without price discrim-

ination by removing the j–index from the constant part of the augmented price function,
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and we show that it can be as effective as the original function, given certain conditions.

f ′ij(t,Φ) = f ′ij(t, r, k) = ri + k × tij (2.6)

Agents’ objective function: Agents can make profit through two channels: production

and exchange. The profit through producing and selling their products is simply πjxj. The

net profit through exchanging resources is −
∑

i(rij + k × tij) tij. The objective function of

agent j, denoted by zj, is the following:

zj = πjxj −
∑
i

(rij + k × tij) tij (2.7)

Total supply and demand of each resource: After collecting the exchange values from

agents’ problems, we can calculate the total amount of resource i requested by agents to buy

(total demand, denoted by di), as well as the total amount of resource i planned for selling

(total supply, denoted by si). These two parameters are defined in (2.8) and (2.9).

di =
∑
j

max{tij, 0} (2.8)

si =
∑
j

max{−tij, 0} (2.9)

Buying percentage / selling percentage: If the total demand and supply of a resource

do not match, not all buying/selling requests can be accommodated within the alliance, and

there needs to be at least one agent who uses spot market option. We assume that in case of

any shortage of supply or demand, all buyer/seller agents will be able to execute the same

proportion of their buying/selling requests within the alliance, and they all have to resort

to the spot market for the remaining amounts. To this end, we define the following two

parameters:
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• selling percentage (ρsi ): the percentage of any resource i selling request that can be

sold within the alliance (i.e., to buyer agents);

• buying percentage (ρbi): the percentage of any resource i buying request that can be

bought from the agents in the alliance.

The mathematical definitions of these two percentage parameters are given in (2.10):

ρsi =


1, if di ≥ si

di
si
, otherwise

ρbi =


1, if di ≤ si

si
di
, otherwise

∀i (2.10)

Spot market prices: In case of any mismatch between the total supply and demand of

any of the resources, agents will use the spot market to satisfy any buying/selling requests

that remain unmatched by other agents. We assume simple linear prices for the spot market

options. The two spot market price parameters are the following:

• pbi = buying price of resource i, (an agent pays pbi × Q to buy Q units of resource i

from the spot market);

• psi = selling price of resource i, (an agent receives psi ×Q by selling Q units of resource

i in the spot market).

In order for the alliance of agents to be stable, the resource price function announced by the

central planner needs to be better than the spot market prices, to avoid a scenario in which

agents prefer the spot market over trading with other agents. We model this as a constraint

for the pricing mechanism design problem.

Spot market decision variables: While solving their profit maximizing problems, agents

can potentially combine inside–alliance exchanges with spot market trades. Depending on
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spot market prices, this option may or may not be optimal. In order to capture any trades

with the spot market, we introduce the following two decision variables:

• λij = amount of resource i that agent j buys from the spot market at price pbi ;

• µij = amount of resource i that agent j sells to the spot market at price psi .

Settlement process: In case of any mismatch between total supply and total demand of

any resource, the central planner updates the selling and buying quantities of each agent,

determining what proportion of agents’ buying/selling requests can be satisfied within the

alliance, and for how much they need to rely on the spot market. For instance, if the total

supply and the total demand for the resource î are 15 and 20, respectively, then the buying

percentage is ρb
î

= 15
20

= 0.75. Now, if an agent has placed a buying order of 4 units of î, she

will only be able to buy 3 out of 4 units from other agents, and for the remaining 1 unit,

she has to buy from the spot market with a price tag of pb
î
. Therefore, her total payment for

this 4–unit purchase would be
(

(rîj + k × 3) ∗ 3
)

+
(
pb
î
× 1
)

.

Post–settlement exchange parameters: We define a new set of parameters to capture

the amount of original exchange requests assigned to both the alliance and the spot market.

We define non–negative variables, as opposed to the unrestricted in sign exchange variables

(tij) variables.

• θin
ij = the amount of resource i that agent j is supposed to buy from other agents (i.e.,

from inside the alliance);

• γin
ij = the amount of resource i that agent j is supposed to sell to other agents (i.e., to

agents inside the alliance);

• θout
ij = the amount of resource i that agent j is supposed to buy from the spot market

(i.e., from outside the alliance);
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• γout
ij = the amount of resource i that agent j is supposed to sell to the spot market

(i.e., to outside the alliance);

Partitioning the set of agents: Given values of the inside the alliance exchange variables

(i.e., θin
ij , γ

in
ij ), we partition the set of agents for each resource i into three categories:

• J bi = {j : θin
ij > 0}, the set of agents who buy resource i from other agents;

• Jsi = {j : γin
ij > 0}, the set of agents who sell resource i to other agents;

• J0
i = {j : θin

ij = γin
ij = 0}, the set of agents who neither buy nor sell resource i, and do

not exchange resource i with other agents.

Agents’ profit after the settlement process: Agent j’s final profit which is computed

after the settlement process and possible trades with the spot market is denoted by wj and

is calculated as follows:

wj = πjxj −
∑
i

((
rij + kθin

ij

)
θin
ij +

(
pbi × (θout

ij + λij)
))

+
∑
i

((
rij − kγin

ij

)
γin
ij +

(
psi × (γout

ij + µij)
)) (2.11)

Central planner’s profit: Because of the nonlinear price function, there can be dispar-

ity between the transaction value of sellers and buyers. In other words, according to the

quadratic price function (2.5), for any exchange between a pair of agents, the amount that

the seller is supposed to receive is not necessarily same as the amount the buyer pays. This

difference can be both negative and positive, meaning the central planner is either making

profit or paying subsidy to the alliance. The net profit amount of the central planner is

denoted by w0, and its formulation is given by :

w0 =
∑
i,j

((
(rij − k × γin

ij ) γ
in
ij

)
−
(

(rij + k × θin
ij ) θ

in
ij

))
(2.12)
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Aggregate profit in the decentralized problem: Once we add agents’ profits as well as

the central planner’s profit, we can compute the aggregate profit in the decentralized problem,

denoted by w. Since this aggregate profit function, as well as agents’ and central planner’s

profit functions, depend on our choice of the price function and the agents’ production and

exchange quantities, we explicitly show this dependency by adding in the (Φ, x, t) parameters

as arguments of these functions. Equation (2.13) shows the way the aggregate profit is

calculated using agents’ and the central planner’s profit values.

w(Φ, x, t) =
∑
j

wj(Φ, x, t) + w0(Φ, x, t) (2.13)

Efficiency ratio: Now that we have calculated final profit value in both centralized problem

(i.e., zc) and in the decentralized problem (i.e., w(Φ, x, t)), we can take the ratio between

the decentralized profit and the centralized profit to find the efficiency ratio, denoted by

δ(Φ). We can calculate a distinct efficiency ratio for each choice of the price function, that

is why we explicitly show this dependency on price parameters, Φ. The minimization in the

numerator refers to the worst–case analysis of the efficiency ratio, and we consider those (x, t)

solutions which are optimal for each agent j, while the combination of them can potentially

lead to a less than optimal (i.e., the profit in the first best solution) profit value. Let set H

denote the set of optimal solutions (x, t) for all individual agents’ problems.

δ(Φ) =
min(x,t)∈H w∗(Φ, x, t)

z∗c
(2.14)

The main research question in this chapter is to design price parameters, Φ, in a way that

the worst case of the aggregate profit (i.e., w(Φ, x, t)) is as close to the central planner’s

profit (i.e., zc) as possible. That is, the goal is to find a resource price function to maximize

the efficiency ratio, δ(Φ). Mathematically speaking, the main problem in this study is to
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solve the following maximization problem:

δ∗ = max
Φ

δ(Φ) (2.15)

Our goal is to analyze the δ∗ in depth, and possibly prove that it is exactly equal to 1,

subject to certain conditions. The key research question here is whether δ∗ is guaranteed to

be one, without price discrimination, and if so, what are the characteristics of the optimal

resource price function.

2.3.3 Analysis

In this section, we introduce the mathematical models for the central planner’s problem,

agents’ problems, and the resource pricing problem. We then present theoretical results

on the conditions under which the efficiency ratio of one can be achieved without price

discrimination.

2.3.3.1 Central Planner’s Problem

The model M1, (2.16)–(2.18), formulates the central planner’s problem with production

variables only. The resource constraint (2.17) ensures that the total amount of each resource

i used by all the agents cannot exceed the total endowment of resource i within the alliance.

The non–negative dual variables pi are also shown in the formulation.

[M1] zc = max
∑
j

πjx
c
j (2.16)

s.t.
∑
j

aijx
c
j ≤ bi, (pi ≥ 0) ∀i ∈ R (2.17)

xcj ≥ 0, ∀j ∈ J (2.18)
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We develop an equivalent formulation of the central planner’s problem which can be useful

in our analysis later.

Lemma 2.1. The model M2 shares the same feasible region and the same set of optimal

solutions as the model M1.

[M2] zc = max
∑
j

πjx
c
j (2.19)

s.t. aijx
c
j ≤ bij + tcij, (qij ≥ 0) ∀i ∈ R, ∀j ∈ J (2.20)∑

j

tcij = 0, (hi) ∀i ∈ R (2.21)

xcj ≥ 0, ∀j ∈ J (2.22)

Proof. First, we show that given any feasible solution (x̄cj, t̄
c
ij) in M2, we can always construct

a feasible solution in M1. All we need to do is to sum over the set of agents in constraint

(2.20) of the model M2, and since the summation of all the exchange variables is zero due

to (2.21), the remaining inequality is exactly equal to the resource constraint (2.17) of the

model M1. With the same resource constraint and the same non–negativity constraint, we

conclude that the feasible solution (x̄cj, t̄
c
ij) always maps to a feasible solution in M1. Now,

we need to show that given any feasible solution (x̄cj) in M1, we can construct a feasible

solution in M2. To this end, we devise Algorithm 1, which takes the production quantities

of the agents, and compares the required resources for each agent with the corresponding

endowment amount of each agents. The algorithm then assigns exchange values to the agents

in a minimal way, while satisfying the condition (2.21).

We have proved that the two optimization problems share the same feasible region. Now

with the same feasible region and the same objective function (i.e., max
∑

j πjx
c
j), the set

of optimal solutions will also be the same, as they both are basically modeling the same

problem.
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Algorithm 1 Mapping the solution (x̄c) in M1 to a solution (xc, tc) in M2

1: xc ← x̄c

2: for i ∈ R do
3: si ← 0
4: Jsi ← ∅
5: for j ∈ J do
6: tcij ← max{0, aijxcj − bij}
7: si ← si + tcij
8: if aijx

c
j < bij then

9: Jsi ← Jsi ∪ j
10: end if
11: end for
12: end for
13: for i ∈ R do
14: for j ∈ Jsi do
15: tcij ← min{si, bij − aijxcj}
16: si ← si − tcij
17: if si = 0 then
18: break
19: end if
20: end for
21: end for

Proposition 2.1. The following relationship holds for the optimal dual variables in M1 and

M2:

p∗i = h∗i = q∗ij ∀i ∈ R, ∀j ∈ J (2.23)

Proof. First, let us take the dual of M2 which will help us unpack some of the equations.

Let us denote this dual problem by D2.

[D2] zc = min
∑
i,j

bijqij (2.24)

s.t.
∑
i

aijqij ≥ πj, (xj ≥ 0) ∀j ∈ J (2.25)

− qij + hi = 0, (tij) ∀i ∈ R, ∀j ∈ J (2.26)

qij ≥ 0, ∀i ∈ R, ∀j ∈ J (2.27)
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Constraint (2.26) of the dual problem D2 gives us the equality of qij and hi variables in

(2.23). Now, we replace qij with its equivalent value, hi, in the dual problem D2. The result,

denoted by D1, is the following model (where here we have used the fact that bi =
∑

j bij):

[D1] zc = min
∑
i

bihi

s.t.
∑
i

aijhi ≥ πj, ∀j ∈ J

hi ≥ 0, ∀i ∈ R

Note that problem D1 is precisely the dual problem of the M1 formulation, thus share the

same feasible and optimal solutions (i.e., p∗i = h∗i ,∀i ∈ R), and that proves the equality of

pi and hi variables for all resources. It is not difficult to observe that given the two proven

equations, pi = qij also holds, thus completing the proof for (2.23).

Now that we have observed the equivalence of the two optimization models, M1 and M2,

and we have established the relationship between their optimal dual variables, we know that

the optimal profit is the same in M1 and M2, and that it is equal to zc. This profit value is

the denominator of the key metric in this study, efficiency ratio δ. The rest of the chapter

will be spent on analyzing the agents’ problems.

2.3.3.2 Agents’ Problems

With the definitions of the augmented resource price function, agents’ objective function

and resource constraints discussed in section 2.3.2, we now introduce the full form of agents’

profit maximizing problems, denoted by Pj.

[Pj] zj = max πjxj −
∑
i

(
(rij + k × tij)tij

)
(2.28)
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s.t. aijxj ≤ bij + tij, (yij ≥ 0) ∀i ∈ R, ∀j ∈ J (2.29)

tij ≤ b̄ij, (vij ≥ 0) ∀i ∈ R, ∀j ∈ J (2.30)

− tij ≤ bij, (uij ≥ 0) ∀i ∈ R, ∀j ∈ J (2.31)

xj ≥ 0, ∀j ∈ J (2.32)

The objective function (2.28) has two components: profit through production and net cost

through exchange of resources with other agents. Constraint (2.29) ensures that the resource

usage is bounded by the endowment amount, adjusted by exchange quantities. The two

bounds on the exchange variable, (2.30) and (2.31), make sure that agents don’t buy more

than what is available in the market, and they don’t sell more than their own endowment

values. The same optimization problem, adding the spot market option to the problem is

the following:

[P λµ
j ] zλµj = max πjxj −

∑
i

((
(rij + k × tij)tij

)
+
(
pbiλij − psiµij

))

s.t. aijxj ≤ bij + tij + λij − µij, (yij ≥ 0) ∀i ∈ R, ∀j ∈ J

tij ≤ b̄ij, (yij ≥ 0) ∀i ∈ R, ∀j ∈ J

− tij ≤ bij, (yij ≥ 0) ∀i ∈ R, ∀j ∈ J

xj, λij, µij ≥ 0, ∀i ∈ R, ∀j ∈ J

We discussed in section 2.3.2 why the augmented price function is an appropriate choice for

the coordination problem under investigation in this chapter. One of the reasons why it is a

great choice is the fact that it covers a wide range of pricing schemes studied in the literature,

including linear dual pricing. When the constant k is zero, the price function f reduces to

a linear price function. Even though linear dual prices have been studied extensively in the

literature, it is well–known that suboptimization by agents on the basis of linear dual prices

does not lead to globally optimal solutions, in general, due to lack of coordination. The
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main reason for the failure of the linear pricing strategy is the possibility of multiple optimal

solutions in agents’ problems which leads to the lack of coordination. We illustrate this point

using a small 2–agent 1–resource numerical example. Imagine there are two agents, using

a single resource to produce their products. Agent 1 makes $6 by selling one unit of her

product, while agent 2 makes $3. Agents 1 and 2 have been endowed with 3 and 1 units

of resource, respectively. The resource usage rate for the two agents are 2 units per agent

1’s product and 1 unit per agent 2’s product. The two individual optimization problems are

shown below, followed by their feasible region in Figure 2.3.

[P1] z1 = max 6x1 − pt1

s.t. 2x1 ≤ 3 + t1

− 3 ≤ t1 ≤ 1

x1 ≥ 0

[P2] z2 = max 3x2 − pt2

s.t. x2 ≤ 1 + t2

− 1 ≤ t2 ≤ 3

x2 ≥ 0

(a) Agent 1 (b) Agent 2

Figure 2.3: Feasible regions for two agents’ optimization problems

According to Figure 2.3, both agents’ problems have three corner points (A,B,C), and de-
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pending on the price p, which changes the direction and the level curves of the objective

function, the optimal solution can be either of these three points. Assuming the price

is reasonable and the profit does not fall below zero, the optimal solution will be one of

the two corner points (A,B) for both agents. It is not difficult to see that if p ≥ 3,

point A : (x1 = 0, t1 = −3) is the optimal corner point for agent 1, and if p ≤ 3, point

B : (x1 = 2, t1 = 1) is the optimal solution. Note that both corner points are optimal when

p = 3 which is an indication of multiple optimal solutions. Similar argument can be made

for agent 2. Point A : (x2 = 0, t2 = −1) is optimal for agent 2 when p ≥ 3, and point

B : (x2 = 4, t2 = 3) is optimal when p ≤ 3. Both points A and B are optimal when p = 3.

When considering both problems at the same time, agents’ solutions do not match when

p 6= 3, and when p = 3, the worst possible case still is ”no coordination” which results in

an efficiency ratio less than one. This small example illustrates why linear pricing without

price discrimination may not be able to coordinate the agents. Note that if we are allowed

to choose different price values for agents 1 and 2, we can certainly direct both problems

into a coordinating solution.

Nonlinear pricing however can ensure uniqueness in agents’ problems. Having a unique so-

lution in each agent’s problem, the main concern remains to be the value of those solutions

and whether they are in agreement with the centralized solution. Moreover, even if the

solutions do match that of the central planner’s problem, whether there is price discrimi-

nation or the need for subsidization by the central planner. Convex optimization problems

with strictly concave objective function and a convex feasible region yield a unique optimal

solution. Agents’ problems are convex quadratic programming problems, as the objective

function is strictly convex quadratic (when k > 0), constraints are linear, and the decision

variables are continuous. As a result, agents’ problems have unique optimal solutions with

a nonlinear price function.
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2.3.3.3 Modeling the Resource Pricing Problem

Now that we have a tool to produce unique optimal solutions in agents’ problems, we need

to revisit the main research question of this chapter, namely designing the resource price

function with the goal of achieving the maximum efficiency ratio. Mathematically speaking,

the main problem is to find a price function Φ = (r, k) such that the efficiency ratio δ(Φ) is

maximized.

δ∗ = max
Φ

δ(Φ) = max
Φ

min(x,t)∈H w(Φ, x, t)

zc
(2.33)

According to the expanded formula of the optimal efficiency ratio, for any choice of the price

function Φ we can compute an efficiency ratio δ(Φ). The goal is to find a price function that

maximizes the efficiency ratio. The denominator of the efficiency ratio does not depend on

our choice of price function. The numerator however depends on both the price function, as

well as the production and exchange values. The minimization in the numerator is important

only when there are multiple optimal solutions in some of agents’ problem. Finding the

worst overall solution of the decentralized problem is a very challenging problem with both

agents’ decisions (i.e., production and exchange quantities) and the linear resource prices as

decision variables of the problem. In order to write down the full minimization problem in

the numerator of (2.33), we need to write the optimality conditions for all agents. We use

Karush–Kuhn–Tucker (KKT) conditions for this purpose. The union of all KKT conditions

for all agents provides a feasibility problem. We then add the total aggregate profit of the

decentralized problem, w(Φ, x, t), to the objective function, and minimizing this quantity

results in the worst overall solution in the decentralized problem. We should note that

calculating w(Φ, x, t) is a two–stage process which involves solving the feasibility problem in

the first stage, and then executing the settlement process in the second stage.

In the following subsections, first, we derive our results for linear prices (k = 0), and then
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we extend the results to the general nonlinear prices (k > 0).

2.3.3.4 Worst Decentralized Solution with Linear Resource Prices

Using linear prices rij (only the constant part, without the variable part), agents’ problems

are the following:

[Pj] zj = max πjxj −
∑
i

rijtij (2.34)

s.t. aijxj ≤ bij + tij, (yij ≥ 0) ∀i ∈ R, ∀j ∈ J (2.35)

tij ≤ b̄ij, (vij ≥ 0) ∀i ∈ R, ∀j ∈ J (2.36)

− tij ≤ bij, (uij ≥ 0) ∀i ∈ R, ∀j ∈ J (2.37)

xj ≥ 0, ∀j ∈ J (2.38)

We write the KKT conditions for each agent j ∈ J , and then take the union of all the

individual KKT conditions, and form the aforementioned feasibility problem.

1. Stationarity : (−∇max. objective +
∑

dual variables×∇ constraints = 0)

xj −→ −πj +
∑
i

yijaij = 0,

tij −→ rij − yij − uij + vij = 0, ∀i ∈ R

(2.39)

2. Primal Feasibility :

aijxj ≤ bij + tij, ∀i ∈ R

tij ≤ b̄ij, ∀i ∈ R

− tij ≤ bij, ∀i ∈ R

xj ≥ 0

(2.40)
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3. Dual Feasibility :

yij, uij, vij ≥ 0, ∀i
(2.41)

4. Complementary Slackness :

yij ×
(
bij + tij − aijxj

)
= 0, ∀i

uij ×
(
bij + tij

)
= 0, ∀i

vij ×
(
b̄ij − tij

)
= 0, ∀i

(2.42)

Taking the union of KKT conditions for each agent j and using (2.13) in the objective

function, we present the two–stage model in a single formulation, denoted by (P–LIN). In

order to better observe the complexity of the problem, decision variables are shown with

a different color. Variables (wj, w0, rij, yij, uij, vij, xj, tij, di, si, ρ
s
i , ρ

b
i , θ

in
ij , θ

out
ij , γ

in
ij , γ

out
ij ) are all

the decision variables in problem [P–LIN].

[P–LIN] min
∑
j

wj + w0 s

s.t. − πj +
∑
i

aijyij = 0, ∀j ∈ J

rij − yij − uij + vij = 0, ∀i ∈ R, ∀j ∈ J

aijxj ≤ bij + tij, ∀i ∈ R, ∀j ∈ J

tij ≤ b̄ij, ∀i ∈ R, ∀j ∈ J

− tij ≤ bij, ∀i ∈ R, ∀j ∈ J

xj ≥ 0, ∀j ∈ J

yij, uij, vij ≥ 0, ∀i ∈ R, ∀j ∈ J

yij ×
(
bij + tij − aijxj

)
= 0, ∀i ∈ R, ∀j ∈ J
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uij ×
(
bij + tij

)
= 0, ∀i ∈ R, ∀j ∈ J

vij ×
(
b̄ij − tij

)
= 0, ∀i ∈ R, ∀j ∈ J

di =
∑
j

max{tij, 0}, ∀i ∈ R

si =
∑
j

max{−tij, 0} ∀i ∈ R

ρsi =


1, if di ≥ si

di
si
, otherwise

ρbi =


1, if di ≤ si

si
di
, otherwise

∀i ∈ R

θin
ij = ρbi ×max{0, tij} ∀i ∈ R, ∀j ∈ J

θout
ij = (1− ρbi)×max{0, tij} ∀i ∈ R, ∀j ∈ J

γin
ij = ρsi ×max{0,−tij} ∀i ∈ R, ∀j ∈ J

γout
ij = (1− ρsi )×max{0,−tij} ∀i ∈ R, ∀j ∈ J

wj = πjxj −
∑
i

(
rij × θin

ij + pbi × θout
ij

)
s

+
∑
i

(
rij × γin

ij + psi × γout
ij

)
∀j ∈ J

w0 =
∑
i,j

rij(γ
in
ij − θin

ij ) s

The problem formulated in (P–LIN) is difficult to solve, as both the constraints and the ob-

jective function are nonlinear. The objective function is the aggregate profit post–settlement.

The first ten constraints are the KKT conditions in the linear pricing case written for all

agents. The next four constraints define the total supply (si) and the total demand (di)

of each resource, as well as selling (ρsi and buying (ρbi) percentages, all as functions of the

exchange variable (tij) found in the KKT conditions. Both exchange variables and the two

percentage variables are then used to determine the proportion of the exchange requests hap-

pening within the alliance, and likewise the proportion of such exchanges outsourced to the

spot market. These quantities are being captured by the following four decision variables:
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θin
ij , θ

out
ij , γ

in
ij , γ

out
ij . Finally the true profit of each agent, wj, as well as the central planner’s

profit, w0, are calculated using updated exchange values which then is used in the objective

function. Note that the central planner’s profit (or subsidy) is zero only when there is no

price discrimination. Linear resource prices with price discrimination (i.e., using a different

resource price rij for each agent) can always achieve the efficiency ratio of one. Based on ex-

tensive numerical analysis that is omitted here for brevity (details, available in section 2.4),

it is highly likely that linear resource prices with price discrimination (i.e., using a different

resource price rij for each agent) can always achieve the efficiency ratio of one.

In essence, there is a tradeoff between linear prices with price discrimination and linear

prices without price discrimination. The main advantage of the former is achieving the

best efficiency ratio (i.e., δ∗ = 1), while it increases the central planner’s potential subsidy

amount. The main advantage of the latter case is eliminating the subsidy, while having a

suboptimal solution in terms of the efficiency ratio (i.e., δ∗ ≤ 1).

2.3.3.5 Resource Pricing Problem with Nonlinear Prices

As discusses previously in this section, assuming a unique solution in all agents’ problems,

which can be attained using the augmented price function (2.5) when k > 0, the formula

for the efficiency ratio reduces to the following, where agents’ problems have unique optimal

solutions; thus the minimization over multiple choice of the optimal solutions (x∗, t∗) in

w(Φ, x, t) is omitted:

δ∗ = max
Φ

δ(Φ) = max
Φ

w(Φ, x, t)

zc
(2.43)

Jennergren (1972) has shown that the augmented price function of the form (2.5) achieves the

efficiency ratio of one, by ensuring that the central planner’s optimal solution is also optimal

for all the agents. Jennergren also characterizes the optimal price parameters (i.e., rij, k)
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which are based on the optimal primal (tc∗ij ) and dual (p∗i ) values of the central planner’s

problem (M2). The optimal resource price function according to Jennergren (1972, 1973) is

the following equation:

fij(r, k, t) = rij + k × tij,

rij = p∗i − 2k × tc∗ij
(2.44)

For a (k > 0), but sufficiently small, price function (2.44) achieves an efficiency ratio of

one (Jennergren 1972). There are mainly two drawbacks with Jennergren’s approach. The

first drawback is with price discrimination. According to Jennergren’s approach, agents

can potentially have different price functions for the same resource. The second problem

with Jennergren’s approach is the fact that the central planner might have to subsidize

some exchanges. Therefore, achieving full coordination costs the central planner. First, we

propose a method that achieves the efficiency ratio of one for the single–resource case with an

extension to the multiple–resource case as a conjecture, without price discrimination, using

the resource price function introduced in (2.45), below.

fij(r, k, t) = ri + k × tij (2.45)

We then analyze the subsidy amount for newly proposed resource price function. First, let

us revisit the agents’ profit maximizing problems with nonlinear price function of the form

(2.45):

[Pj] zj = max πjxj −
∑
i

(
ri + k × tij

)
tij (2.46)

s.t. aijxj ≤ bij + tij, (yij ≥ 0) ∀i ∈ R, ∀j ∈ J (2.47)

tij ≤ b̄ij, (vij ≥ 0) ∀i ∈ R, ∀j ∈ J (2.48)

− tij ≤ bij, (uij ≥ 0) ∀i ∈ R, ∀j ∈ J (2.49)
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xj ≥ 0, ∀j ∈ J (2.50)

For simplicity, we start the discussion with an instance of the problem having only one

resource (and multiple agents).

Theorem 2.1. With the resource price function (2.45), the efficiency ratio is always one in

single–resource instances of the problem.

Proof. With only a single resource, we can simplify agent’s problems and formulate them

using only the exchange variables. This property holds because all the resource constraints

are binding for all the agents, and we can model the production variable as a function of the

exchange variables. Model [P 1
j ] shows agent j’s problem with a single resource.

[P 1
j ] z1

j = max πjxj − (r + k × tj)tj (2.51)

s.t. ajxj = bj + tj, (yj ≥ 0) ∀j ∈ J (2.52)

tj ≤ b̄j, (vj ≥ 0) ∀j ∈ J (2.53)

− tj ≤ bj, (uj ≥ 0) ∀j ∈ J (2.54)

xj ≥ 0, ∀j ∈ J (2.55)

Writing the same model using only the exchange variables, [P 1
j ] for agent j is formulation

(2.56)–(2.58). In this transformation, we replaced variable xj with
bj+tj
aj

, obtained from

constraint (2.52).

[P 1
j ] z1

j = max tj × (
πj
aj
− r)− k × t2j (2.56)

s.t. tj ≤ b̄j, (vj ≥ 0) ∀j ∈ J (2.57)

− tj ≤ bj, (uj ≥ 0) ∀j ∈ J (2.58)
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Now, let us write the KKT conditions for agent j’s problem.

1. Stationarity : (−∇max. objective +
∑

dual variables×∇ constraints = 0)

tj −→ −
πj
aj

+ r + 2ktj + vj − uj = 0
(2.59)

2. Primal Feasibility :

tj ≤ b̄j,

− tj ≤ bj.

(2.60)

3. Dual Feasibility :

uj, vj ≥ 0.

(2.61)

4. Complementary Slackness :

uj ×
(
bj + tj

)
= 0,

vj ×
(
b̄j − tj

)
= 0,

(2.62)

Combining all the KKT conditions for all the agents (set J), the feasibility problem (P1–NL)

solves the coordinating problem. To prove Theorem 2.1, it suffices to show that problem

(P1–NL) is always feasible. Feasibility of this problem implies that the resource price func-

tion (2.45) always achieves an efficiency ratio of one for single–resource instance. Variables

(k, r,uj, vj, tj) are the decision variables, shown in different color in problem [P1–NL].

[P1–NL] max 0 s

s.t. − πj
aj

+ r + 2 k tj − uj + vj = 0, ∀j ∈ J
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tj ≤ b̄j, ∀j ∈ J

− tj ≤ bj, ∀j ∈ J

uj, vj ≥ 0, ∀j ∈ J

uj ×
(
bj + tj

)
= 0, ∀j ∈ J

vj ×
(
b̄j − tj

)
= 0, ∀j ∈ J

The first constraint in (P1–NL) suggests a formula for the base price of the resource price

function, r:

r =
πj
aj
− 2 k tj + uj − vj (2.63)

We divide the set of all agents J into two subsets: the set of producer agents, denoted by

J+, and the set of non–producer agents, denoted by J0. We will use a target solution (t) to

further simplify the problem (P1–NL) and to prove that a single r in (2.63) can satisfy the

feasibility problem. The exchange quantity of the first best solution can potentially solve

the coordinating problem without price discrimination. Let t∗j denote the central planner’s

solution for agent j’s exchange quantity. In essence, agents either produce a product which

may require acquiring more resources from other agents, or they sell all their resource en-

dowments. Given this partitioning, the value of r for each of these two subset of agents is

the following:

r =


πj
aj
− (2 k tj + vj), if j ∈ J+,

πj
aj

+ (2 k bj + uj), if j ∈ J0.

(2.64)

Note that the mathematical expression inside the parentheses for both types of agents is

non–negative, as tj is non–negative for producer agents and both dual variables, vj, uj, are

also non–negative by definition. As a result, we have the freedom to increase or decrease
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the dual variables without any restriction to make sure the same r value satisfies all the

constraints. Therefore, we can conclude that the single–r resource price function always

achieves an efficiency of one for single–resource instance.

According to Theorem 2.1, in a single–resource case, agents’ problems can be formulated in

a simpler way with fewer decision variables. Moreover, a single base price (i.e., r) unique

for all the agents is guaranteed to achieve the efficiency ratio of one. Next, we extend our

results to the multiple–resources case.

Based on some structural properties of the KKT conditions (which are explained later in this

section) as well as our extensive numerical analysis that is omitted here for brevity (details

available from the authors), we observe that it is highly likely that with the resource price

function (2.45), the efficiency ratio is one in the multiple–resource multiple–agent instance

of the problem, when the solution to the resource allocation problem satisfies the following

two conditions:

1. Minimal exchange: agents make minimal exchange meaning that the total amount

of resources used for production among all agents is exactly equal to the endowment

of agents producing plus the amount of resources being exchanged among buyers and

sellers.

aijxj = bij + tij, ∀i ∈ R, j ∈ J (2.65)

2. Equal division: for partially–used resources, the total demand from the producer

agents is equally divided among non–producer agents. Let t̄i be that equal amount

for resource i. Assume Rp, J+, J0 denote the set of partially used resources, producer
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agents, and non–producer agents, respectively.

t̄i =
1

|J0|
∑
j∈J+

t∗ij (2.66)

With a nonlinear price function, agents’ problems have unique optimal solutions. The value

of the optimal solution for each agent depends on the objective function, more specifically the

resource price function. There can be two approaches towards ensuring the best efficiency

ratio with a price function that does not differentiate among agents:

Method #1: Similar to the problem (P–LIN) with linear resource price function, we can

consider both price parameters, (ri, k) in this case, as well as agents’ decisions (i.e., pro-

duction and exchange quantities) as decision variables of a problem whose constraint set

includes the optimality conditions of all the agents. Since there is no multiple optimal solu-

tions scenario in this case, no objective function is required for the feasibility problem with

the optimality conditions, and we can use a simple (max 0) objective function. Let us review

the KKT conditions for each agent j ∈ J , with nonlinear pricing of the form (2.45):

1. Stationarity : (−∇max. objective +
∑

dual variables×∇ constraints = 0)

xj −→ −πj +
∑
i

yijaij = 0,

tij −→ rij + 2ktij − yij − uij + vij = 0, ∀i ∈ R

(2.67)

2. Primal Feasibility :

aijxj ≤ bij + tij, ∀i ∈ R

tij ≤ b̄ij, ∀i ∈ R

− tij ≤ bij, ∀i ∈ R

xj ≥ 0

(2.68)
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3. Dual Feasibility :

yij, uij, vij ≥ 0, ∀i
(2.69)

4. Complementary Slackness :

yij ×
(
bij + tij − aijxj

)
= 0, ∀i

uij ×
(
bij + tij

)
= 0, ∀i

vij ×
(
b̄ij − tij

)
= 0, ∀i

(2.70)

Taking the union of KKT conditions for each agent j, we present the two–stage model (i.e.,

determining the resource price function, and agents’ production and exchange decisions) in

a single formulation, denoted by (P–NL). In order to better observe the complexity of the

problem, similar to (P–LIN), decision variables are shown with a different color. Variables

(wj, w0, k, rij, yij, uij, vij, xj, tij, di, si, ρ
s
i , ρ

b
i , θ

in
ij , θ

out
ij , γ

in
ij , γ

out
ij ) are all the decision variables in

problem [P–NL].

[P–NL] max 0 s

s.t. − πj +
∑
i

aijyij = 0, ∀j ∈ J

ri + 2ktij − yij − uij + vij = 0, ∀i ∈ R, ∀j ∈ J

aijxj ≤ bij + tij, ∀i ∈ R, ∀j ∈ J

tij ≤ b̄ij, ∀i ∈ R, ∀j ∈ J

− tij ≤ bij, ∀i ∈ R, ∀j ∈ J

xj ≥ 0, ∀j ∈ J

yij, uij, vij ≥ 0, ∀i ∈ R, ∀j ∈ J
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yij ×
(
bij + tij − aijxj

)
= 0, ∀i ∈ R, ∀j ∈ J

uij ×
(
bij + tij

)
= 0, ∀i ∈ R, ∀j ∈ J

vij ×
(
b̄ij − tij

)
= 0, ∀i ∈ R, ∀j ∈ J

di =
∑
j

max{tij, 0}, ∀i ∈ R

si =
∑
j

max{−tij, 0} ∀i ∈ R

ρsi =


1, if di ≥ si

di
si
, otherwise

ρbi =


1, if di ≤ si

si
di
, otherwise

∀i ∈ R

θin
ij = ρbi ×max{0, tij} ∀i ∈ R, ∀j ∈ J

θout
ij = (1− ρbi)×max{0, tij} ∀i ∈ R, ∀j ∈ J

γin
ij = ρsi ×max{0,−tij} ∀i ∈ R, ∀j ∈ J

γout
ij = (1− ρsi )×max{0,−tij} ∀i ∈ R, ∀j ∈ J

wj = πjxj −
∑
i

(
(ri + kθin

ij )θ
in
ij + pbi × θout

ij

)
s

+
∑
i

(
(ri − kγin

ij )γ
in
ij + psi × γout

ij

)
∀j ∈ J

w0 =
∑
i,j

((
(ri − kγin

ij ) γ
in
ij

)
−
(

(ri + kθin
ij ) θ

in
ij

))
s

The problem (P–NL), which is an instance of nonlinear programming problems (NLP), is

extremely difficult to solve, since the feasible region is non–convex. Therefore, we introduce

the second method which solves the pricing problem in a single stage that only involves

finding the price function parameters, while production and exchange quantities are pre–

determined using the central planner’s problem.

Method #2: We take the central planner’s optimal solution (xc∗, tc∗) as our target solution

and we use inverse optimization to guarantee the optimality of the central planner’s solution

for all the agents. We can execute the perturbation scheme of the inverse optimization by
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changing the parameters of the objective function (e.g., resource price function parameters

in agents’ problems). According to our extensive numerical study, it is very likely that for a

given price function (ri, k), a primal–dual solution
(

(x, t)− (y, u, v)
)

satisfies the following

three conditions, if and only if (x, t) is an optimal solution to the central planner’s problem

(i.e., M1 and M2).

1. The primal–dual solution
(

(x, t)− (y, u, v)
)

satisfies (2.67)–(2.70);

2. For every resource i, total buying and selling orders by the agents match (i.e., market

clears); ∑
j

tij = 0

3. The aggregate profit is equal to the optimal profit in the central planner’s problem (zc)

minus the central planner’s net profit (wo).

∑
j

zj = zc − w0

Therefore, if there is any solution, optimal for all the agents, while satisfying some of the

globally optimal solution conditions (i.e., market clearance and the aggregate profit value),

that solution needs to be optimal for the central planner’s problem. Therefore, we can

assume that the central planner’s optimal solution (i.e., xc∗, tc∗) is our target solution, and

we can use inverse optimization to perturb the objective function in each agent’s problem

to ensure the optimality of the central planner’s solution for all the agents. The main tool

in the inverse optimization is the resource price function coefficients (i.e., ri, k). Taking this

adjustment into account, the new feasibility problem has far less decision variables, and it is

as follows.

[P–CP] max 0 s
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s.t. − πj +
∑
i

aijyij = 0, ∀j ∈ J

ri + 2 tc∗ij × k − yij − uij + vij = 0, ∀i ∈ R, ∀j ∈ J

aijx
c∗
j ≤ bij + tc∗ij , ∀i ∈ R, ∀j ∈ J

tc∗ij ≤ b̄ij, ∀i ∈ R, ∀j ∈ J

− tc∗ij ≤ bij, ∀i ∈ R, ∀j ∈ J

xc∗j ≥ 0, ∀j ∈ J

yij, uij, vij ≥ 0, ∀i ∈ R, ∀j ∈ J

yij ×
(
bij + tc∗ij − aijxc∗j

)
= 0, ∀i ∈ R, ∀j ∈ J

uij ×
(
bij + tc∗ij

)
= 0, ∀i ∈ R, ∀j ∈ J

vij ×
(
b̄ij − tc∗ij

)
= 0, ∀i ∈ R, ∀j ∈ J

The only decision variables in this problem are the price function coefficients, (ri, k), and the

dual variables, (yij, uij, vij). Since the primal feasibility constraints are already satisfied, we

can remove them from the program (P–CP). We denote the central planner’s optimal solution

by (x∗, t∗), dropping the c superscript for simplicity. The resulting feasibility problem to find

the optimal resource price function parameters is the following:

[P–CP] max 0 s

s.t. − πj +
∑
i

aijyij = 0, ∀j ∈ J (2.71)

ri + 2 t∗ij × k − yij − uij + vij = 0, ∀i ∈ R, ∀j ∈ J (2.72)

yij, uij, vij ≥ 0, ∀i ∈ R, ∀j ∈ J (2.73)

yij ×
(
bij + t∗ij − aijx∗j

)
= 0, ∀i ∈ R, ∀j ∈ J (2.74)

uij ×
(
bij + t∗ij

)
= 0, ∀i ∈ R, ∀j ∈ J (2.75)

vij ×
(
b̄ij − t∗ij

)
= 0, ∀i ∈ R, ∀j ∈ J (2.76)
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According to the second stationarity condition in (P–CP), equation (2.72), the formula for

the constant part of the nonlinear price function, ri, is as follows:

ri = yij + uij − vij − 2k t∗ij (2.77)

In order for the price function (2.45) to work, the right–hand–side of (2.77) needs to be

the same value for all the agents. Otherwise, coordination on the basis of nonlinear prices

without price discrimination will not be possible. Now, we define some new notation. We

partition the set of agents and the set of resources into two disjoint subsets, based on the

central planner’s solution (primal values = x∗, t∗, dual values = p∗):

• Resources:

1. Rf = {i :
∑

j aijx
∗
j = bi}, the set of fully–used resources. The entire endowment of

this type of resource is used for production purposes. The optimal dual resource

price for these types of resources are generally non-zero and positive (p∗i > 0),

although it is possible for (p∗i = 0).

2. Rp = {i :
∑

j aijx
∗
j < bi}, the set of partially–used resources. This type of

resource is not used to its capacity. The optimal dual resource price for these

types of resources are zero (p∗i = 0).

• Agents:

1. J+ = set of producer agents. These agents have a non–zero production quantity

(x∗j > 0). Note that we assume strictly positive aij coefficients for all the agents;

that is, if an agent produces any amount of her product, she needs all resources

for production purposes. Producer agents can potentially sell a subset of their

resource endowments.

2. J0 = set of non–producer agents. These agents make zero production (x∗j = 0),

and they rely on selling their resources to benefit from the alliance.
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vij   =   0
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Agents

Resources

Producers Resource Sellers

Fully-used

Partially-used

Figure 2.4: Breakdown of complementary slackness conditions for subsets of agents and
resources

Using the complementary slackness conditions in (2.74)–(2.76) and the partitioning of the

set of agents and resources described above, Figure 2.4 summarizes the breakdown of com-

plementary slackness conditions with respect to each subset of agents and resources.

Taking into account the value of dual variables shown in Figure 2.4, for each subset of

the resources (i.e., fully– and partially–used resources), we show that all the conditions in

(P–CP), (2.71)–(2.76), can be satisfied.

Partially Used Resources (Rp):

First, let us see what is the resulting equation (2.77) when we commit the assignments in

Figure 2.4.

ri =


yij − 2k t∗ij, if j ∈ J+,

−2k t∗ij, if j ∈ J0.

(2.78)

Now we need to use the two conditions mentioned above, namely minimal exchange and
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equal division. In essence, we are specifying the desirable exchange values given optimal

production quantities. It is not difficult to see that given an optimal production plan (i.e.

xc∗), there might be multiple optimal exchange values (i.e., tc∗), and we have the freedom

to choose which pair of (xc∗, tc∗) we use as the target solution in the inverse optimization

approach. Let us denote the average selling quantity by the resource sellers in partially-used

case by t̄i, which is equal to:

t̄i =
1

|J0|
∑
j∈J+

t∗ij (2.79)

We can calculate the exact ri for the partially-used resources:

ri = 2k t̄i (2.80)

Given tij values are all non-negative for producer agents, we can always satisfy (2.77) using

the proper yij:

yij = ri + 2k t∗ij, ∀j ∈ J+ (2.81)

= 2k t̄i + 2k t∗ij ∀j ∈ J+ (2.82)

Fully Used Resources (Rf):

The formula for ri in fully-used resource scenario, taking into account the value assignments

in Figure 2.4 is the following:

ri =


yij − vij − 2k t∗ij, if j ∈ J+,

yij + uij + 2k bij, if j ∈ J0.

(2.83)

Note that the optimal exchange value for non–producer agents is clear and it is the entire
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endowment of each agent (i.e., t∗ij = −bij). The optimal exchange variable for producer

agents however is not trivial and it depends on their production quantity, thus using the

general notation t∗ij. We know that the term (uij + 2k bij) is always non-negative for non–

producer agents. The term (−vij−2k t∗ij) may or may not be non–positive depending on the

value of t∗ij. It is possible to have a negative (means selling) exchange variable for a producer

agent for some resources. Now the goal is to show that:

yij1 − 2k t∗ij1 ≥ yij2 + 2k bij2 , ∀i ∈ Rf , j1 ∈ J+, j2 ∈ J0 (2.84)

If we show that (2.84) is always feasible, we can always satisfy conditions (2.83) using proper

vij and uij dual values. Therefore, the task is to prove that there is always a feasible solution

to the following set of constraints:

∑
i

aijyij = πj, ∀j ∈ J (2.85)

yij1 − yij2 ≥ 2k
(
t∗ij1 + bij2

)
, ∀i ∈ Rf , j1 ∈ J+, j2 ∈ J0 (2.86)

yij×

(
bij + t∗ij − aijxj

)
= 0, ∀i ∈ R, ∀j ∈ J (2.87)

yij ≥ 0, ∀i ∈ R, ∀j ∈ J (2.88)

Intuitively, for any resource i that is fully used, agents with positive production quantity will

have a higher yij than those agents with zero production. This is particularly clear when we

view the coefficients as
πj
aij

which is the bang–per–buck for agents.

2.4 Numerical Analysis

To further study and assess the quality of our theoretical arguments, laid out in the previous

section, we generate several random instances of the coordinating problem, solve agents and

92



the central planner’s problem on each of them, run the settlement process, and calculate the

resulting aggregate profit and finally the efficiency ratio. We use a large number of choices for

price function parameters (i.e., r, k) in our experiments to better assess the behavior of our

target metric, the efficiency ratio, when these parameters are changing. All computational

experiments have been written in Python 3.7, and optimization problems are run using

Gurobi 9.0 solver.

Table 2.2 contains the information regarding a 3–agent 1–resource example with resource

usage and endowment values given, as well as 8 possible profit margin vectors (2 choices for

each agent, resulting in 8 different problem instances). We study 8 different profit vectors,

to assess the performance of the quadratic pricing function on different objective function

values, while keeping a, b parameters constant. These profit margins are numbered 1 . . . 8 to

facilitate better use of the plots in this section:

• Profit margin #1: (3, 3, 1)

• Profit margin #2: (3, 3, 2)

• Profit margin #3: (3, 2, 1)

• Profit margin #4: (3, 2, 2)

• Profit margin #5: (5, 3, 1)

• Profit margin #6: (5, 3, 2)

• Profit margin #7: (5, 2, 1)

• Profit margin #8: (5, 2, 2)

Using a single resource in this example provides additional opportunity to present visualiza-

tion based on the single base price r in a simpler way. Numerical experiments with larger

number of resources have the same message, in general. In this section, we present two main

types of visualizations. First, we fix the constant k, and we find the efficiency ratio and the

subsidy amount (also known as the central planner’s net profit) for each choice of the base

price r. Since spot market prices for buying and selling one unit of resource are 4.5 and 1.5,

respectively, it is logical to limit our choice of r to be within these two numbers. Otherwise,

spot market option will be more attractive than joining and staying within the alliance of
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Problem parameters

Agents Three agents J = (j1, j2, j3)

Resources One resource R = (i1)

Resource usage a = (2, 1, 1)

Resource endowment b = (3, 1, 2)

Profit margins (π) π1 ∈ {3, 5}, π2 ∈ {2, 3}, π3 ∈ {1, 2}
Base price (r) Values between 1.6 and 4.4 with increments of 0.01

k values k ∈ {0, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 5, 10, 15, 20}
Spot market prices ps = 1.5, pb = 4.5

Table 2.2: A 3–agent 1–resource numerical example with 8 possible profit margins

agents. We use approximately 300 r values, ranging from 1.6 to 4.4 with increments of 0.01.

We run the same experiment for 8 different profit margin (π) choices, and 12 different k

values. Second, for each choice of the constant k, we find the r value with the best (i.e.,

largest) efficiency ratio, and we plot the resulting efficiency ratio, and profit values (central

planner’s, aggregate profit, and the centralized profit) as a function of k.

Note that we plot only a subset of all the k values that have been tested (the subset

{0, 0.001, 0.01, 0.1, 0.5, 1, 10} to be exact) to be able to show the entire instance in one page.

The general behavior of the efficiency ratio and the subsidy amount remain the same. Ac-

cording to Figures 2.5–2.12, as k increases, in most instances, the best efficiency ratio falls

under the value of one which suggests that there is an optimal point in which the efficiency

ratio is at its best. Moving from k = 0 to a non–zero k value, the subsidy increases which

may impact the effectiveness of nonlinear pricing mechanism negatively. To achieve the best

performance, we need to take into account both efficiency ratio and the subsidy at the same

time.

For those instances with k > 0 where the efficiency ratio is one, especially those closer to zero,

there is a range of r values appearing to be the optimal solution. As an important future

direction, we need to investigate the behavior of the efficiency ratio within those intervals,

and ideally characterize the boundaries of these optimal intervals of r. We also need to take

the subsidy into account. Even though there is a range of r values which are optimal in
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Figure 2.5: Efficiency ratios and subsidy as a function of r for profit margin 1 in example of
Table 2.2
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Figure 2.6: Efficiency ratios and subsidy as a function of r for profit margin 2 in example of
Table 2.2
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Figure 2.7: Efficiency ratios and subsidy as a function of r for profit margin 3 in example of
Table 2.2
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Figure 2.8: Efficiency ratios and subsidy as a function of r for profit margin 4 in example of
Table 2.2
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Figure 2.9: Efficiency ratios and subsidy as a function of r for profit margin 5 in example of
Table 2.2
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Figure 2.10: Efficiency ratios and subsidy as a function of r for profit margin 6 in example
of Table 2.2
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Figure 2.11: Efficiency ratios and subsidy as a function of r for profit margin 7 in example
of Table 2.2
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Figure 2.12: Efficiency ratios and subsidy as a function of r for profit margin 8 in example
of Table 2.2
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terms of efficiency ratio, the subsidy values are not the same for all such points. There can

be at least two directions to follow: we can either take a weighted average of these two values

(a small example is presented in section 2.5), or we can use the concept of Pareto optimality

to consider both metrics at the same time.

Figure 2.13 shows the second experiment we performed to study the effectiveness of nonlinear

pricing mechanisms. In these graphs, for each choice of constant k, we find a corresponding r

value with the best efficiency ratio, and we pair that efficiency ratio, as well as (w,w0,
∑

j wj),

with that k value. This figure is a result of plotting these values as functions of k. Figure

2.14 is the same plot, except only the first k values have been plotted to zoom into smaller

values of k.

The main message from these graphs is that it helps to use a nonlinear price function to

achieve the best efficiency ratio. While increasing the value of k, in all of the graph, the

efficiency ratio eventually becomes one at some point, while dropping to a lower value after

a certain value for k. This shows the importance of choosing the right k value, while also

paying attention to the subsidy amount which can move in the opposite direction.

On the right hand side of these graphs, we plot agents’ aggregate profit without the subsidy

(
∑

j wj), the subsidy (w0), and the overall aggregate profit value (w) as a function of k. One

important takeway from this plot is that even though w and w0 are similar in shape and

slope, but we want w to be as large as possible, while w0 is the opposite.

Finally, we observe that different profit margins have different efficiency ratio values and

this variation is a reasonable motivation to pursue this problem in the stochastic case, since

combining these instances with a probability distribution, it only gets more complicated to

find the most appropriate price function.
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Figure 2.13: Efficiency ratio and profit values as functions of k (each row belongs to a
different profit margin)
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Figure 2.14: Efficiency ratio and profit values as functions of k (first 8 k values)
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2.5 Resource Exchange Model - Stochastic Case

In this section, we extend our model by assuming uncertainty in the profit coefficients of

the agents. The main implication of this assumption is when the central planner studies the

problem parameters to design a pricing schedule, she no longer has full knowledge of the

agents’ profit coefficients and she only knows a probability distribution of these coefficients.

Figure 2.15 illustrates the sequence of events in the stochastic case of the pricing problem

in resource exchange economic setting.

Distribution of the profit
margins is common knowledge

Profit margin is realized by each
agent (private information)

Time

Central planner
announces a resource

pricing policy

Profit margins are
realized by agents

Agents solve their profit
maximizing problems for
production and exchange

quantities

Agents exchange
resources and
payments with
other agents

Agents exchange
resources and

payments with spot
market

Aggregate profit and
the efficiency ratio

are calculated

Settlement process
initiated

Figure 2.15: Timeline of events in the coordination problem - stochastic case

Let set Ξ denote the set of all profit margin values for agents, and let ξ denote one specific

realization of this random variable. We show the vector of profit margins corresponding to

the random state ξ by πξ, and the specific profit margin for agent j under that scenario by

πξj . For instance, in a two–agent problem where profit margins for agents one and two can

both be either 2 or 3, the set Ξ is equal to {(2, 2), (2, 3), (3, 2), (3, 3)}, π0 refers to the profit

vector (2, 2), and π0
1 refers to agent 1’s profit margin under this random state, which is 2.

Given the realization ξ of the profit margins, we review agents’ profit maximizing problems,

denoted by (P s
j ) for agent j, using similar notation as in section 2.3. The price function in

(P s
j ), fij(t,Φ), is a general price function. In the remainder of this section, we discuss the

usefulness of a quadratic pricing policy, similar to the deterministic case, in achieving higher

efficiency ratio.

[P s
j ] zsj (ξ) = max πξjxj −

∑
i

fij(t,Φ)× tij (2.89)
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s.t. aijxj ≤ bij + tij, (yij ≥ 0) ∀i ∈ R, ∀j ∈ J (2.90)

tij ≤ b̄ij, (vij ≥ 0) ∀i ∈ R, ∀j ∈ J (2.91)

− tij ≤ bij, (uij ≥ 0) ∀i ∈ R, ∀j ∈ J (2.92)

xj ≥ 0, ∀j ∈ J (2.93)

The same process to obtain an approximate coordinating solution in the deterministic case

can be applied to find a feasible solution for the stochastic case. Let ws(πξ,Φ, x, t) denote

the aggregate profit value given the profit margin πξ. The set Hξ contains the set of all the

optimal solutions (x, t) in agents’ individual problems given the profit margin πξ.

The central planner’s problem on the other hand, which can be used to find the most

appropriate resource price function, is modeled below.

[M2s] zsc(ξ) = max
∑
j

πξjx
c
j (2.94)

s.t. aijx
c
j ≤ bij + tcij, (qij ≥ 0) ∀i ∈ R, ∀j ∈ J (2.95)∑

j

tcij = 0, (hi) ∀i ∈ R (2.96)

xcj ≥ 0, ∀j ∈ J (2.97)

Let l(ξ) denote the mass density function for the realizations of the profit margins. In our

numerical analysis, we assume the set Ξ consists of a countably finite number of scenarios

ξ, and each l(ξ) represents the probability of that profit margin, πξ, to be the truth. The

expected value of the vector of profit margins is calculated as Eξ(π) =
∑

ξ∈Ξ l(ξ)π
ξ. Given

the set of possible profit margins and a probability distribution, we first calculate both the

central planner’s solution, as well as the decentralized solution according to the process

outlined in Figure 2.1 for each choice of the vector π. We then take the expected value of

the numerator and the denominator in the efficiency ratio formula, resulting in an efficiency
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ratio for the stochastic case of the problem.

w̄s(Φ) =
∑
ξ∈Ξ

l(ξ)×
(

min
(x,t)∈Hξ

ws(πξ,Φ, x, t)
)

(2.98)

z̄sc =
∑
ξ∈Ξ

l(ξ)zsc(ξ) (2.99)

Let δs(Φ) and δs∗ denote the efficiency ratio and the best efficiency ratio, respectively, both

in the stochastic instance of the problem.

δs∗ = max
Φ

δs(Φ) = max
Φ

w̄s(Φ)

z̄sc
(2.100)

Due to the stochasticity of the problem in this section, studying the effectiveness of different

price functions is even more challenging. After performing extensive numerical analysis, we

observe the usefulness of quadratic pricing policy for achieving the best efficiency ratio in the

stochastic case. Moreover, there is a sweet spot for the parameter k and finding the exact

or approximate value of the optimal k remains to be a fruitful direction to explore in the

future. Table 2.3 shows the setup for a numerical example with three agents and a single

resource. We include a large range of values for the two parameters of the price function

(r, k).

Problem parameters

Agents Three agents J = (j1, j2, j3)

Resources One resource R = (i1)

Resource usage a = (2, 1, 1)

Resource endowment b = (3, 1, 2)

Profit margins (π) π1 ∈ {3, 5}, π2 ∈ {2, 3}, π3 ∈ {1, 2}
Base price (r) Values between 1.6 and 4.4 with increments of 0.01

k values k ∈ {0, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 5, 10, 15, 20}
Spot market prices ps = 1.5, pb = 4.5

Table 2.3: A 3–agent 1–resource numerical example with uncertainty in profit margins
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Figure 2.16: Efficiency ratio as a function of k in example of table 2.3

Figure 2.16 illustrates the efficiency ratio values as a function of the constant k, calculated

using (2.100). For each choice of the parameter k, approximately 300 different r values have

been tested, and the largest efficiency ratio has been selected to pair with that k value in

Figure 2.16. Figure 2.17 shows the same plot as in Figure 2.16, except it only contains the

first 8 k values, to zoom in the left hand side of the plot, closer to k being zero. Note that the

optimal efficiency ratio in this case is not at (k = 0) and not immediately after zero either,

as it was the case with nonlinear price function with price discrimination in the deterministic

case, and instead, the optimal efficiency ratio happens at a certain point between k = 0.01

and k = 0.05. We should also mention that, a higher efficiency ratio and the ability to

coordinate the agents may come with a price which is the amount of subsidy that the central

planner needs to pay the system. Let us plot the subsidy amounts in the same example

to further investigate this tradeoff. Figure 2.18 shows the subsidy amount corresponding

to the best r value given any choice of k in the x–axis. Figure 2.19 is the same plot as in

Figure 2.18, except it only contains the first 8 k values to show the behavior of the plot at the
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Figure 2.17: Efficiency ratio as a function of k (first 8 k values) in example of table 2.3
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Figure 2.18: Subsidy amount as a function of k in example of table 2.3
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Figure 2.19: Subsidy amount as a function of k (first 8 k values) in example of table 2.3

peak, slightly better. Now, to better compare the advantage of higher efficiency ratio with the

drawback of having to subsidize the agents by a large amount, we can use a weighted average

of the efficiency ratio and the subsidy amount in a single visualization. Since the efficiecy

ratio for a given K (δs∗k = maxr δ
s(r, k)) is a number between zero and one, we convert the

subsidy into a percentage, by dividing it by the aggregate profit w̄s∗k = maxΦ w̄
s(Φ). We

then subtract this quantity from the efficiency ratio, and we denote it by ek.

ek = δs∗k −
w̄s0(k)

w̄s∗k
(2.101)

Figure 2.20 illustrates the tradeoff between the efficiency ratio and the subsidy, converted

into the percentage of aggregate profit. Even though the exact choice of the best k value

changes from Figure 2.17, but the small range at the lower end of the spectrum for parameter
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Figure 2.20: Plotting parameter ek, defined in (2.101), as a function of k (first 6 k values)
in example of table 2.3

k remains the best bet. We observed the same behavior in many other numerical examples

and different probability distributions, as well. As a future work, we need to investigate the

reason why quadratic pricing performs better in achieving descent efficiency ratio in lower k

values, and ideally we want to characterize the exact set of k values which maximize δs∗.

2.6 Concluding Remarks

In many real world applications, resources and equipment are being shared in multi–agent

economic models for a fee, in an alliance of agents with certain rules and regulations (e.g.,

the resource price function is announced by the central planner or alliance manager). Each

agent has been endowed a certain amount of each resource. These resources and equipment

may be used for production purposes, or may be traded with other agents. Agents make two
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key decisions: how much of their distinct product they are producing, and how much of each

type of resource they are trading with other agents. The trade can take both buying and

selling form. Agents make decisions oblivious to other agents’ decisions. Now the efficiency

of the alliance depends on the performance of all agents in making their production and

exchange decisions, and whether the overall aggregate solution matches or is close to the

central planner’s globally optimal solution. We use a metric called efficiency ratio, defined

as the ratio between the worst aggregate solution of the decentralized problem and the

optimal solution of the centralized problem, to measure the performance of the alliance

given any resource price function. We assume that in case of any mismatch between supply

and demand of any of the resources, agents can use the spot market to satisfy any unmatched

buying or selling request, incurring a higher price, compared to the alliance.

It is well–known in the literature that linear price functions without price discrimination

(i.e., same price on each specific resource for all the agents) cannot guarantee an efficiency

ratio of one due to the multiple optimal solutions in agents’ problems and the possibility of

a mismatch between buy/sell orders by the agents. We analyze linear price functions with

price discrimination (i.e., linear price for each resource, not necessarily same across different

agents) and we argue that it is sufficient to achieve the efficiency ratio of one. The main

drawback of this price function however is the fact the central planner needs to subsidize

exchanges among agents.

We study nonlinear price functions of the form “constant1 + constant2 * exchange value”

and we discuss their advantages and disadvantages. Jennergren has proven the efficiency of

this price function with price discrimination. We study a different version of this nonlinear

price function, in which the constant part is fixed and the same across agents. We provide

the conditions under which this price function achieves the best efficiency ratio, even without

price discrimination in the general multiple–resource multiple–agent case.

Finally, we study a different version of this problem where the profit margins of the agents are
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not fully–known for the central planner when designing the price function. Using numerical

analysis, we observe the usefulness of nonlinear price functions of the form studied in the

deterministic case of the problem. A key observation in this case is that the second coefficient

of the resource price function, k, needs to be at a certain level to maximize the efficiency

ratio, and there is both an upper and a lower bound for it, as opposed to the deterministic

case where there is only an upper bound, and any sufficiently small value of k solves the

coordination problem.

As future work, there are a number of directions that need to be explored. First, one can

compute the range of the subsidy amount of the central planner’s problem when linear price

function with price discrimination is used. Second, a full characterization of the proposed

nonlinear price function in the deterministic case may be developed which may include

optimality conditions for the parameters of the price function. Third, the instance of the

coordination problem with uncertainty in the profit margins of the agents may be further

studied either as a stochastic optimization problem or a robust optimization problem.
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Chapter 3

Conclusions

In this dissertation, we embarked on a journey to study several key research questions in

service operations using prescriptive and predictive analytics. In the first chapter, which is

within the general domain of sports analytics, the main challenge was to conclude a sports

league after suspension mid–way through the season. We reviewed four possible alterna-

tives to conclude the season, and we proposed a two–phase approach to show why playing a

subset (and not all) of the remaining games, which is called a shortened season, can be the

fairest compromise. In the first phase, we used a Näıve Bayes binary classification method

to predict the outcome of the remaining games. We chose the Näıve Bayes model among

five candidate binary classifiers, based on their performance in a training dataset consist-

ing of past NBA seasons, and in terms of a metric which is called predictive power. In

the second phase, we investigated three different ways of measuring the distance between a

full–season ranking and a shortened–season ranking: concordance, Manhattan distance, and

Spearman’s ρ coefficient. Using these metrics exactly or inspired by them, we formulated

several stochastic optimization models to find the shortened season games. After extensive

computational experiments using 14 NBA seasons, in years 2004–2010 and 2012–2018, we

reached several important conclusions. First, all five proposed solution methods outperform

115



a baseline greedy algorithm which is non–ranking–based. Second, sample average approxi-

mation (SAA) models perform better than mean value approximation (MVP) counterparts,

as they include more scenarios of the random variables in their analysis. Third, the deter-

ministic model with quadratic objective function, approximating the exact ranking–based

objective, performs better than SAA models both in terms of average concordance and the

variation across different seasons. Fourth, after performing statistical hypothesis testing,

the two models PC–SAA and PW–DQIP outperform all the other models overall. We out-

lined a few directions that can potentially improve this work in the future. The predictive

model can be enhanced to use data points from previous seasons for training purposes. The

formulations in SAA models can be improved to solve larger instances with higher number

of scenarios included. PW–DQIP formulation can be improved to solve the problems more

efficiently, which translates to less running time and lower optimality gap. One possible di-

rection to explore is using Frank–Wolfe algorithm to approximate the solution in PW–DQIP.

In general, analytical studies have been gaining attention in the world of sports, and we hope

our work in this chapter is regarded as a good example of how operations research tools can

be applied to address major disruptions in sports scheduling.

In the second chapter, we study the effectiveness of linear and nonlinear pricing mechanisms

in multi–agent economic settings where agents, endowed with certain resources, exchange

their resources amongst each other, while also producing their own unique product. They

can make profit by either selling their endowments to other agents, or by producing their

product and setting it to outside market. The main metric used in this chapter to mea-

sure the efficiency of proposed price functions is efficiency ratio which is the ratio between

profit values in the decentralized problem (i.e., aggregate profit from agents’ problems after

the settlement process) and the centralized problem (i.e., first best solution). Due to the

possibility of multiple optimal solutions in agents’ problems, a linear resource price function

(i.e., a constant unit price on each resource) is not guaranteed to coordinate the agents. We

show by numerical analysis that linear pricing with price discrimination (i.e., a different unit
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price on each resource for different agents) can coordinate the agents. We review nonlinear

price functions used in the literature, most of which have price discrimination (i.e., the base

price is not identical for all the agents). We prove for the multiple–agent single–resource

instance of the problem, that a quadratic price function with a single base price, identical

for all agents, can achieve an efficiency ratio of one. We present extensive numerical stud-

ies to show that it is highly likely that an efficiency ratio of one can be achieved for the

multiple–agent multiple–resource instance of the problem, as well, under certain conditions,

and we highlight those conditions. Finally, we study an instance of the of the problem where

profit margins of the agents are not fully–known and they are realized only after the re-

source price function is announced. Using numerical analysis, we show the effectiveness of a

quadratic pricing mechanism in practice. This chapter can be improved on a few directions.

First, the exact characterization of the nonlinear price function without price discrimination

which results in an efficiency ratio of one can be pursued. Second, alternative definitions for

the efficiency ratio in the stochastic case can be studied. Third, more complex probability

distributions for the profit margins, other than the uniform distribution, can be investigated

for the stochastic case of the coordination problem.
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Appendix A

Supplement to Concluding a

Suspended Sports League

A.1 Proof of Theorems and Propositions

Proposition 1.1. Predictive power as defined in (1.6) measures the expected accuracy provided

that the outcome of game g ∈ G, denoted Wg, follows a Bernoulli distribution with probability

pg.

Proof. Proof. We need to compute E[I(Wg = yg]), where I(·) is the indicator function. Since

Wg is Bernoulli, E[I(Wg = yg]) = P (Wg = yg). For yg = 1, P (Wg = yg) = pg, and for

yg = 0, P (Wg = yg) = 1 − pg. It follows that for arbitrary yg we have E[I(Wg = yg)] =

yg × pg + (1− yg)× (1− pg).

Proposition 1.2. For any shortened season x ∈ X and realization ξ ∈ Ξ, let ϕC(x, ξ) and
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ϕM(x, ξ) be the objective values of PC and PM, respectively. The following relationship holds:

ϕM(x, ξ) ≤ (n− 1)− ϕC(x, ξ) (A.1)

Proof. Proof. Using the definition of concordant pairs per team we have

ϕC(x, ξ) =
1

n

∑
i∈T

∑
j∈T :j 6=i

(zij(x, ξ)ẑij(ξ) + (1− zij(x, ξ))(1− ẑij(ξ)))

=
1

n

∑
i∈T

∑
j∈T :j 6=i

(1− |zij(x, ξ)− ẑij(ξ)|) = (n− 1)− 1

n

∑
i∈T

∑
j∈T :j 6=i

|zij(x, ξ)− ẑij(ξ)|.

On the other hand, by definition of r(x, ξ) and r̂(ξ) as given in (1.17) we have

ϕM(x, ξ) =
1

n

∑
i∈T

|ri(x, ξ)− r̂i(ξ)| =
1

n

∑
i∈T

∣∣∣∣∣ ∑
j∈T :j 6=i

(zij(x, ξ)− ẑij(ξ))

∣∣∣∣∣
≤ 1

n

∑
i∈T

∑
j∈T :j 6=i

|zij(x, ξ)− ẑij(ξ)|,

where the inequality holds by triangle inequality.

Theorem 1.1. The stochastic model PW can be solved using the following equivalent deter-

ministic linearly constrained quadratic optimization problem

[PW-DQIP] min
∑
i∈T

(
1

m2
(vi + µ2

i ) +
1

m̂2
(v̂i + µ̂2

i )−
2

mm̂
(vi + µiµ̂i)

)
(A.2)

s.t. µi = y0
i +

∑
g∈Ghi

pgxg +
∑
g∈Gai

(1− pg)xg (A.3)

vi =
∑

g∈Ghi ∪Gai

pg(1− pg)xg (A.4)
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x ∈ X, (A.5)

where the decision variables, in addition to x = {xg, g ∈ G}, include µi and vi which encode

the mean and variance of the number of wins for team i in the shortened season, respectively.

Moreover, the following parameters represent the mean and variance of the number of wins

for team i in the full season, respectively:

µ̂i = Eξ [ŷi(ξ)] =y0
i +

∑
g∈Ghi

pg +
∑
g∈Gai

(1− pg)

v̂i = Vξ [ŷi(ξ)] =
∑

g∈Ghi ∪Gai

pg(1− pg).

Proof. Proof. We may expand the expectation in the objective function (1.26) as

Eξ

[∑
i∈T

(
yi(ξ)

m
− ŷi(ξ)

m̂

)2
]

=
∑
i∈T

Eξ
[(

y2
i (ξ)

m2
+
ŷ2
i (ξ)

m̂2
− 2

yi(ξ)

m

ŷi(ξ)

m̂

)]
=
∑
i∈T

(
1

m2
Eξ
[
y2
i (ξ)

]
+

1

m̂2
Eξ
[
ŷ2
i (ξ)

]
− 2

mm̂
Eξ [yi(ξ)ŷi(ξ)]

)
.

In the following, we compute the individual expectation terms.

1. To compute Eξ [y2
i (ξ)], we restate Eξ [y2

i (ξ)] as Eξ [y2
i (ξ)] = Vξ [yi(ξ)]+Eξ [yi(ξ)]

2, where

V(·) = V ar(·) stands for variance. The expected number of wins for team i in the

shortened season (i.e., Eξ [yi(ξ)]) is

Eξ [yi(ξ)] =Eξ

y0
i +

∑
g∈Ghi

Wg(ξ)xg +
∑
g∈Gai

(1−Wg(ξ))xg


=y0

i +
∑
g∈Ghi

pgxg +
∑
g∈Gai

(1− pg)xg
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Since the outcome of games are assumed to be independent, we may compute the

variance of the number of wins for team i in the shortened season (i.e., Vξ [yi(ξ)]) as

Vξ [yi(ξ)] =
∑
g∈Ghi

Vξ [Wg(ξ)xg] +
∑
g∈Gai

Vξ [(1−Wg(ξ))xg] .

Since Wg(ξ) is Bernoulli, and xg is binary, we have

Vξ [Wg(ξ)xg] = Vξ [(1−Wg(ξ))xg] = x2
gpg(1− pg) = xgpg(1− pg),

yielding

Vξ [yi(ξ)] =
∑

g∈Ghi ∪Gai

pg(1− pg)xg.

2. By the same token, we may compute Eξ [ŷ2
i (ξ)] using the identity Eξ [ŷ2

i (ξ)] = Vξ [ŷi(ξ)]+

Eξ [ŷi(ξ)]
2, where

Eξ [ŷi(ξ)] =Eξ

y0
i +

∑
g∈Ghi

Wg(ξ) +
∑
g∈Gai

(1−Wg(ξ))

 = y0
i +

∑
g∈Ghi

pg +
∑
g∈Gai

(1− pg),

Vξ [ŷi(ξ)] =
∑
g∈Ghi

Vξ [Wg(ξ)] +
∑
g∈Gai

Vξ [(1−Wg(ξ))] =
∑

g∈Ghi ∪Gai

pg(1− pg).

3. To compute Eξ [yi(ξ)ŷi(ξ)], we first expand the expression as

Eξ [yi(ξ)ŷi(ξ)] = y0
iEξ [ŷi(ξ)] +

∑
g∈Ghi

xgEξ [Wg(ξ)ŷi(ξ)] +
∑
g∈Gai

xgEξ [(1−Wg(ξ))ŷi(ξ)] .

For g ∈ Gh
i we have

Eξ [Wg(ξ)ŷi(ξ)] =y0
iEξ [Wg(ξ)] +

∑
q∈Ghi

Eξ [Wg(ξ)Wq(ξ)] +
∑
q∈Gai

Eξ [Wg(ξ)(1−Wq(ξ))]
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=pg

y0
i + 1 +

∑
q∈Ghi :q 6=g

pq +
∑
q∈Gai

(1− pq)

 = pg (1− pg + Eξ [ŷi(ξ)]) ,

where we have used Eξ
[
W 2
g (ξ)

]
= pg(1− pg) + p2

g = pg. Similarly, for g ∈ Ga
i we have

Eξ [(1−Wg(ξ))ŷi(ξ)] =Eξ [ŷi(ξ)]− Eξ [Wg(ξ)ŷi(ξ)]

=Eξ [ŷi(ξ)]− pg

y0
i +

∑
q∈Ghi

pq +
∑

q∈Gai :q 6=g

(1− pq)


=Eξ [ŷi(ξ)]− pg (−(1− pg) + Eξ [ŷi(ξ)])

=pg(1− pg) + (1− pg)Eξ [ŷi(ξ)] ,

where we have used Eξ [Wg(ξ)(1−Wg(ξ))] = 0. Consequently, we may state Eξ [yi(ξ)ŷi(ξ)]

as

Eξ [yi(ξ)ŷi(ξ)] =Eξ [ŷi(ξ)]

y0
i +

∑
g∈Ghi

xgpg +
∑
g∈Gai

xg(1− pg)

+
∑

g∈Ghi ∪Gai

xgpg(1− pg)

=Eξ [yi(ξ)]Eξ [ŷi(ξ)] + Vξ [yi(ξ)]

Putting these pieces together we may restate the objective function (1.26) as

Eξ

[∑
i∈T

(
yi(ξ)

m
− ŷi(ξ)

m̂

)2
]

=
∑
i∈T

(
1

m2
(vi + µ2

i ) +
1

m̂2
(v̂i + µ̂2

i )−
2

mm̂
(vi + µiµ̂i)

)
.

A.2 Näıve Bayes Classifier

In a Näıve Bayes classifier, the discrimination rule is characterized by a conditional proba-

bility of the form p(y|~x) to determine the class label y ∈ {0, 1} for a given observation ~x.
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Applying Bayes theorem, we may state p(y|~x) as

p(y|~x) =
p(y)× p(~x|y)

p(~x)
,

in which p(y) is the prior probability of class y (i.e., proportion of data points in the training

set with class label y), p(~x|y) is the likelihood of observing ~x in data points with class label

y, and p(~x) = p(0)p(~x|0) + p(1)p(~x|1) is a normalization scalar. Using the näıve conditional

independence assumption, we have p(~x|y) =
∏D

j=1 p(xj|y) yielding

p(y|~x) =
1

p(~x)

(
p(y)×

D∏
j=1

p(xj|y)

)
.

Figure A.1 presents the distribution of features conditioned on the class labels across different

data points. As illustrated in this figure, the likelihood probability distribution of features

conditioned on the class labels approximately follow Gaussian distributions. Therefore, we

use Gaussian distribution to represent the likelihood of features conditioned on the binary

target variable (i.e., p(xj|y) ∼ N (µj,y, σ
2
j,y)). The Gaussian probability density function for

feature xj conditioned on class label y is as follows

p(xj|y) =
1

σj,y
√

2π
exp

(
− (xj − µj,y)2

2σ2
j,y

)
(A.6)

The parameters µj,y and σj,y in (A.6) defined for each feature xj and class label y are

estimated using maximum likelihood, and the estimated values for the 2019–20 NBA season

are given in Table A.1.
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Figure A.1: Scatterplot Matrix of all the eight features in the predictive model

A.3 Supplementary Results

A.3.1 Monte Carlo Simulation Results

Figure A.2 presents the simulation results according to Manhattan distance per team (lower

is better) across different choices of suspension day and target number of games per team over

14 seasons. Figure A.3 shows the results of t-tests using Manhattan distance per team. These

results are in agreement with the simulation and t-test results according to concordance per

team as presented in Figures 1.8 and 1.9.
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x1 x2 x3 x4 x5 x6 x7 x8

µj,0 0.43 -1.93 0.47 0.47 0.56 1.70 0.55 0.51

µj,1 0.55 1.47 0.53 0.62 0.46 -1.28 0.47 0.40

σj,0 0.02 20.9 0.02 0.03 0.03 25.4 0.03 0.03

σj,1 0.03 24.3 0.03 0.04 0.02 21.3 0.02 0.02

Table A.1: Estimated parameters using equation (A.6) in the NBA season 2019–20
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Figure A.2: Distribution of the simulation results (Manhattan distance per team) across 14
NBA seasons
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Figure A.3: Results of paired t-tests (Manhattan distance) and the p-value for our three top
performing models
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