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ABSTRACT OF THE DISSERTATION

Optimum Designs for Identification and Discrimination within a
Class of Competing Linear Regression Models

by

Santanu Dutta

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, August 2011

Prof. Subir Ghosh, Chairperson

We consider the problem of finding optimum designs for model identification and

discrimination where the dependence of the response variable Y on an explanatory

variable X can be described by at most a third order model. We therefore consider

a class that includes all the models up to a maximum of third order with linear,

quadratic, and cubic coefficients present. In addition all models have an intercept

parameter. A general class of designs with 4 distinct points x1, x2, x3, and x4 is

considered with replications n1, n2, n3, and n4 respectively, satisfying n1 + n2 +

n3 + n4 = n where n is known in advance. While discriminating between two

models from the class of models considered, the true model may or may not be

one of them. We define the predictive criterion function I and the fitting criterion

function J . When the functions I and J are dependent on more than one model

parameters, we define the additional criterion functions KI and KJ . We use the

proposed optimality criterion functions to obtain the optimal designs for the model

identification and discrimination.
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Chapter 1

Introduction

We consider an experimental situation where the response variable Y is dependent

on an explanatory variable X. We do not know the exact dependence of Y on X

but we consider a class of possible models to explain this dependence. We assume

that the true model is included within the class but we do not know which one

is the true model. We consider the identification and discrimination between two

competing models within the class when the true model is one of the competing

models or a model different from the two competing models. We define the optimal-

ity criterion functions to maximize the difference between predicted or fitted values

from two competing models. We obtain designs satisfying the criterion functions.

Our designs have two aspects: the design points (the values of explanatory vari-

able X) and the number of replications at each design point. We consider different

classes of designs with respect to the unequal or different kinds of equal allocations

of symmetric design points.
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1.1 The Class of Linear Models

We consider an experimental situation where the dependence of the response vari-

able Y on an explanatory variable X can be described by at most a third order

model. We therefore consider a class that includes all the models up to a maximum

of third order with linear, quadratic, and cubic coefficients present. In addition

all models have an intercept parameter. To fit a maximum third order model, we

need at least four distinct values of X. We consider that the data are collected

at four distinct values of X = x1, x2, x3, and x4 in [−1, 1] with replications n1, n2,

n3, and n4 respectively so that we can perform the least square fit of a third order

model to the data. Let yj(xi) represent the jth observation at the ith design point

xi, j = 1, 2, . . . , ni, i = 1, 2, 3, 4. We assume that the total number of observa-

tions in the experiment is n = n1 + n2 + n3 + n4 which is known in advance and

−1 ≤ x1 < x2 < x3 < x4 ≤ 1. We assume the model

E(yj(xi)) = γ0 + γ1xi + γ2x
2
i + γ3x

3
i ,

V ar((yj(xi))) = σ2, Cov((yj(xi)), (yj′ (xi′ ))) = 0, (1.1)

where i, i
′

= 1, 2, 3, 4; j = 1, 2, . . . , ni, j
′

= 1, 2, . . . , ni′ , (i, j) 6= (i
′
, j

′
), γu for u =

0, 1, 2, 3 are fixed unknown parameters, γ0 is non-zero and at least one of γ1, γ2,

and γ3 is non-zero, and σ2 is unknown. We denote

γ =



γ0

γ1

γ2

γ3


and X =



1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

x1 . . . x1 x2 . . . x2 x3 . . . x3 x4 . . . x4

x21 . . . x21 x22 . . . x22 x23 . . . x23 x24 . . . x24

x31 . . . x31 x32 . . . x32 x33 . . . x33 x34 . . . x34



′

.

2



Thus the matrix representation of the model in (1.1) is given by

E(y) = Xγ, V ar(y) = σ2I. (1.2)

The least square estimator (Rao (1973)) of γ is

γ̂ = ( γ̂0 γ̂1 γ̂2 γ̂3 )′ = (X′X)
−1

X′y.

The predicted value of y at a new x is given by ŷ(x) = γ̂0 + γ̂1x + γ̂2x
2 + γ̂3x

3.

When we consider the predicted value ŷj(x) at x = xi, we get the fitted value from

the model for the jth observation at the ith design point where j = 1, 2, . . . , ni; i =

1, 2, 3, 4. In fact we get four distinct fitted values corresponding to the four distinct

design points x1, x2, x3, and x4 and they are repeated n1, n2, n3, and n4 times

respectively. Hence, when we consider the fitted values of all the observations, we

get a vector of length n of the fitted values. Let the fitted values of y be given by

ŷ = Xγ̂.

We consider the class of designs D that consists of x1, x2, x3, and x4 with their

replications n1, n2, n3, and n4 respectively with X as a full rank matrix so that we

can fit a third order model to the data. Mathematically, we denote the class of

designs by

D =

{
(x1, x2, x3, x4;n1, n2, n3, n4) : −1 ≤ x1 < x2 < x3 < x4 ≤ 1;

n1 + n2 + n3 + n4 = n,Rank(X) = 4

}
. (1.3)

We tabulate all possible models in (1.1) in Table-1.1 in which 0 and 1 represent

3



respectively absence and presence of a parameter in a model.

Table 1.1: Presence of γi’s in models

Model γ0 γ1 γ2 γ3
1 1 1 0 0
2 1 0 1 0
3 1 0 0 1
4 1 1 1 0
5 1 1 0 1
6 1 0 1 1
7 1 1 1 1

We now pick any pair of models u1 and u2 where u1, u2 = 1(1)7 and u1 6= u2. We

denote them by MI and MII, MII being the higher order model and MI being the

lower order model. For example if u1 = 1 and u2 = 4, then MI has γ2 = γ3 = 0 and

MII has γ3 = 0. Thus MI is a simple linear regression model and MII is a quadratic

regression model. We assume that model 7 i.e. the full cubic model is always the

unknown true model. Although we assume model 7 to be the unknown true model,

we are interested in discriminating between any pair of models that we encounter

in Table-1.1.

While discriminating between two models from the class of models considered

in Table-1.1, the true model may or may not be one of them. We define the pre-

dicted value criterion function I and the fitted value criterion function J . When

the functions I and J are dependent on more than one model parameters, we

define the additional criterion functions KI and KJ . We use the proposed opti-

mality criterion functions to obtain the optimal designs for the model identification

and discrimination. Some important pairs of models from Table-1.1 are chosen in

different chapters and optimum designs are obtained for model identification and

4



discrimination.

Chapter-2 presents 1 vs. 5, assuming γ2 6= 0 in the true model 7. Chapter-3

represents 1 vs. 5 assuming γ2 = 0 in the true model 7. Chapter-4 represents 4

vs. 7 (the true model). Chapter-5 represent 1 vs. 4 assuming γ3 6= 0 in the true

model 7. Chapter-6 represents 1 vs. 7 (the true model). Chapter-7 represents 4 vs.

5 assuming 7 to be the true model.

1.2 The Discrimination Problem

Suppose the response variable Y is dependent on an explanatory variable X with

two possible dependence as described by two simple linear regression models MI

and MII. The exact nature of dependence is not known in advance but it is known

though that one of MI and MII possibly describes adequately the dependence of Y

on X. In the process of determination of the better model we have to discriminate

one model from the other model in better describing the data. We consider the

least square fit of a model to the data. At first we ensure that the design considered

must identify all the models or in other words, the design considered must permit

the least square fit for all models. The discrimination between two models MI and

MII requires that the fitted values ŷ(1) and ŷ(2) under the two models should be

different from each other. The model discrimination also requires that the predicted

values ŷ(1)(x) and ŷ(2)(x) should be different from each other at the possible values

of X. Here we consider the model identification and discrimination at the design

stage of the experiment. Our goal is to determine the values of X from a given

range judiciously. We also find the number of replications for the chosen values

of X. These values of X together their replications have the ability of model

5



identification and discrimination. A design is called optimum within the class of all

such available designs if its ŷ(1) and ŷ(2) values have the maximum difference among

the corresponding differences for other designs or its ŷ(1)(x) and ŷ(2)(x) values have

the maximum difference for all possible values of x in some overall sense as described

later.

1.3 Optimality Criterion Functions

We consider several optimality criterion functions and provide a brief discussion on

them in this section.

1.3.1 Fitted Value Criterion: J Criterion

Let ŷ(1) and ŷ(2) be the two vectors of fitted values of the two models MI and

MII respectively. If the two vectors ŷ(1) and ŷ(2) are very close to each other, it

is difficult to discriminate between the two models. Therefore we maximize the

difference between these two vectors to get the efficient design for discrimination

purpose. As we discriminate between the two models at the design stage, we do

not have any observations. So, we work with the expectations of the fitted values

where we calculate E(ŷ(1)− ŷ(2)) under the assumed true model. But E(ŷ(1)− ŷ(2))

is a vector quantity with different elements within the vector. We cannot find a

design that maximizes all the distinct elements of the vector simultaneously. We

consider the criterion function E(ŷ(1)− ŷ(2))′E(ŷ(1)− ŷ(2)) which actually measures

the square of the norm between the two vectors E(ŷ(1)) and E(ŷ(2)). We obtain

an efficient design by maximizing this criterion function. We denote this criterion

(Ghosh and Pal (2008)) by J where,

6



J = E(ŷ(1) − ŷ(2))′E(ŷ(1) − ŷ(2)).

1.3.2 Predicted Value Criterion: I Criterion

Let ŷ(1)(x) and ŷ(2)(x) be the predicted values of the two models MI and MII

respectively at X = x. We want these two values to be as far apart as possi-

ble. We calculate E(ŷ(1)(x) − ŷ(2)(x)) under the assumed true model. Therefore,

maximizing E(ŷ(1)(x) − ŷ(2)(x)) would give us an efficient design for the discrim-

ination between MI and MII. But this quantity depends on x and it is positive

for some values of x, negative for some other values of x. Hence we consider the

square of this quantity. We are interested in this quantity for some special values

of x as well as for all possible values of x. When we consider the quantity with

respect to all possible values of x we get an overall prediction measure for dis-

crimination purpose. We find the overall measure by taking the weighted average

of
[
E(ŷ(1)(x)− ŷ(2)(x))

]2
on x. We denote this criterion by I which is given by

I =
∫ 1

−1

[
E(ŷ(1)(x)− ŷ(2)(x))

]2
w(x)d x,

where
∫ 1

−1w(x)d x = 1. We assume equal weights throughout the region of x i.e.

we consider w(x) =


1
2
−1 ≤ x ≤ 1

0 otherwise.

Then we maximize I with respect to the design points and their corresponding

replications to get the most efficient design under this criterion. This criterion is a

modified version of the Ghosh and Pal (2008) Predicted Value criterion in the sense

that it is considering the squared difference,
[
E(ŷ(1)(x)− ŷ(2)(x))

]2
, instead of the

absolute difference,
∣∣E(ŷ(1)(x)− ŷ(2)(x))

∣∣.

7



1.3.3 T -optimality Criterion

If model MII is the true model, the experiment should be designed to yield the

maximum possible value of the lack of fit sum of squares (Atkinson and Fedorov

(1975a)) and (Atkinson and Fedorov (1975b)) of model MI,

i.e. SSLOF = (ŷ(1) − ŷ(2))′(ŷ(1) − ŷ(2)) should be maximum. But we do not have

observations because we want to discriminate between these two models even before

the data are collected. Therefore we consider the expected values of SSLOF . As MI

is linear in parameters here, E(SSLOF ) becomes proportional to the non-centrality

parameter (NCP ) of the χ2-distribution associated with the SSLOF (Atkinson and

Fedorov (1975a)). Now, considering the testing of hypotheses

H0: No lack of fit in MI vs. Ha: Lack of fit in MI,

we note that the power of the F-test for lack of fit of MI from MII is an increasing

function of the NCP and thus the design should maximize theNCP to maximize

the power of the test. A design which maximizes the NCP is called a T -optimal

design.

1.3.4 K-Criterion

Sometimes the expression of J or I criterion is observed as a quadratic form in more

than one unknown model parameters. Hence is it not possible to directly optimize

J or I without the information on the model parameters. In that situation we

propose a new criterion function K as the determinant of the matrix associated

with the quadratic form. A design is said to be optimum with respect to criterion

K if it maximizes the determinant of the matrix associated with the quadratic form

for all designs in a class. Whenever we observe expression of J or I as a quadratic

form in more than one unknown model parameters, we use criterion K to optimize

8



J or I. We denote them by KJ and KI .

1.4 Literature Review

In the pioneering paper of Kiefer and Wolfowitz (1959), the optimum regression

design was obtained for estimating one of the model parameters. Consider the

regression model

E(y(x)) = γ0 + γ1x+ γ2x
2 + .....+ γd+1x

d+1.

They presented optimal designs to estimate one of the (d+2) parameters optimally.

The explanatory variable x is scaled such that −1 ≤ x ≤ 1. The proportion of

observations taken at any point x is denoted by ξ(x) where ξ is a probability

distribution over [−1, 1]. The optimal design for estimating γd+1 is given in Table

1.2. They used the Chebyshev approximation to find this optimal design. This

Table 1.2: Optimal design for estimating γd+1

x ξ(x)

-1 1
2(d+1)

1 1
2(d+1)

cos
(

π
d+1

)
1
d+1

cos
(

2π
d+1

)
1
d+1

...
...

cos
(
dπ
d+1

)
1
d+1

9



Chebyshev approximation approximates the term xd+1 with a polynomial in x of

degree d and gives the (d+ 2) design points. In the next step, the weights of these

(d+ 2) design points are obtained by solving (d+ 1) simultaneous linear equations.

In the direct method, the variance of the best linear estimate of γh+1, which is

a non-linear function of (2d + 3) variables, has to be minimized. Therefore, the

method given by them addresses to the computational challenges in finding the

optimal design for this problem. We illustrate this further by giving designs for

d = 0, 1, 2 in Table 1.3.

Table 1.3: Optimal designs for estimating one of the model parameters

d Model To Estimate x ξ(x)

0 E(y) = γ0 + γ1x γ1
−1 1

2

1 1
2

−1 1
4

1 E(y) = γ0 + γ1x+ γ2x
2 γ2 0 1

2

1 1
4

−1 1
6

2 E(y) = γ0 + γ1x+ γ2x
2 + γ3x

3 γ3
−1

2
1
3

1
2

1
3

1 1
6

Atkinson (1972) used the same optimal design for discriminating between

the two models

E(y) = γ0 + γ1x+ γ2x
2 + .....+ γdx

d,

10



and

E(y) = γ0 + γ1x+ γ2x
2 + .....+ γdx

d + γd+1x
d+1.

The optimality criterion used for the discrimination purpose is to estimate γd+1 with

minimum variance. When d = 1, the problem reduces to discriminating between

two simple linear regression models

E(y) = γ0 + γ1x and E(y) = γ0 + γ1x+ γ2x
2

and the optimal design is x1 = −1, x2 = 0, x3 = 1, n1 = n3 = n
4

and n2 = n
2
.

In Table-1.4 we give designs of this kind for d = 0, 1, 2.

Table 1.4: Optimal designs for discrimination for different values of d

d Models xi’s ni’s

0
E(y) = γ0 x1 = −1 n1 = n

2

E(y) = γ0 + γ1x x2 = 1 n2 = n
2

1
E(y) = γ0 + γ1x

x1 = −1 n1 = n
4

E(y) = γ0 + γ1x+ γ2x
2

x2 = 0 n2 = n
2

x3 = 1 n3 = n
4

2

x1 = −1 n1 = n
6

E(y) = γ0 + γ1x+ γ2x
2 x2 = −1

2
n2 = n

3

E(y) = γ0 + γ1x+ γ2x
2 + γ3x

3 x3 = 1
2

n3 = n
3

x4 = 1 n4 = n
6

Atkinson (1972) further derived optimal designs for models involving more than

one factor. Atkinson and Cox (1974) developed optimal designs for discriminating

11



between several (more than two) regression models extending the same idea.

Atkinson and Fedorov (1975a) proposed a locally optimum criterion called the

T -optimality for discriminating between two rival models MI and MII. They as-

sumed one of the models to be the true model and then maximized the noncentral-

ity parameter of the χ2-distribution associated with the lack of fit sum of squares.

They proposed two approaches: non-sequential designs and sequential designs, the

non-sequential designs being described as the limits to which the sequential designs

converge asymptotically.

Lauter (1974), Dette (1991, 1994, 1995), and Spruill (1990) also worked on

this problem of discrimination using different optimality criteria. All these designs

are classified as non-sequential in the sense that all observations are taken at one

stage. The second approach is based on sequential methods. The observations are

taken sequentially for the purpose of discrimination. This approach was followed by

Atkinson and Cox (1974), Atkinson and Fedorov (1975a), Andrews (1971), Mon-

tepiedra and Yeh (1998), and many other authors. Biswas and Chaudhuri (2002)

presented sequential designs for discriminating between two rival models MI and

MII. They considered different mixtures of the D-optimum design for MI and the

D-optimum design for MII at different stages.

Atkinson (2008) proposed DT -optimal designs for providing a balance between

model discrimination and parameter estimation by taking a convex combination of

D-criterion and T -criterion. Pukelsheim and Rosenberger (1993) presented designs

considering several objectives simultaneously for discriminating between a second

order and a third order polynomial models. They have used D-criterion and geo-

metric mixtures of D-criteria. Dette and Kwiecien (2004) compared non-sequential

designs with sequential designs to demonstrate that non-sequential designs provide

12



better model identification than the sequential designs.

Ghosh and Pal (2008) considered the issue of discriminating between a linear

and a quadratic regression models. They proposed two criteria associated with the

fitted and predicted observations. They showed that their design performs better

than Kiefer-Wolfowitz design (Kiefer and Wolfowitz (1959))under their predicted

value criterion. They also evaluated the performance Biswas-Chaudhuri design

(Biswas and Chaudhuri (2002)) with respect to the predicted value criterion.

Dette and Titoff (2009) derived various new properties of T -optimal designs,

which in many circumstances allow an explicit determination of T -optimal designs.

They also showed that in many cases T -optimal designs are not unique, and in

that situation they gave a characterization of all T -optimal designs. Finally, they

compared T -optimal designs with D-optimal designs using a simulation study.

13



Chapter 2

Linear vs. Special Cubic when the

True Model Is Full Cubic

2.1 Introduction

We consider an experiment where the response variable Y is dependent on an ex-

planatory variable X. We assume that the full cubic model MT is the unknown

true model but at the same time we would like to have the ability to discriminate

between two possible dependence as described by two models MI, a simple linear

regression model and MII, a cubic regression model without the quadratic coeffi-

cient. So, our goal is to discriminate between these two models MI and MII at the

design stage assuming MT to be the true model.

2.2 Models and Associated Designs

We consider the class of designs D in (1.3). We also consider the full cubic model

from (1.1) as the true model and denote it by MT. Our aim is to discriminate

14



between the two models MI and MII assuming MT to be the true model.

The three models considered here are given by

MT: E(yj(xi)) = γ0 + γ1xi + γ2x
2
i + γ3x

3
i ,

V ar((yj(xi))) = σ2, Cov((yj(xi)), (yj′ (xi′ ))) = 0, (2.1)

MI: E(yj(xi)) = γ0 + γ1xi,

V ar((yj(xi))) = σ2, Cov((yj(xi)), (yj′ (xi′ ))) = 0, (2.2)

MII: E(yj(xi)) = γ0 + γ1xi + γ3x
3
i ,

V ar((yj(xi))) = σ2, Cov((yj(xi)), (yj′ (xi′ ))) = 0, (2.3)

where i, i
′
= 1, 2, 3, 4; j = 1, 2, . . . , ni, j

′
= 1, 2, . . . , ni′ , (i, j) 6= (i

′
, j

′
).

The matrix representations of MT, MI, and MII are given by

E(y) = X(t)γ(t), V ar(y) = σ2I, (2.4)

E(y) = X(1)γ(1), V ar(y) = σ2I, (2.5)

E(y) = X(2)γ(2), V ar(y) = σ2I, (2.6)

where

X(1) =

 1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

x1 . . . x1 x2 . . . x2 x3 . . . x3 x4 . . . x4


′

, γ(1) =

 γ0

γ1

 ,
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X(2) =


1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

x1 . . . x1 x2 . . . x2 x3 . . . x3 x4 . . . x4

x31 . . . x31 x32 . . . x32 x33 . . . x33 x34 . . . x34


′

, γ(2) =


γ0

γ1

γ3

 ,

and

X(t) =



1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

x1 . . . x1 x2 . . . x2 x3 . . . x3 x4 . . . x4

x31 . . . x31 x32 . . . x32 x33 . . . x33 x34 . . . x34

x21 . . . x21 x22 . . . x22 x23 . . . x23 x24 . . . x24



′

, γ(t) =



γ0

γ1

γ3

γ2


.

We define

X2 =

(
x21 . . . x21 x22 . . . x22 x23 . . . x23 x24 . . . x24

)′
,

X3 =

(
x31 . . . x31 x32 . . . x32 x33 . . . x33 x34 . . . x34

)′
,

and

X32 =

 x31 . . . x31 x32 . . . x32 x33 . . . x33 x34 . . . x34

x21 . . . x21 x22 . . . x22 x23 . . . x23 x24 . . . x24


′

.

Hence we get,

X(2) =

(
X(1) ... X3

)
⇒ X(2)′X(2) =

 X(1)′X(1) X(1)′X3

X′3X
(1) X′3X3

,
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X(t) =

(
X(2) ... X2

)
⇒ X(t)′X(t) =

 X(2)′X(2) X(2)′X2

X′2X
(2) X′2X2

,
X(t) =

(
X(1) ... X32

)
⇒ X(t)′X(t) =

 X(1)′X(1) X(1)′X32

X′32X
(1) X′32X32

. (2.7)

2.3 Expression of J Criterion

We first consider the fitted value criterion J (ref. Chapter-1). Our goal is to obtain

the efficient design within the class of designs D in (1.3) for model selection and

discrimination purposes. Let ŷ(1) and ŷ(2) be the fitted values of the two models MI

and MII respectively. First we have to find the expression of E(ŷ(1) − ŷ(2)) where

the expectation is considered under the true model MT in (2.1). Then we have to

find the expression of E(ŷ(1) − ŷ(2))
′
E(ŷ(1) − ŷ(2)).

The least square estimate of γ(1) for MI is given by (Rao (1973))

γ̂(1) =

 γ̂
(1)
0

γ̂
(1)
1

 = (X(1)′X(1))−1X(1)′y, (2.8)

and the least square estimate of γ(2) for MII is given by

γ̂(2) =


γ̂
(2)
0

γ̂
(2)
1

γ̂
(2)
3

 = (X(2)′X(2))−1X(2)′y. (2.9)
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Now, E(γ̂(1)) = (X(1)′X(1))−1X(1)′E(y)

= (X(1)′X(1))−1X(1)′X(t)γ(t)

= (X(1)′X(1))−1
(

X(1)′X(1) X(1)′X32

)
γ(t)

=

(
I2 (X(1)′X(1))−1X(1)′X32

)
γ(t)

=

 1 0 A B

0 1 C D

γ(t), (2.10)

and

E(γ̂(2)) = (X(2)′X(2))−1X(2)′E(y)

= (X(2)′X(2))−1X(2)′X(t)γ(t)

= (X(2)′X(2))−1
(

X(2)′X(2) X(2)′X2

)
γ(t)

=

(
I3 (X(2)′X(2))−1X(2)′X2

)
γ(t)

=


1 0 0 E

0 1 0 F

0 0 1 G

γ(t), (2.11)

where

A =
1

Det1

[∑4

1
nix

2
i

∑4

1
nix

3
i −

∑4

1
nixi

∑4

1
nix

4
i

]
,

B =
1

Det1

[(∑4

1
nix

2
i

)2
−
∑4

1
nixi

∑4

1
nix

3
i

]
,

18



C =
1

Det1

[∑4

1
ni
∑4

1
nix

4
i −

∑4

1
nixi

∑4

1
nix

3
i

]
,

D =
1

Det1

[∑4

1
ni
∑4

1
nix

3
i −

∑4

1
nixi

∑4

1
nix

2
i

]
,

Det1 =
∣∣X(1)′X(1)

∣∣
=
[
n1n2(x1 − x2)2 + n1n3(x1 − x3)2 + n1n4(x1 − x4)2

+ n2n3(x2 − x3)2 + n2n4(x2 − x4)2 + n3n4(x3 − x4)2
]
,

E =
−1

Det2

[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2(x1 + x2 + x3)x1x2x3

+n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2(x1 + x2 + x4)x1x2x4

+n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2(x1 + x3 + x4)x1x3x4

+n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2(x2 + x3 + x4)x2x3x4

]
,

F =

1

Det2

[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2(x1 + x2 + x3)(x1x2 + x1x3 + x2x3)

+n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2(x1 + x2 + x4)(x1x2 + x1x4 + x2x4)

+n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2(x1 + x3 + x4)(x1x3 + x1x4 + x3x4)

+n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2(x2 + x3 + x4)(x2x3 + x2x4 + x3x4)
]
,
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G =
1

Det2

[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2(x1 + x2 + x3)

+n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2(x1 + x2 + x4)

+n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2(x1 + x3 + x4)

+n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2(x2 + x3 + x4)
]
,

Det2 =
∣∣X(2)′X(2)

∣∣
=
[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2(x1 + x2 + x3)

2

+ n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2(x1 + x2 + x4)
2

+ n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2(x1 + x3 + x4)
2

+ n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2(x2 + x3 + x4)
2
]
.

We know that the fitted values of y under MI and MII are expressed as ŷ(1) =

X(1)γ̂(1) and ŷ(2) = X(2)γ̂(2). Now assuming MT to be the true model the expected

fitted values are given by

E(ŷ(1)) = X(1)E(γ̂(1))

= X(1)(X(1)′X(1))−1X(1)′X(t)γ(t)

= H1X
(t)γ(t), (2.12)

E(ŷ(2)) = X(2)E(γ̂(2))

= X(2)(X(2)′X(2))−1X(2)′X(t)γ(t)

= H2X
(t)γ(t), (2.13)
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⇒ E(ŷ(1) − ŷ(2)) = (H1 −H2)X(t)γ(t), (2.14)

where H1 = X(1)(X(1)′X(1))−1X(1)′ and H2 = X(2)(X(2)′X(2))−1X(2)′. We note that

H1 and H2 are symmetric and idempotent (Rao (1973)) i.e. H1
′
= H1, H2

1 = H1,

H2
′
= H2 and H2

2 = H2.

Result 1. : H2H1 = H1 = H1H2

Proof:

H2H1 = X(2)(X(2)′X(2))−1X(2)′H1

= X(2)

 X(1)′X(1) X(1)′X3

X′3X
(1) X′3X3


−1 X(1)′X(1)

X′3X
(1)

 (X(1)′X(1))−1X(1)′

=
(
X(1) X3

) I

0

 (X(1)′X(1))−1X(1)′

= H1.

Now

(H2H1)′ = H1
′

⇔ H1
′H2

′ = H1

⇔ H1H2 = H1.

Thus we have H2H1 = H1 = H1H2.
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Clearly using (2.14) we get

J = E(ŷ(1) − ŷ(2))
′
E(ŷ(1) − ŷ(2))

= γ(t)′X(t)′(H1 −H2)2X(t)γ(t)

= γ(t)′X(t)′(H2 −H1)X(t)γ(t) using Result-1. (2.15)

Now

X(t)′H2X
(t) =

 X(2)′

X2
′

H2

(
X(2) X2

)

=

 X(2)′

X2
′H2

( X(2) X2

)

=

 X(2)′X(2) X(2)′X2

X2
′X(2) X2

′H2X2



=



∑4

1
ni

∑4

1
nixi

∑4

1
nix

3
i

∑4

1
nix

2
i∑4

1
nixi

∑4

1
nix

2
i

∑4

1
nix

4
i

∑4

1
nix

3
i∑4

1
nix

3
i

∑4

1
nix

4
i

∑4

1
nix

6
i

∑4

1
nix

5
i∑4

1
nix

2
i

∑4

1
nix

3
i

∑4

1
nix

5
i S


, (2.16)

X(t)′H1X
(t) =

 X(1)′

X32
′

H1

(
X(1) X32

)

=

 X(1)′

X32
′H1

( X(1) X32

)
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X(t)′H1X
(t) =

 X(1)′X(1) X(1)′X32

X32
′X(1) X32

′H1X32



=



∑4

1
ni

∑4

1
nixi

∑4

1
nix

3
i

∑4

1
nix

2
i∑4

1
nixi

∑4

1
nix

2
i

∑4

1
nix

4
i

∑4

1
nix

3
i∑4

1
nix

3
i

∑4

1
nix

4
i X3

′H1X3 X3
′H1X2∑4

1
nix

2
i

∑4

1
nix

3
i X2

′H1X3 X2
′H1X2



=



∑4

1
ni

∑4

1
nixi

∑4

1
nix

3
i

∑4

1
nix

2
i∑4

1
nixi

∑4

1
nix

2
i

∑4

1
nix

4
i

∑4

1
nix

3
i∑4

1
nix

3
i

∑4

1
nix

4
i P R∑4

1
nix

2
i

∑4

1
nix

3
i R Q


, (2.17)

where

P = X3
′H1X3 = A

∑4

1
nix

3
i + C

∑4

1
nix

4
i ,

Q = X2
′H1X2 = B

∑4

1
nix

2
i +D

∑4

1
nix

3
i ,

R = X3
′H1X2 = A

∑4

1
nix

2
i + C

∑4

1
nix

3
i ,

S = X2
′H2X2 = E

∑4

1
nix

2
i + F

∑4

1
nix

3
i +G

∑4

1
nix

5
i ,

and A,B,C,D,E, F, and G are defined right after (2.11).
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Now, using (2.15), (2.16), and (2.17) we get

J = γ(t)′



0 0 0 0

0 0 0 0

0 0
∑4

1
nix

6
i − P

∑4

1
nix

5
i −R

0 0
∑4

1
nix

5
i −R S −Q


γ(t)

= (S −Q)γ22 +
(∑4

1
nix

6
i − P

)
γ23 + 2γ2γ3

(∑4

1
nix

5
i −R

)
, (2.18)

where P,Q,R, and S are defined right after (2.17).

Now we consider the four distinct points as −x1 = x4 = b and −x2 = x3 = a

where 0 < a < b ≤ 1. We also consider the allocation n1 = n4 and n2 = n3. These

design points and their allocations give us the following subclass of designs in the

general class of designs D in (1.3)

D1 =

{
(x1, x2, x3, x4;n1, n2, n3, n4) :

− 1 ≤ x1 = −b < x2 = −a < x3 = a < x4 = b ≤ 1,

0 < a < b ≤ 1;n1 = n4, n2 = n3, n1 + n2 =
n

2
, Rank(X(t)) = 4

}
. (2.19)

We note that under D1 we have

Det1 = 2n(b2n1 + a2n2), Det2 = 4nn1n2a
2b2(b2 − a2)2, A = 0,

B =
2

n
(b2n1 + a2n2), C =

(b4n1 + a4n2)

(b2n1 + a2n2)
, D = 0,

E =
2

n
(b2n1 + a2n2), F = 0, G = 0,
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P =
2(b4n1 + a4n2)

2

(b2n1 + a2n2)
, Q =

4

n
(b2n1 + a2n2)

2 = S, R = 0,

and hence the fitted value criterion takes the following form as defined by Jb where

Jb =
2γ23n1n2a

2b2(b2 − a2)2

(b2n1 + a2n2)

⇔ Jb

nγ23
=

2p1(1− 2p1)a
2b2(b2 − a2)2

2p1b2 + (1− 2p1)a2
. (2.20)

2.4 Efficient Designs with respect to J Criterion

Under the class of designs D1 in (2.19) the fitted value criterion takes the form Jb

in (2.20). We optimize the criterion function to obtain efficient designs with respect

to the fitted value criterion.

2.4.1 Finding the value of a for a given value of b

Now, assuming b to be known if we maximize the fitted value criterion with respect

to a and p1, we get a = b
2

and p1 = 1
6

(Appendix-A.1). This implies that we should

consider x2 and x3 as the midpoints of the intervals (−b, 0) and (0, b) respectively

and collect data with 1
6

weight at each of the two end points, x1 and x4, and with

1
3

weight at each of the two middle points, x2 and x3, to find the best design to

maximize the fitted value criterion Jb in the class of designs D1 in (2.19). We

define the design below in D1,

d1 =

[
(x1, x2, x3, x4;n1, n2,n3, n4) : x1 = −b, x2 = − b

2
, x3 =

b

2
, x4 = b;

n1 = n4 =
n

6
, n2 = n3 =

n

3
, Rank(X(t)) = 4

]
, (2.21)

25



and get the following theorem.

Theorem 1. For a given value of b in the class of designs D1, the design d1 is

optimum with respect to the criterion J .

2.4.2 Finding the value of b

Under the class of designs D1 in (2.19) when −x1 = x4 = 1 i.e. when b = 1, we

obtain the fitted value criterion from (2.20) by replacing b with 1 and denote that

by J1 where

J1

nγ23
=

2p1p2a
2(1− a2)2

(p1 + a2p2)
. (2.22)

Clearly,

J1 − Jb

=
2nγ23p1p2a

2(1− a2)2

(p1 + a2p2)(b2p1 + a2p2)

[
p1b

2
{

1− (b2 − a2)2

(1− a2)2
}

+ p2a
2
{

1− b2 (b2 − a2)2

(1− a2)2
}]

≥ 0, (2.23)

because 0 < b2
(b2 − a2)2

(1− a2)2
≤ (b2 − a2)2

(1− a2)2
≤ 1.

We note that (2.23) holds for all 0 < a < b ≤ 1, n1 6= 0, and n2 6= 0. The ‘=’ holds

only when b = 1. Thus the design with −x1 = x4 = 1, provides the maximum

value of the fitted value criterion J . We also see this in Appendix-A.2. Fig-2.1

also confirms the fact that J attains the maximum possible value when b = 1. We

considered a = b
2

= 1
2

while computing J for the graph.
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Figure 2.1: Plot of J(p1) against p1 for different values of b

We define the design below in D1,

d2 =

[
(x1, x2, x3, x4;n1, n2,n3, n4) : x1 = −1, x2 = −1

2
, x3 =

1

2
, x4 = 1;

n1 = n4 =
n

6
, n2 = n3 =

n

3
, Rank(X(t)) = 4

]
, (2.24)

and obtain the following theorem.

Theorem 2. For the class of designs D1, the design d2 is optimum with respect to

the criterion J .
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2.5 Expression of I Criterion

We now consider the predicted value criterion (ref. Chapter-1) for model selection

and discrimination purposes. Let ŷ(1)(x) and ŷ(2)(x) be the predicted values of the

two models MI and MII at X = x. We first find the expression for E(ŷ(1)(x) −

ŷ(2)(x)) assuming MT to be the true model. We note that the quantity, E(ŷ(1)(x)−

ŷ(2)(x)), may be positive for some values of x and negative for some other values

of x. Therefore, we consider the squared value of E(ŷ(1)(x)− ŷ(2)(x)) and find the

criterion. Under the class of designs D in (1.3) we have

E(ŷ(1)(x)) =

(
1 x

)
E(γ̂(1))

=

(
1 x

) 1 0 A B

0 1 C D

γ(t) from (2.10)

= γ0 + γ1x+ γ2(B +Dx) + γ3(A+ Cx), (2.25)

and

E(ŷ(2)(x)) =

(
1 x x3

)
E(γ̂(2))

=

(
1 x x3

)
1 0 0 E

0 1 0 F

0 0 1 G

γ(t) from (2.11)

= γ0 + γ1x+ γ2(E + Fx+Gx3) + γ3x
3, (2.26)
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where A,B,C,D,E, F, and G are defined right after (2.11). Thus from (2.25) and

(2.26) we get

E(ŷ(1)(x)− ŷ(2)(x)) = γ2
[
(B − E) + (D − F )x−Gx3

]
+ γ3

[
A+ Cx− x3

]
(2.27)

The expression in (2.27) is intractable with respect to the general class of designs

D. Hence we consider the subclass of designs D1 in (2.19). Now under D1, we

have B = E = 2
n
(b2n1 + a2n2), A = D = F = G = 0, and C = (b4n1+a4n2)

(b2n1+a2n2)
. Hence

under the class of designs D1 we get from (2.27),

[
E(ŷ(1)(x)− ŷ(2)(x))

]2
= γ23x

2
(
C − x2

)2
. (2.28)

The discrimination between the models MI and MII will be the best when[
E(ŷ(1)(x)−ŷ(2)(x))

γ3

]2
is maximum. The discrimination between the models MI and

MII will not be possible with respect to predicted values when E(ŷ(1)(x)−ŷ(2)(x))
γ3

= 0.

We observe that at x = 0, x = −
√
C, and x =

√
C, E(ŷ(1)(x) − ŷ(2)(x)) = 0.

Clearly, at x = 0, x = −
√
C, and x =

√
C, the discrimination between MI and

MII will not be possible using the prediction criterion at the design stage. But we

are interested in finding an overall prediction measure for discrimination purpose

rather than evaluating at each x. So, we consider an overall measure by taking the

weighted average of
[
E(ŷ(1)(x)−ŷ(2)(x))

γ3

]2
on x. Therefore the predicted value criterion
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is given by,

I =
1

2

∫ 1

−1

[
E(ŷ(1)(x)− ŷ(2)(x))

]2
d x

=
γ23
2

∫ 1

−1

(
Cx− x3

)2
d x

= γ23

∫ 1

0

(
C2x2 − 2Cx4 + x6

)
d x

= γ23

[
C2

3
− 2C

5
+

1

7

]
where 0 < C =

(b4n1 + a4n2)

(b2n1 + a2n2)
< 1. (2.29)

2.6 Efficient Designs with respect to I Criterion

We note that the criterion I is a concave function with respect to C (Fig-2.2).

Designs with a very small or a very large value of C will perform well with respect
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Figure 2.2: Plot of I(C) against C
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to I. We also note that I(0.2) = I(1) but it is clear that C 6= 1 and C 6= 0. We

obtain some choices of a, b, and p1 numerically to present some designs (Table -2.1)

in D1 in (2.19) which perform well with respect to I.

Table 2.1: Some I-optimal Designs

C a b p1 p2 J I

0.10 0.151 0.48 0.028 0.472 0.000 0.1062

0.10 0.209 0.439 0.060 0.440 0.000 0.1062

0.20 0.284 0.847 0.013 0.487 0.006 0.0762

0.20 0.307 0.749 0.024 0.476 0.004 0.0762

0.80 0.503 1.000 0.204 0.296 0.061 0.0362

0.80 0.537 1.000 0.212 0.288 0.060 0.0362

0.85 0.595 0.998 0.274 0.226 0.051 0.0437

0.90 0.404 0.995 0.288 0.212 0.042 0.0529

0.95 0.537 0.996 0.410 0.090 0.024 0.0637

0.99 0.424 1.000 0.471 0.029 0.007 0.0736

We note that the designs those perform well with respect to I, do not perform well

with respect to J and vice versa. As a trade off we might be interested in designs

which perform moderately well with respect to both I and J .

2.7 Some Comparisons between I and J

We now consider b = 1 and obtain some designs numerically inD1 which yield same

numerical value for both the criteria and demonstrate them in Table-2.2. Then we
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Table 2.2: Some designs in D1 for which I = J

C a b p1 p2 J I

0.8857 0.46998 1.00000 0.28119 0.21881 0.05007 0.05007

0.8857 0.47352 1.00000 0.28244 0.21757 0.05007 0.05007

0.8857 0.47438 1.00000 0.28272 0.21728 0.05007 0.05007

0.8857 0.47184 1.00000 0.28185 0.21815 0.05007 0.05007

0.8857 0.47450 1.00000 0.28276 0.21724 0.05007 0.05007

0.8857 0.47379 1.00000 0.28253 0.21748 0.05007 0.05007

0.8857 0.47479 1.00000 0.28286 0.21714 0.05007 0.05007

0.8857 0.47450 1.00000 0.28277 0.21723 0.05007 0.05007

0.8857 0.46966 1.00000 0.28108 0.21892 0.05007 0.05007

0.8857 0.47352 1.00000 0.28243 0.21757 0.05007 0.05007

consider the following subclass of designs in D1,

D2 =

{
(x1, x2, x3, x4;n1, n2, n3, n4) : x1 = −1, x2 = −1

2
, x3 =

1

2
, x4 = 1;

n1 = n4, n2 = n3, n1 + n2 =
n

2
, Rank(X(t)) = 4

}
. (2.30)

We explore the performance of the designs in D2 with respect to criteria I and J .

2.7.1 The I(p1) and J(p1) for Designs in D2

Here we will discuss the properties of J and I criterion functions derived under the

class of designs D2. We substitute b = 1 and a = 1
2

in (2.20) and obtain the fitted

value criterion as J(p1) = 9p1(1−2p1)
8(1+6p1)

, 0 < p1 <
1
2

.

The J(p1) can also be written as, J(p1) =
[

1
16
− 3(p1− 1

6
)2

8(p1+
1
6
)

]
.
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Figure 2.3: Plot of J(p1) against p1

• J(p1) monotonically increases first and reaches its maximum at p1 = 1
6

and

the maximum value is 1
16

, then it monotonically decreases to zero (Fig-2.3).

• Larger value of J(p1) implies better discrimination.

We also substitute b = 1 and a = 1
2

in (2.29) and obtain the predicted value criterion

as I(p1) =
(9900p21−1068p1+107)

1680(1+6p1)2
, 0 < p1 <

1
2

.

Note that I(p1) can also be written as,

I(p1) =
55

336

(
A2 + 192

1375
B

A2 +B

)
where A =

(
p1 −

7

78

)
, B =

20

39

(
p1 +

1

26

)
.

Now, A2 ≥ 192

1375
A2 where “ = ” holds iff A = 0 i.e iff p1 =

7

78

⇔
(
A2 +

192

1375
B

)
≥ 192

1375

(
A2 +B

)
⇔ I(p1) ≥

55

336
× 192

1375
=

4

175
.
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• I(p1) monotonically decreases to its minimum at p1 = 7
78

and the minimum

value is 4
175

, then it monotonically increases (Fig-2.4).

• Larger value of I(p1) implies better discrimination.

2.7.2 Exploring the Equality of I(p1) and J(p1) in D2

We will study the following three situations first:

I(p1) = J(p1), I(p1) > J(p1), and I(p1) < J(p1).

From (Fig-2.5) we note that

• I(p1) values are in (0.022857, 0.076190), J(p1) values are in (0, 0.0625).

• I(p1) and J(p1) intersect twice at p1 = 0.037709 and p1 = 0.290214.
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Figure 2.5: Plot of I(p1) and J(p1) against p1

• I(p1) > J(p1) when 0 < p1 < 0.037709 and 0.290214 < p < 0.5.

• I(p1) < J(p1) when 0.037709 < p1 < 0.290214.

Here we find the value(s) of p1 for which I(p1) and J(p1) are equal. We already

obtained these values graphically. We consider the function F (p1) where

F (p) = I(p1)− J(p1)

=
(9900p21 − 1068p1 + 107)

1680(1 + 6p1)2
− 9p1(1− 2p1)

8(1 + 6p1)

=
(22680p31 + 2340p21 − 2958p1 + 107)

1680(1 + 6p1)2
. (2.31)

Clearly, F (p1) = 0 will provide the value(s) of p1 for which I(p1) = J(p1). We note

that F (p1) = 0 in two points when p1 ∈ (0, 1
2
): one in 0 < p1 < 0.1 and the other in
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0.25 < p1 < 0.30 from (Fig-2.6). Now, using the Method of Bisection we can easily

find those two points precisely as p1 = 0.037709 and p1 = 0.290214. We also note

that only between these two points F (p1) < 0 i.e. I(p1) < J(p1).

We define two designs d3 and d4 in D2 in (2.30) as

d3 =

[
(x1, x2, x3, x4;n1, n2, n3, n4) : x1 = −1, x2 = −1

2
, x3 =

1

2
, x4 = 1;

n1 = n4 = 0.290214n, n2 = n3 =
n

2
− n1, Rank(X(t)) = 4

]
, (2.32)

and

d4 =

[
(x1, x2, x3, x4;n1, n2, n3, n4) : x1 = −1, x2 = −1

2
, x3 =

1

2
, x4 = 1;

n1 = n4 = 0.037709n, n2 = n3 =
n

2
− n1, Rank(X(t)) = 4

]
. (2.33)
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Thus we have the following theorems.

Theorem 3. For the class of designs D2, the design d3 yield equal numerical value

for both the criteria I and J .

Theorem 4. For the class of designs D2, the design d4 yield equal numerical value

for both the criteria I and J .

Theorem 5. For the class of designs D2, the design d4 performs better than d3

with respect to both the criteria I and J .

We already have the design d2 in (2.24) as the optimum design in D1 in (2.19) with

respect to J . Obviously it is optimum in D2 too because D2 ⊂ D1. Hence we

have

Theorem 6. For the class of designs D2, the design d2 is the optimum design with

respect to J .

Now, we define the following subclass of designs in D2 (2.30),

D3 =

{
(x1, x2, x3, x4;n1, n2, n3, n4) : x1 = −1, x2 = −1

2
, x3 =

1

2
, x4 = 1;

n

6
< n1 <

n

2
, n2 =

n

2
− n1, n1 = n4, n2 = n3, Rank(X(t)) = 4

}
(2.34)

and obtain the following theorem.

Theorem 7.

(a) All the designs in D3 perform better than the design d2 with respect to the

criterion I.

(b) The design d2 performs better than all the designs in D3 with respect to the

criterion J .
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Chapter 3

Linear vs. Special Cubic as the

True Model

3.1 Introduction

We again consider the experiment where the response variable Y is dependent on

an explanatory variable X. So far we assumed the full cubic model MT to be the

true model but here we assume γ2 = 0. Therefore the two models MII and MT in

Chapter-2 become identical here. We consider the other possible dependence as a

simple linear regression model MI. Our goal is to discriminate between these two

models MI and MII at the design stage assuming MII to be the true model.

3.2 Models and Associated Designs

We consider the class of designs D in (1.3). We also consider the cubic model

without the quadratic term from (1.1) as the true model and denote it by MII. Our

aim is to discriminate between the two models MI and MII.
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The two models considered here are given by

MI: E(yj(xi)) = γ0 + γ1xi,

V ar((yj(xi))) = σ2, Cov((yj(xi)), (yj′ (xi′ ))) = 0, (3.1)

MII: E(yj(xi)) = γ0 + γ1xi + γ3x
3
i ,

V ar((yj(xi))) = σ2, Cov((yj(xi)), (yj′ (xi′ ))) = 0, (3.2)

where i, i
′
= 1, 2, 3, 4; j = 1, 2, . . . , ni, j

′
= 1, 2, . . . , ni′ , (i, j) 6= (i

′
, j

′
).

The matrix representations of MII and MI are given by

E(y) = X(2)γ(2), V ar(y) = σ2I, (3.3)

E(y) = X(1)γ(1), V ar(y) = σ2I, (3.4)

where

X(1) =

 1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

x1 . . . x1 x2 . . . x2 x3 . . . x3 x4 . . . x4


′

, γ(1) =

 γ0

γ1

 ,

X(2) =


1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

x1 . . . x1 x2 . . . x2 x3 . . . x3 x4 . . . x4

x31 . . . x31 x32 . . . x32 x33 . . . x33 x34 . . . x34


′

, γ(2) =


γ0

γ1

γ3

 .

We define

X3 =

(
x31 . . . x31 x32 . . . x32 x33 . . . x33 x34 . . . x34

)′
.

39



Hence we get,

X(2) =

(
X(1) ... X3

)
⇒ X(2)′X(2) =

 X(1)′X(1) X(1)′X3

X′3X
(1) X′3X3

. (3.5)

3.3 Expression of J Criterion

We first consider the fitted value criterion J (ref. Chapter-1) and obtain the efficient

design within the class of designs D in (1.3) for model selection and discrimina-

tion purposes. Let ŷ(1) and ŷ(2) be the fitted values of the two models MI and

MII respectively. First we have to find the expression of E(ŷ(1) − ŷ(2)) where the

expectation is considered under the true model MII in (3.2). Then we have to find

the expression of E(ŷ(1) − ŷ(2))
′
E(ŷ(1) − ŷ(2)).

The least square estimate of γ(1) for MI is given by (Rao (1973))

γ̂(1) =

 γ̂
(1)
0

γ̂
(1)
1

 = (X(1)′X(1))−1X(1)′y, (3.6)

and the least square estimate of γ(2) for MII is given by

γ̂(2) =


γ̂
(2)
0

γ̂
(2)
1

γ̂
(2)
3

 = (X(2)′X(2))−1X(2)′y. (3.7)

We note that γ̂
(2)
0 , γ̂

(2)
1 , and γ̂

(2)
3 are the least square estimates of γ0, γ1, and γ3

respectively from MII. So, under MII these estimates are the best linear unbiased

estimates (BLUE) (Rao (1973)) of the respective parameters i.e. E
(
γ̂(2)

)
= γ(2).
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The expression of J is readily available from (2.18). We just replace γ2 by 0 and

get the expression of the fitted value criterion as

J =
(∑4

1
nix

6
i − P

)
γ23 , (3.8)

where P is defined right after (2.17).

It can be checked that the detailed expression of J in (3.8) is given by

J =γ23

[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2(x1 + x2 + x3)

2

+ n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2(x1 + x2 + x4)
2

+ n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2(x1 + x3 + x4)
2

+ n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2(x2 + x3 + x4)
2
]

[
n1n2(x1 − x2)2 + n1n3(x1 − x3)2 + n1n4(x1 − x4)2

+ n2n3(x2 − x3)2 + n2n4(x2 − x4)2 + n3n4(x3 − x4)2
]
. (3.9)

Considering −x1 = x4 = b and −x2 = x3 = a where 0 < a < b ≤ 1, J reduces to,

J =
4γ23a

2b2(b2 − a2)2 (n1n2n3 + n1n2n4 + n1n3n4 + n2n3n4)[
(b+ a)2(n1n3 + n2n4) + (b− a)2(n1n2 + n3n4) + 4a2n2n3 + 4b2n1n4

]
=

4γ23a
2b2(b2 − a2)2 (n1n2n3 + n1n2n4 + n1n3n4 + n2n3n4)[

n2

2
(b2 + a2)− 1

2
[a(n1 − n4) + b(n2 − n3)]2 − 1

2
[b(n1 − n4) + a(n2 − n3)]2

+ 2(b2 − a2)(n1n4 − n2n3)
]
.

(3.10)

Now, the denominator of the expression of J in (3.10) suggests a meaningful allo-

cation n1 = n4 and n2 = n3 which reduces the J considerably as follows:
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J =
4γ23nn1n2a

2b2(b2 − a2)2[
n2

2
(b2 + a2) + 2(b2 − a2)(n1

2 − n2
2)
]

=
4γ23nn1n2a

2b2(b2 − a2)2

2n(n1b2 + n2a2)
since (n1 + n2) =

n

2

⇔ J

nγ23
=

2p1(1− 2p1)a
2b2(b2 − a2)2

2p1b2 + (1− 2p1)a2
where (p1 + p2) =

1

2
. (3.11)

Clearly the general design class D in (1.3) reduces to a sub-class of designs D1 in

(2.19) when we consider these design points with the special allocation scheme.

3.4 Expression of T -Optimality Criterion

We consider the fitted values of y under MI and MII. Here ŷ(1) = X(1)γ̂(1) = H1y

and ŷ(2) = X(2)γ̂(2) = H2y where γ̂(1) and γ̂(2) are defined in (3.6) and (3.7)

respectively, and H1 = X(1)(X(1)′X(1))−1X(1)′, H2 = X(2)(X(2)′X(2))−1X(2)′.

We note that H1 and H2 are symmetric and idempotent (Rao (1973)) i.e. H1
′

=

H1, H1
2 = H1 and H2

′
= H2, H2

2 = H2. Now, the lack-of-fit sum of squares is

given by

SSLOF = (ŷ(2) − ŷ(1))′(ŷ(2) − ŷ(1))

= y′(H2 −H1)2y

= y′(H2 −H1)y, by Result-1. (3.12)
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Hence

E(SSLOF ) = E[y′(H2 −H1)y] = tr[(H2 −H1)E(yy′)]

= tr[(H2 −H1){σ2I + E(y)E(y)′}]

= σ2tr(H2 −H1) + E(y)′(H2 −H1)E(y)

= σ2 + γ ′X(2)′(I−H1)X(2)γ. (3.13)

Thus from (3.8) and (3.13) we get

NCP =
1

σ2
γ ′X(2)′(I−H1)X(2)γ

=
1

σ2
γ23 (X3

′X3 −X3
′H1X3)

=
1

σ2
γ23

(∑4

1
nix

6
i − P

)
=
J

σ2
. (3.14)

Hence the T -optimality criterion is equivalent to the fitted value criterion-J here.

3.4.1 Two Interesting Observations

Firstly we note the T -optimality criterion is equivalent to the fitted value criterion

J here. We note that in Chapter-2 the T -optimality criterion is not defined if we

are interested to discriminate between the models MI and MII because the true

model is a different model MT. But in this chapter it is defined because MII and

MT are identical i.e. here we have to discriminate between two models MI and MII

where MII is the true model.

Secondly we observe that under the subclass of designs D1 in (2.19), the fitted

value criterion J obtained in two different cases, one in Chapter-2 (in 2.20) and

the other in this chapter (in 3.11), are identical. In Chapter-2 we have two fitted
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models MI and MII whereas the true model is the full cubic model MT. In this

chapter we have two models as MI and MII where the true model is MII. The class

of designs D1 in (2.19) produces the identical value of the fitted value criterion J

in both the cases.

3.5 Efficient Designs with respect to J Criterion

Since the expressions of J for γ2 = 0 (Chapter-3 in 3.11) and γ2 6= 0 (Chapter-2

in 2.20) are identical under the class of designs D1, the theorems from Chapter-2

apply here.

Theorem 8. For a given value of b in the class of designs D1 in (2.19), the design

d1 in (2.21) is optimum with respect to the criterion J (or equivalently T ).

We note that d2 in (2.24) becomes the special Dette-Titoff design from the class of

T -optimal designs (Dette and Titoff (2009)). Hence we get following theorem.

Theorem 9. For the class of designs D1, the special Dette-Titoff design d2 is

optimum with respect to the criterion J (or equivalently T ).

We now consider a general allocation instead of the special allocation n1 = n4

and n2 = n3 and explore the new class of designs D4 to find the best design with

respect to J (or equivalently T -optimality) criterion where

D4 =

{
(x1, x2, x3, x4;n1, n2, n3, n4) : x1 = −1, x2 = −1

2
, x3 =

1

2
, x4 = 1

n1 + n2 + n3 + n4 = n,Rank(X(2)) = 4

}
. (3.15)

Under the class of designs D4, the matrix representations of MI and MII are given
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by

E(y) = X(1)γ(1), V ar(y) = σ2I,

E(y) = X(2)γ(2), V ar(y) = σ2I,

where

X(1) =

 1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

−1 . . . −1 −1
2

. . . −1
2

1
2

. . . 1
2

1 . . . 1


′

,γ(1) =

 γ0

γ1

 ,

X3 =

(
−1 . . . −1 −1

8
. . . −1

8
1
8

. . . 1
8

1 . . . 1

)′
,

and

X(2) =

(
X(1) X3

)

=


1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

−1 . . . −1 −1
2

. . . −1
2

1
2

. . . 1
2

1 . . . 1

−1 . . . −1 −1
8

. . . −1
8

1
8

. . . 1
8

1 . . . 1


′

,γ(2) =


γ0

γ1

γ3

 .

We note that under D4 in (3.15), the fitted value criterion J in (3.9) reduces to

J =
9
16
γ23 [n1n2n3 + n1n2n4 + n1n3n4 + n2n3n4][

n
[
n1 + n4 + 1

4
(n2 + n3)

]
−
[
n4 − n1 + 1

2
(n3 − n2)

]2]

⇔16J

nγ23
=

(n4 + n1)[(n3 + n2)
2 − (n3 − n2)

2] + (n3 + n2)[(n4 + n1)
2 − (n4 − n1)

2]

4n
9

[
n[n1 + n4 + 1

4
(n2 + n3)]−

[
n4 − n1 + 1

2
(n3 − n2)

]2]

⇔J0 =
(t1t3 − t1t24 − t22t3)

4
9

[(
t1 + t3

4

)
−
(
t2 + t4

2

)2] , assuming J0 =
16J

nγ23
, (3.16)
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where

t1 = p4 + p1, t2 = p4 − p1,

t3 = p3 + p2, t4 = p3 − p2, (3.17)

t1 + t3 = 1, 0 < t1, t3 < 1, and − 1 < t2, t4 < 1. (3.18)

Our goal is to maximize J or equivalently J0 with respect to ti’s i.e. with respect

to pi’s. Now we define

F0 = Denominator of J0 − Numerator of J0

=
4

9

[
t1 +

t3
4
−
(
t2 +

t4
2

)2
]
−
[
t1t3 − t1t42 − t22t3

]
=

(3t1 − 1)2

9
+

2(t4 − t2)2

9
+

(3t1 − 1)(t4
2 − t22)

3

=
1

9

[
(3t1 − 1)2 + 2(t4 − t2)2 + 3(3t1 − 1)(t4

2 − t22)
]

⇔ F =
[
(3t1 − 1)2 + 2(t4 − t2)2 + 3(3t1 − 1)(t4

2 − t22)
]
, (3.19)

where F = 9F0. We note that when t1 = 1
3

and t2 = t4, we have F = 0 implying

Denominator = Numerator i.e. J0 = 1. We explore the function F to find if it is

positive valued for all the values of t1, t2, and t4. If F ≥ 0 for all values of ti’s, then

J0 takes maximum value 1 when F = 0.

We define u = (3t1 − 1), v = t4 − t2, and w = t4 + t2. Thus from (3.19) we get

F = u2 + 2v2 + 3uvw (3.20)

⇔ F =

(
u+

3

2
vw

)2

− 9

4
v2
(
w2 − 8

9

)
, (3.21)

where −1 < u < 2, −1 < v < 1, and −1 < w < 1.
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When v 6= 0 and w2 > 8
9
, F in (3.21) can be written as,

F =

(
u+

3

2
vw +

3

2

√
v2
(
w2 − 8

9

))(
u+

3

2
vw − 3

2

√
v2
(
w2 − 8

9

))

= (u− u1)(u− u2), (3.22)

where u1 = −3
2
vw − 3

2

√
v2
(
w2 − 8

9

)
, u2 = −3

2
vw + 3

2

√
v2
(
w2 − 8

9

)
, and u2 > u1.

We now study the sign of F and tabulate our findings in Table-3.1.

Table 3.1: Study of the sign of F

u, v, w Sign of F

v = 0 F ≥ 0 by Theorem 10

v 6= 0, w2 ≤ 8
9

F ≥ 0 by Theorem 10

v 6= 0, w2 > 8
9

F ≥ 0 or F ≤ 0 by Theorem 10

v 6= 0, w2 > 8
9
, and DEN > 0 F > 0 by Theorem 11

v = 0, u = 0, w2 < 8
9

and DEN > 0 F = 0 by Theorem 12

Theorem 10.

(a) If v = 0, then F ≥ 0.

(b) If v 6= 0 and w2 ≤ 8
9
, then F ≥ 0.

(c) If v 6= 0 and w2 > 8
9
, then F ≥ 0 or F ≤ 0.

Proof:

The (a) can be seen from the expression of F in (3.20) or in (3.21).

The (b) can be seen from the expression of F in (3.21).

From (3.22) we note that when u1 ≤ u ≤ u2, F ≤ 0. But when u ≤ u1 or u ≥ u2

we have F ≥ 0. This completes the proof of (c).
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Theorem 11. If v 6= 0, w2 > 8
9
, and DEN > 0, then F > 0 where DEN =

Denominator of J0 in (3.16).

Proof: From (3.16) we note that

DEN =
4

9

[
t1 +

t3
4
−
(
t2 +

t4
2

)2
]

=
4

9

[
3t1 + 1

4
− (2t2 + t4)

2

4

]
=

1

9

[
u+ 2− (3w − v)2

4

]
=

1

9

[(
u+

3

2
vw

)
−
(
v2

4
+

9

4

(
w2 − 8

9

))]
. (3.23)

DEN > 0⇔
(
u+

3

2
vw

)
>

[
v2

4
+

9

4

(
w2 − 8

9

)]
. (3.24)

When v 6= 0, w2 >
8

9
, and DEN > 0 we have,

(
u+

3

2
vw

)
>

[
v2

4
+

9

4

(
w2 − 8

9

)]
> 0

⇔
(
u+

3

2
vw

)2

>

[
v2

4
+

9

4

(
w2 − 8

9

)]2
⇔
(
u+

3

2
vw

)2

>

[
v2

4
− 9

4

(
w2 − 8

9

)]2
+

9

4
v2
(
w2 − 8

9

)
⇔ F >

[
v2

4
− 9

4

(
w2 − 8

9

)]2
⇒ F > 0. (3.25)

This completes the proof of Theorem 11.
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Thus we have F ≥ 0 for the admissible ranges of u, v and w.

Now we find when F = 0 holds. When v 6= 0 and w2 > 8
9
, from (3.22) we have

F = 0 at u = u1 and u = u2 and F < 0 when u1 < u < u2. But we already have

seen that when v 6= 0 and w2 > 8
9
,

DEN > 0

⇔
(
u+

3

2
vw

)
>

[
v2

4
+

9

4

(
w2 − 8

9

)]
≥ 3

2

√
v2
(
w2 − 8

9

)
∵ a2 + b2 ≥ 2ab

⇒
(
u+

3

2
vw

)
>

3

2

√
v2
(
w2 − 8

9

)
⇔ u > u2,

and clearly when u > u2, we have from (3.22) F > 0.

Hence, to satisfy the condition DEN > 0, u1 and u2 will not be realized as two

distinct real roots of (u2 + 2v2 + 3uvw) = 0. Therefore we get,

u1 = u2 = −3

2
vw

⇔ 3

2

√
v2
(
w2 − 8

9

)
= 0

⇔ (I) : u = −3

2
vw, v = 0, 0 ≤ w2 < 1

(II) : u = −3

2
vw, v 6= 0, w2 =

8

9
. (3.26)

Theorem 12. If u = 0, v = 0, w2 < 8
9
, and DEN > 0, then F = 0 where DEN =

Denominator of J0 in (3.16).

Proof: From (3.26) we note that F = 0 when

(I) : u = −3
2
vw, v = 0, 0 ≤ w2 < 1 or
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(II) : u = −3
2
vw, v 6= 0, w2 = 8

9
.

Now, from (3.23) we note that under (II), DEN = −v2

36
< 0. Therefore, (II) is not

possible. We also note that under (I), DEN = −1
4

(
w2 − 8

9

)
and thus if w2 ≥ 8

9
,

then DEN ≤ 0 but if w2 < 8
9
, then DEN > 0. Therefore, F = 0 attains only when

u = v = 0, and w2 < 8
9
. This completes the proof of Theorem 12

Thus we conclude that F0 = (Denominator of J0 − Numerator of J0) ≥ 0 for all

admissible values of (u, v, w) or equivalently of (t1, t2, t4). Clearly, J0 attains the

maximum value 1, when F0 = 0 i.e. when F = 0. We observed that F = 0 only

when u = 0 and v = 0 equivalently when t1 = 1
3

and t2 = t4.

Now,

t1 =
1

3
⇔ t3 =

2

3

⇔ p4 + p1 =
1

3
(3.27)

and p3 + p2 =
2

3
(3.28)

Also t4 = t2 ⇔ p3 − p2 = p4 − p1. (3.29)

Let us assume, p2 = p.

Then (3.28) provides, p3 =
2

3
− p,

and (3.29) provides, p4 − p1 =
2

3
− 2p. (3.30)

Now, (3.27) and (3.30) provide, p1 = p− 1

6
and p4 =

1

2
− p.

As pi > 0 for i = 1, 2, 3, 4; we have p ∈
(
1
6
, 1
2

)
. Thus there exists a subclass of
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J -optimal (or equivalently T -optimal) designs within the class of designs D4 in

(3.15) given in Table-3.2.

Table 3.2: Class of J -optimal Designs

Design Points x1 = −1 x2 = −1
2

x3 = 1
2

x4 = 1

Proportions p1 = p− 1
6

p2 = p p3 = 2
3
− p p4 = 1

2
− p

where p ∈
(
1
6 ,

1
2

)
.

Clearly, when p2 = p = 1
3

we get the special Dette-Titoff design d2 in (2.24) which

is in fact the most efficient design in the class of designs D1 in (2.19). We denote

the new subclass of J -optimal (or equivalently T -optimal) designs in D4 by

D5 =

{
(x1, x2, x3, x4;n1, n2, n3, n4) : x1 = −1, x2 = −1

2
, x3 = 1

2
, x4 = 1;

p1 = p− 1
6
, p2 = p, p3 = 2

3
− p, p4 = 1

2
− p, 1

6
< p < 1

2
;Rank(X(2)) = 4

}
.

(3.31)

We note that J -optimal design may not be unique. Any design in D5 gives the

same optimal value of the fitted value criterion making each design to be J -optimal

here. Hence we have the following theorem.

Theorem 13. For the class of designs in D4 in (3.15), all the design in D5 are

optimum with respect to the criterion J (or equivalently T ).

3.6 Expression of I Criterion

Here we derive the I Criterion under the class of designs D in (1.3). We denote the

predicted values of y when X = x for MI and MII as ŷ(1)(x) and ŷ(2)(x) respectively.
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Then we find the expression for E(ŷ(1)(x) − ŷ(2)(x)). We note that the quantity,

E(ŷ(1)(x) − ŷ(2)(x)), may be positive for some values of x and negative for some

other values of x. Therefore, we consider the squared value of E(ŷ(1)(x)− ŷ(2)(x))

and find the criterion. Now, the expression of E(ŷ(1)(x) − ŷ(2)(x)) in this case

is readily available from (2.27). We just need to replace γ2 by 0 and hence we

get the expression. Also under the class of designs D1 in (2.19) the expression[
E(ŷ(1)(x)− ŷ(2)(x))

]2
takes the form γ23x

2 (C − x2)2 which is exactly the same as

what we obtained in Chapter-2. Consequently the predicted value criterion will be

identical to the case of Chapter-2 which is given by

I = γ23

[
Cb

2

3
− 2Cb

5
+

1

7

]
where Cb =

(b4n1 + a4n2)

(b2n1 + a2n2)
. (3.32)

3.7 Efficient Designs with respect to I Criterion

Since the expressions of I for γ2 = 0 (Chapter-3 in 3.32) and γ2 6= 0 (Chapter-2

in 2.29) are identical under the class of designs D1, the theorems from Chapter-2

apply here. From Chapter-2 we note that d2 in (2.24) (which is the special Dette-

Titoff T -optimal or equivalently J -optimal design here) doesn’t perform well with

respect to criterion I. We consider the class of designs D3 in (2.34) and obtain the

following theorem.

Theorem 14.

(a) All the designs in D3 perform better than the special Dette-Titoff design d2

with respect to the criterion I.

(b) The special Dette-Titoff design d2 performs better than all the designs in D3

with respect to the criterion J (or equivalently criterion T ).
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Chapter 4

Quadratic vs. Full Cubic as the

True Model

4.1 Introduction

Here the response variable Y is dependent on the explanatory variable X with two

possible dependence as described by two models MI, a quadratic regression model

and MT, a full cubic regression model. We assume that MT is the true model but

it is unknown to us. We do not know whether MI or MT describes the dependence

better. Our goal is to discriminate between these two models MI and MT by the

design choice.

4.2 Models and Associated Designs

We consider the class of designs D in (1.3). We also consider the full cubic model

from (1.1) as the true model and denote it by MT. Our aim is to discriminate

between the two models MI and MT assuming MT to be the unknown true model.
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The two models considered here are given by

MI: E(yj(xi)) = γ0 + γ1xi + γ2x
2
i ,

V ar((yj(xi))) = σ2, Cov((yj(xi)), (yj′ (xi′ ))) = 0, (4.1)

MT: E(yj(xi)) = γ0 + γ1xi + γ2x
2
i + γ3x

3
i ,

V ar((yj(xi))) = σ2, Cov((yj(xi)), (yj′ (xi′ ))) = 0, (4.2)

where i, i
′

= 1, 2, 3, 4; j = 1, 2, . . . , ni, j
′

= 1, 2, . . . , ni′ , (i, j) 6= (i
′
, j

′
). The matrix

representations of MT and MI are given by

E(y) = X(1)γ(1), V ar(y) = σ2I, (4.3)

E(y) = X(t)γ(t), V ar(y) = σ2I, (4.4)

where

X(1) =


1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

x1 . . . x1 x2 . . . x2 x3 . . . x3 x4 . . . x4

x21 . . . x21 x22 . . . x22 x23 . . . x23 x24 . . . x24


′

, γ(1) =


γ0

γ1

γ2

 ,

and

X(t) =



1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

x1 . . . x1 x2 . . . x2 x3 . . . x3 x4 . . . x4

x21 . . . x21 x22 . . . x22 x23 . . . x23 x24 . . . x24

x31 . . . x31 x32 . . . x32 x33 . . . x33 x34 . . . x34



′

, γ(t) =



γ0

γ1

γ2

γ3


.
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We define

X3 =

(
x31 . . . x31 x32 . . . x32 x33 . . . x33 x34 . . . x34

)′
.

We note that

X(t) =

(
X(1) ... X3

)
⇒ X(t)′X(t) =

 X(1)′X(1) X(1)′X3

X′3X
(1) X′3X3

. (4.5)

4.3 Expression of J Criterion

We first consider the fitted value criterion J (ref. Chapter-1). We find the ex-

pression of J considering the class of designs D in (1.3) for model selection and

discrimination purposes.

It can be checked that

E(γ̂(t)) = (X(t)′X(t))−1X(t)′E(y) = γ(t), (4.6)

and

E(γ̂(1)) = (X(1)′X(1))−1X(1)′E(y)

= (X(1)′X(1))−1X(1)′X(t)γ(t)

=


1 0 0 A

0 1 0 B

0 0 1 C

γ(t), (4.7)

where
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A =
1

Det1

[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2(x1x2x3)

+n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2(x1x2x4)

+n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2(x1x3x4)

+n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2(x2x3x4)
]
,

B =
−1

Det1

[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2(x1x2 + x1x3 + x2x3)

+n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2(x1x2 + x1x4 + x2x4)

+n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2(x1x3 + x1x4 + x3x4)

+n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2(x2x3 + x2x4 + x3x4)
]
,

C =
1

Det1

[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2(x1 + x2 + x3)

+n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2(x1 + x2 + x4)

+n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2(x1 + x3 + x4)

+n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2(x2 + x3 + x4)
]
,

and

Det1 =
∣∣X(1)′X(1)

∣∣ =
[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2

+n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2

+n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2

+n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2
]
. (4.8)
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The fitted values of y under MI and MT are expressed as ŷ(1) = X(1)γ̂(1) and

ŷ(2) = X(t)γ̂(t). Hence we have

E(ŷ(1)) = X(1)E(γ̂(1))

= X(1)(X(1)′X(1))−1X(1)′X(t)γ(t)

= H1X
(t)γ(t), (4.9)

E(ŷ(2)) = X(t)E(γ̂(t))

= X(t)γ(t), (4.10)

⇒ E(ŷ(2) − ŷ(1)) = (I−H1)X(t)γ(t), (4.11)

where H1 = X(1)(X(1)′X(1))−1X(1)′ and H1
′

= H1, H2
1 = H1. Now, using (4.11)

we get

J = E(ŷ(2) − ŷ(1))
′
E(ŷ(2) − ŷ(1))

= γ(t)′X(t)′(I−H1)X(t)γ(t). (4.12)

It can be checked that

X(t)′H1X
(t) =



∑4
i=1 ni

∑4
i=1 nixi

∑4
i=1 nix

2
i

∑4
i=1 nix

3
i∑4

i=1 nixi
∑4

i=1 nix
2
i

∑4
i=1 nix

3
i

∑4
i=1 nix

4
i∑4

i=1 nix
2
i

∑4
i=1 nix

3
i

∑4
i=1 nix

4
i

∑4
i=1 nix

5
i∑4

i=1 nix
3
i

∑4
i=1 nix

4
i

∑4
i=1 nix

5
i X3

′H1X3


. (4.13)
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Therefore

X(t)′(I−H1)X(t) =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 P


, (4.14)

and thus using (4.12) and (4.14) we get the fitted value criterion as

J = Pγ23 , (4.15)

where

P = X3
′(I−H1)X3

=
n1n2n3n4(x1 − x2)2(x1 − x3)2(x1 − x4)2(x2 − x3)2(x2 − x4)2(x3 − x4)2[
n1n2(x1 − x2)2

{
n3(x1 − x3)2(x2 − x3)2 + n4(x1 − x4)2(x2 − x4)2

}
+ n3n4(x3 − x4)2

{
n1(x1 − x3)2(x1 − x4)2 + n2(x2 − x3)2(x2 − x4)2

}]
. (4.16)

We now calculate the J criterion under the class of designs D1 in (2.19). Thus J

in (4.15) reduces to

J =
2γ23n1n2a

2b2(b2 − a2)2

(n1b2 + n2a2)

⇔ J

nγ23
=

2p1(1− 2p1)a
2b2(b2 − a2)2

2p1b2 + (1− 2p1)a2
where (p1 + p2) =

1

2
. (4.17)
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4.4 Efficient Designs with respect to J Criterion

It is interesting to note that under the class of designs D1 in (2.19) the expression

of J in this chapter is identical to the expression of J in Chapter-2 (in 2.20) and

also in Chapter-3 (in 3.11). Hence from Chapter-2 and 3 we obtain the following

theorems.

Theorem 15. For a given value of b in the class of designs D1 in (2.19), the design

d1 in (2.21) is optimum with respect to the criterion J .

We note that d2 in (2.24) becomes the Kiefer and Wolfowitz (1959) optimal design

in the setup of Chapter-4. Hence we get following theorem.

Theorem 16. For the class of designs D1, the Kiefer-Wolfowitz design d2 is opti-

mum with respect to the criterion J .

4.5 Expression of I Criterion

We now consider the predicted value criterion here. Let ŷ(1)(x) and ŷ(2)(x) be

the predicted values of the two models MI and MT at X = x. We first find the

expression for E(ŷ(1)(x) − ŷ(2)(x)) assuming MT to be the unknown true model.

Then we obtain the squared value of E(ŷ(1)(x) − ŷ(2)(x)) and find the criterion.
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Under the general class of designs D in (1.3) we have

E(ŷ(1)(x)) =

(
1 x x2

)
E(γ̂(1))

=

(
1 x x2

)
1 0 0 A

0 1 0 B

0 0 1 C

γ(t) from (4.7)

= γ0 + γ1x+ γ2x
2 + γ3(A+Bx+ Cx2), (4.18)

and

E(ŷ(2)(x)) =

(
1 x x2 x3

)
E(γ̂(t))

=

(
1 x x2 x3

)
γ(t) from (4.6)

= γ0 + γ1x+ γ2x
2 + γ3x

3, (4.19)

where A,B, and C are defined right after (4.7).

Thus from (4.18) and (4.19) we get

E(ŷ(1)(x)− ŷ(2)(x)) = γ3
[
A+Bx+ Cx2 − x3

]
(4.20)

Now under D1 in (2.19) we have A = C = 0 and B = (b4n1+a4n2)
(b2n1+a2n2)

. Hence under this

class of designs we get from (4.20),

[
E(ŷ(1)(x)− ŷ(2)(x))

]2
= γ23x

2
(
B − x2

)2
. (4.21)

The discrimination between the models MI and MT will be the best when
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[
E(ŷ(1)(x)−ŷ(2)(x))

γ3

]2
is maximum. The discrimination between the models MI and

MT will not be possible with respect to predicted values when E(ŷ(1)(x)−ŷ(2)(x))
γ3

= 0.

We observe that at x = 0, x = −
√
B, and x =

√
B, E(ŷ(1)(x)−ŷ(2)(x)) = 0. Clearly,

at x = 0, x = −
√
B, and x =

√
B, the discrimination between MI and MT will not

be possible using the prediction criterion at the design stage. We now consider an

overall prediction measure by taking the weighted average of
[
E(ŷ(1)(x)−ŷ(2)(x))

γ3

]2
on

x. Therefore the predicted value criterion is given by,

I =
1

2

∫ 1

−1

[
E(ŷ(1)(x)− ŷ(2)(x))

]2
d x

=
γ23
2

∫ 1

−1

(
Bx− x3

)2
d x

= γ23

[
B2

3
− 2B

5
+

1

7

]
where 0 < B =

(b4n1 + a4n2)

(b2n1 + a2n2)
< 1. (4.22)

4.6 Efficient Designs with respect to I Criterion

Since the expressions of I in (4.22) of Chapter-4 and in (2.29)) of Chapter-2 are

identical under the class of designs D1, the theorems from Chapter-2 apply here.

From Chapter-2 we note that d2 in (2.24) (the special Dette-Titoff T -optimal or

equivalently J -optimal design) doesn’t perform well with respect to criterion I. We

consider the class of designs D3 in (2.34) and obtain the following theorem.

Theorem 17.

(a) All the designs in D3 perform better than the Kiefer-Wolfowitz design d2 with

respect to the criterion I.

(b) The Kiefer-Wolfowitz design d2 performs better than all the designs in D3

with respect to the criterion J (or equivalently criterion T ).
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Chapter 5

Linear vs. Quadratic when the

True Model Is Full Cubic

5.1 Introduction

We consider an experiment where the response variable Y is dependent on an

explanatory variable X by two models MI, a simple linear regression model and

MII, a quadratic regression model. We assume that the full cubic model MT is the

unknown true model. Our goal is to discriminate between the two models MI and

MII at the design stage assuming MT to be the unknown true model.

5.2 Models and Associated Designs

We consider the class of designs D in (1.3). We also consider the full cubic model

from (1.1) as the unknown true model and denote it by MT. The three models

considered here are given by
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MT: E(yj(xi)) = γ0 + γ1xi + γ2x
2
i + γ3x

3
i ,

V ar((yj(xi))) = σ2, Cov((yj(xi)), (yj′ (xi′ ))) = 0, (5.1)

MI: E(yj(xi)) = γ0 + γ1xi,

V ar((yj(xi))) = σ2, Cov((yj(xi)), (yj′ (xi′ ))) = 0, (5.2)

MII: E(yj(xi)) = γ0 + γ1xi + γ2x
2
i ,

V ar((yj(xi))) = σ2, Cov((yj(xi)), (yj′ (xi′ ))) = 0, (5.3)

where i, i
′
= 1, 2, 3, 4; j = 1, 2, . . . , ni, j

′
= 1, 2, . . . , ni′ , (i, j) 6= (i

′
, j

′
).

The matrix representations of MT, MI, and MII are given by

E(y) = X(t)γ(t), V ar(y) = σ2I, (5.4)

E(y) = X(1)γ(1), V ar(y) = σ2I, (5.5)

E(y) = X(2)γ(2), V ar(y) = σ2I, (5.6)

where

X(1) =

 1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

x1 . . . x1 x2 . . . x2 x3 . . . x3 x4 . . . x4


′

,γ(1) =

 γ0

γ1

 ,

X(2) =


1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

x1 . . . x1 x2 . . . x2 x3 . . . x3 x4 . . . x4

x21 . . . x21 x22 . . . x22 x23 . . . x23 x24 . . . x24


′

,γ(2) =


γ0

γ1

γ2

 ,
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X(t) =



1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

x1 . . . x1 x2 . . . x2 x3 . . . x3 x4 . . . x4

x21 . . . x21 x22 . . . x22 x23 . . . x23 x24 . . . x24

x31 . . . x31 x32 . . . x32 x33 . . . x33 x34 . . . x34



′

,γ(t) =



γ0

γ1

γ2

γ3


.

We define

X2 =

(
x21 . . . x21 x22 . . . x22 x23 . . . x23 x24 . . . x24

)′
,

X3 =

(
x31 . . . x31 x32 . . . x32 x33 . . . x33 x34 . . . x34

)′
and

X23 =

 x21 . . . x21 x22 . . . x22 x23 . . . x23 x24 . . . x24

x31 . . . x31 x32 . . . x32 x33 . . . x33 x34 . . . x34


′

.

Hence we get,

X(2) =

(
X(1) ... X2

)
⇒ X(2)′X(2) =

 X(1)′X(1) X(1)′X2

X′2X
(1) X′2X2

,
X(t) =

(
X(2) ... X3

)
⇒ X(t)′X(t) =

 X(2)′X(2) X(2)′X3

X′3X
(2) X′3X3

,
X(t) =

(
X(1) ... X23

)
⇒ X(t)′X(t) =

 X(1)′X(1) X(1)′X23

X′23X
(1) X′23X23

. (5.7)
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5.3 Expression of J Criterion

We first consider the fitted value criterion J (ref. Chapter-1) under the general

class of designs D in (1.3) for model selection and discrimination purposes. Let

ŷ(1) and ŷ(2) be the fitted values of the two models MI and MII. First we have to

find the expression of E(ŷ(1) − ŷ(2)) where the expectation is considered under the

true model MT in (5.1).

The least square estimate of γ(1) for MI is given by (Rao (1973))

γ̂(1) =

 γ̂
(1)
0

γ̂
(1)
1

 = (X(1)′X(1))−1X(1)′y, (5.8)

and the least square estimate of γ(2) for MII is given by

γ̂(2) =


γ̂
(2)
0

γ̂
(2)
1

γ̂
(2)
2

 = (X(2)′X(2))−1X(2)′y. (5.9)

Now,

E(γ̂(1)) = (X(1)′X(1))−1X(1)′E(y)

= (X(1)′X(1))−1X(1)′X(t)γ(t)

= (X(1)′X(1))−1
(

X(1)′X(1) X(1)′X23

)
γ(t)

=

(
I2 (X(1)′X(1))−1X(1)′X23

)
γ(t)

=

 1 0 B A

0 1 D C

γ(t), (5.10)
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and

E(γ̂(2)) = (X(2)′X(2))−1X(2)′E(y)

= (X(2)′X(2))−1X(2)′X(t)γ(t)

= (X(2)′X(2))−1
(

X(2)′X(2) X(2)′X3

)
γ(t)

=

(
I3 (X(2)′X(2))−1X(2)′X3

)
γ(t)

=


1 0 0 E

0 1 0 F

0 0 1 G

γ(t), (5.11)

where A,B,C, and D are defined right after (2.11) and

E =
1

Det2

[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2x1x2x3

+n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2x1x2x4

+n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2x1x3x4

+n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2x2x3x4
]
,

F =

−1

Det2

[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2(x1x2 + x1x3 + x2x3)

+n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2(x1x2 + x1x4 + x2x4)

+n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2(x1x3 + x1x4 + x3x4)

+n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2(x2x3 + x2x4 + x3x4)
]
,
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G =
1

Det2

[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2(x1 + x2 + x3)

+n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2(x1 + x2 + x4)

+n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2(x1 + x3 + x4)

+n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2(x2 + x3 + x4)
]
,

Det2 =
∣∣X(2)′X(2)

∣∣ =
[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2

+ n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2

+ n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2

+ n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2
]
.

We know that the fitted values of y under MI and MII are expressed as ŷ(1) =

X(1)γ̂(1) and ŷ(2) = X(2)γ̂(2). Now assuming that MT to be the true model the

expected values of the fitted values are given by

E(ŷ(1)) = X(1)E(γ̂(1))

= X(1)(X(1)′X(1))−1X(1)′X(t)γ(t)

= H1X
(t)γ(t), (5.12)

E(ŷ(2)) = X(2)E(γ̂(2))

= X(2)(X(2)′X(2))−1X(2)′X(t)γ(t)

= H2X
(t)γ(t), (5.13)

⇒ E(ŷ(1) − ŷ(2)) = (H1 −H2)X(t)γ(t), (5.14)
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where H1 = X(1)(X(1)′X(1))−1X(1)′ and H2 = X(2)(X(2)′X(2))−1X(2)′. We note that

H1 and H2 are symmetric and idempotent (Rao (1973)) i.e. H1
′
= H1, H2

1 = H1,

H2
′
= H2 and H2

2 = H2. Also by Result 1 we have H2H1 = H1 = H1H2. Clearly

using (5.14) we get

J = E(ŷ(1) − ŷ(2))
′
E(ŷ(1) − ŷ(2))

= γ(t)′X(t)′(H1 −H2)2X(t)γ(t)

= γ(t)′X(t)′(H2 −H1)X(t)γ(t) using Result-1. (5.15)

Now,

X(t)′H2X
(t) =

 X(2)′

X3
′

H2

(
X(2) X3

)

=

 X(2)′

X3
′H2

( X(2) X3

)

=

 X(2)′X(2) X(2)′X3

X3
′X(2) X3

′H2X3



=



∑4

1
ni

∑4

1
nixi

∑4

1
nix

2
i

∑4

1
nix

3
i∑4

1
nixi

∑4

1
nix

2
i

∑4

1
nix

3
i

∑4

1
nix

4
i∑4

1
nix

2
i

∑4

1
nix

3
i

∑4

1
nix

4
i

∑4

1
nix

5
i∑4

1
nix

3
i

∑4

1
nix

4
i

∑4

1
nix

5
i S


, (5.16)
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X(t)′H1X
(t) =

 X(1)′

X23
′

H1

(
X(1) X23

)

=

 X(1)′

X23
′H1

( X(1) X23

)

=

 X(1)′X(1) X(1)′X23

X23
′X(1) X23

′H1X23



=



∑4

1
ni

∑4

1
nixi

∑4

1
nix

2
i

∑4

1
nix

3
i∑4

1
nixi

∑4

1
nix

2
i

∑4

1
nix

3
i

∑4

1
nix

4
i∑4

1
nix

2
i

∑4

1
nix

3
i P R∑4

1
nix

3
i

∑4

1
nix

4
i R Q


, (5.17)

where

P = X2
′H1X2 = B

∑4

1
nix

2
i +D

∑4

1
nix

3
i ,

Q = X3
′H1X3 = A

∑4

1
nix

3
i + C

∑4

1
nix

4
i ,

R = X2
′H1X3 = A

∑4

1
nix

2
i + C

∑4

1
nix

3
i ,

S = X3
′H2X3 = E

∑4

1
nix

3
i + F

∑4

1
nix

4
i +G

∑4

1
nix

5
i ,

and A,B,C, and D are defined right after (2.11) and E,F, and G are defined right

after (5.11).
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Now, using (5.15), (5.16), and (5.17) we get

J = γ(t)′



0 0 0 0

0 0 0 0

0 0
∑4

1
nix

4
i − P

∑4

1
nix

5
i −R

0 0
∑4

1
nix

5
i −R S −Q


γ(t)

=
(∑4

1
nix

4
i − P

)
γ22 + (S −Q)γ23 + 2γ2γ3

(∑4

1
nix

5
i −R

)
, (5.18)

where P,Q,R, and S are defined right after (5.17).

Now we consider class of designs D1 in (2.19). We note that under D1 we have

Det1 = 2n(b2n1 + a2n2), Det2 = 8(b2 − a2)2n1n2(b
2n1 + a2n2), A = 0,

B =
2

n
(b2n1 + a2n2), C =

(b4n1 + a4n2)

(b2n1 + a2n2)
, D = 0,

E = 0, F =
(b4n1 + a4n2)

(b2n1 + a2n2)
, G = 0,

P =
4

n
(b2n1 + a2n2)

2, Q =
2(b4n1 + a4n2)

2

(b2n1 + a2n2)
= S, R = 0,

and hence the fitted value criterion in (5.18) is given by

J =
4

n
γ22n1n2(b

2 − a2)2

⇔ J

nγ22
= 2p1(1− 2p1)(b

2 − a2)2. (5.19)
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5.4 Efficient Designs with respect to J Criterion

For any given a and b, J in (5.19) is maximized at p1 = 1
4
. We define the design d5

in D1 in (2.19) as the following:

d5 =

[
(x1, x2, x3, x4;n1, n2, n3, n4) : x1 = −b, x2 = −a, x3 = a, x4 = b;

n1 = n2 = n3 = n4 =
n

4
, Rank(X(t)) = 4

]
. (5.20)

Thus we have the following theorem.

Theorem 18. For any given a and b in the class of designs D1, the design d5 is

optimum with respect to the criterion J .

Also for a given a, J in (5.19) is maximized when p1 = 1
4

and b = 1. We define

design d6 in D1 as the following:

d6 =

[
(x1, x2, x3, x4;n1, n2, n3, n4) : x1 = −1, x2 = −a, x3 = a, x4 = 1;

n1 = n2 = n3 = n4 =
n

4
, Rank(X(t)) = 4

]
. (5.21)

Hence obtain the following theorem.

Theorem 19. For a given value of a in the class of designs D1, the design d6 is

optimum with respect to the criterion J .

Special Note: When γ3 = 0 in MT, then MT and MII are identical models

representing the full quadratic model. In that case the problem reduces to dis-

crimination between a linear and a quadratic model and we need at least 3 distinct

design points for discrimination purpose. We note that this setup is identical to the
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setup explained in Ghosh and Pal (2008). From the expression of J in (5.19) we

note that 2p1(1− 2p1) is maximum when p1 = 1
4

and (b2 − a2)2 is maximum when

b = 1 and a = 0 and thus the J is maximum for the design with x1 = −1, x2 = 0,

and x3 = 1 with replications n1 = n
4
, n2 = n

2
, and n3 = n

4
. This is the Kiefer and

Wolfowitz (1959) optimal design for estimating γ2.

5.5 Expression of I Criterion

Here we consider the predicted value criterion under the general class of designs D

in (1.3). Let ŷ(1)(x) and ŷ(2)(x) be the predicted values of the two models MI and

MII at X = x. We first find the expression for E(ŷ(1)(x) − ŷ(2)(x)) assuming MT

to be the true model. We know that

E(ŷ(1)(x)) =

(
1 x

)
E(γ̂(1))

=

(
1 x

) 1 0 B A

0 1 D C

γ(t) from (5.10)

= γ0 + γ1x+ γ2(B +Dx) + γ3(A+ Cx), (5.22)

and

E(ŷ(2)(x)) =

(
1 x x2

)
E(γ̂(2))

=

(
1 x x2

)
1 0 0 E

0 1 0 F

0 0 1 G

γ(t) from (5.11)

= γ0 + γ1x+ γ2x
2 + γ3(E + Fx+Gx2), (5.23)
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where A,B,C, and D are defined right after (2.11) and E,F, and G are defined

right after (5.11). Thus from (5.22) and (5.23) we get

E(ŷ(1)(x)− ŷ(2)(x)) = γ2
[
B +Dx− x2

]
+ γ3

[
(A− E) + (C − F )x−Gx2

]
(5.24)

Now considering the class of designs D1 in (2.19), we have B = 2
n
(b2n1 + a2n2),

A = D = E = G = 0, and C = F = (b4n1+a4n2)
(b2n1+a2n2)

. Hence under D1 we have

[
E(ŷ(1)(x)− ŷ(2)(x))

]2
= γ22

(
B − x2

)2
. (5.25)

The discrimination between the models MI and MII will be the best when[
E(ŷ(1)(x)−ŷ(2)(x))

γ2

]2
is maximum. The discrimination between the models MI and

MII will not be possible with respect to predicted values when E(ŷ(1)(x)−ŷ(2)(x))
γ2

= 0.

We observe that at x = −
√
B and x =

√
B, E(ŷ(1)(x) − ŷ(2)(x)) = 0. Clearly, at

x = −
√
B and x =

√
B, the discrimination between MI and MII will not be possible

using the prediction criterion at the design stage. But we are interested in finding

an overall prediction measure for discrimination purpose rather than evaluating

at each x. So, we consider an overall measure by taking the weighted average of[
E(ŷ(1)(x)−ŷ(2)(x))

γ2

]2
on x. Therefore the predicted value criterion is given by,

I =
γ22
2

∫ 1

−1

(
B − x2

)2
d x

= γ22

(
B2 − 2B

3
+

1

5

)
(5.26)

where 0 < B = 2
n
(b2n1 + a2n2) < 1.
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5.6 Efficient Designs with respect to I Criterion

We note that I in (5.26) is a concave function with respect to B (Fig-5.1). Designs

with a very high or a very small value of B will perform well with respect to I.

But designs with very high values of B are better than those with very small values

0.0 0.2 0.4 0.6 0.8 1.0

0.
1

0.
2

0.
3

0.
4

0.
5

B

I(
B

)

I(0) = I(2/3)

B = 2/3

Figure 5.1: Plot of I(B) against B

of B. We also note that I(0) = I(2
3
) but it is clear that C 6= 1 and C 6= 0. We

fix b = 1 and obtain some choices of a and p1 numerically to present some designs

(Table -5.1) in D1 in (2.19) which perform well with respect to I.

We note that the designs those perform well with respect to I, do not perform

well with respect to J and vice versa. As expected the designs with high values of

B perform better than those with smaller values of B with respect to I. As the

value of p1 gets closer to 0.25 the performance of the design with respect to J is
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Table 5.1: Some I-optimal Designs

B b a p1 p2 J I

0.970 1 0.707 0.470 0.030 0.01410 0.49423

0.970 1 0.754 0.465 0.035 0.01206 0.49423

0.970 1 0.800 0.458 0.042 0.00990 0.49423

0.900 1 0.535 0.430 0.070 0.06143 0.41000

0.900 1 0.561 0.427 0.073 0.05856 0.41000

0.900 1 0.600 0.422 0.078 0.05400 0.41000

0.800 1 0.200 0.396 0.104 0.15200 0.30667

0.800 1 0.300 0.390 0.110 0.14200 0.30667

0.800 1 0.400 0.381 0.119 0.12800 0.30667

0.800 1 0.500 0.367 0.133 0.11000 0.30667

0.800 1 0.600 0.344 0.156 0.08800 0.30667

0.625 1 0.500 0.250 0.250 0.14063 0.17396

the best. We define the following subclass in D1

D6 =

{
(x1, x2,x3, x4;n1, n2, n3, n4) : x1 = −1, x2 = −a, x3 = a, x4 = 1;

1

4
< p1 = p4 <

1

2
, p2 = p3, p1 + p2 =

1

2
, Rank(X(2)) = 4

}
. (5.27)

We obtain the following theorem.

Theorem 20.

(a) For a given value of a, all the designs in D6 perform better than the special

d6 in (5.21) with respect to the criterion I.

(b) For a given value of a, the design d2 performs better than all the designs in

D3 with respect to the criterion J .
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Chapter 6

Linear vs. Full Cubic as the True

Model

6.1 Introduction

Here the response variable Y is dependent on the explanatory variable X with

two possible dependence as described by two models MI, a simple linear regression

model and MT, a full cubic regression model. We assume that MT is the true

model but it is unknown to us. We do not know whether MI or MT describes the

dependence better. Our goal is to discriminate between these two models MI and

MT by the design choice.

6.2 Models and Associated Designs

We consider the class of designs D in (1.3). We also consider the full cubic model

from (1.1) as the true model and denote it by MT. Our aim is to discriminate

between the two models MI and MT assuming MT to be the unknown true model.
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The two models considered here are given by

MI: E(yj(xi)) = γ0 + γ1xi,

V ar((yj(xi))) = σ2, Cov((yj(xi)), (yj′ (xi′ ))) = 0, (6.1)

MT: E(yj(xi)) = γ0 + γ1xi + γ2x
2
i + γ3x

3
i ,

V ar((yj(xi))) = σ2, Cov((yj(xi)), (yj′ (xi′ ))) = 0, (6.2)

where i, i
′

= 1, 2, 3, 4; j = 1, 2, . . . , ni, j
′

= 1, 2, . . . , ni′ , (i, j) 6= (i
′
, j

′
). The matrix

representations of MT and MI are given by

E(y) = X(1)γ(1), V ar(y) = σ2I, (6.3)

E(y) = X(t)γ(t), V ar(y) = σ2I, (6.4)

where

X(1) =

 1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

x1 . . . x1 x2 . . . x2 x3 . . . x3 x4 . . . x4


′

, γ(1) =

 γ0

γ1

 ,

X(t) =



1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

x1 . . . x1 x2 . . . x2 x3 . . . x3 x4 . . . x4

x21 . . . x21 x22 . . . x22 x23 . . . x23 x24 . . . x24

x31 . . . x31 x32 . . . x32 x33 . . . x33 x34 . . . x34



′

, γ(t) =



γ0

γ1

γ2

γ3


.
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We define

X2 =

(
x21 . . . x21 x22 . . . x22 x23 . . . x23 x24 . . . x24

)′
,

X3 =

(
x31 . . . x31 x32 . . . x32 x33 . . . x33 x34 . . . x34

)′
,

X23 =

 x21 . . . x21 x22 . . . x22 x23 . . . x23 x24 . . . x24

x31 . . . x31 x32 . . . x32 x33 . . . x33 x34 . . . x34


′

.

We note that

X(t) =

(
X(1) ... X23

)
⇒ X(t)′X(t) =

 X(1)′X(1) X(1)′X23

X′23X
(1) X′23X23

. (6.5)

6.3 Expression of J Criterion

We first consider the fitted value criterion J (ref. Chapter-1). We find the ex-

pression of J considering the class of designs D in (1.3) for model selection and

discrimination purposes. It can be checked that

E(γ̂(t)) = (X(t)′X(t))−1X(t)′E(y) = γ(t), (6.6)

and

E(γ̂(1)) = (X(1)′X(1))−1X(1)′E(y)

= (X(1)′X(1))−1X(1)′X(t)γ(t)

=

 1 0 A B

0 1 C D

γ(t), (6.7)
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where

A =
1

Det1

( 4∑
i=1

nix
2
i

)2

−
4∑
i=1

nixi

4∑
i=1

nix
3
i

 ,

B =
1

Det1

[
4∑
i=1

nix
2
i

4∑
i=1

nix
3
i −

4∑
i=1

nixi

4∑
i=1

nix
4
i

]
,

C =
1

Det1

[
4∑
i=1

ni

4∑
i=1

nix
3
i −

4∑
i=1

nixi

4∑
i=1

nix
2
i

]
,

D =
1

Det1

[
4∑
i=1

ni

4∑
i=1

nix
4
i −

4∑
i=1

nixi

4∑
i=1

nix
3
i

]
,

and

Det1 =
∣∣X(1)′X(1)

∣∣ =
[
n1n2(x1 − x2)2 + n1n3(x1 − x3)2 + n1n4(x1 − x4)2+

n2n3(x2 − x3)2 + n2n4(x2 − x4)2 + n3n4(x3 − x4)2
]
.

Now the fitted values of y under MI and MT are expressed as ŷ(1) = X(1)γ̂(1) and

ŷ(2) = X(t)γ̂(t). Hence we have

E(ŷ(1)) = X(1)E(γ̂(1))

= X(1)(X(1)′X(1))−1X(1)′X(t)γ(t)

= H1X
(t)γ(t), (6.8)
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E(ŷ(2)) = X(t)E(γ̂(t)) = X(t)γ(t), (6.9)

⇒ E(ŷ(2) − ŷ(1)) = (I−H1)X(t)γ(t), (6.10)

where H1 = X(1)(X(1)′X(1))−1X(1)′ and H1
′

= H1, H2
1 = H1. Now, using (6.10)

we get

J = E(ŷ(2) − ŷ(1))
′
E(ŷ(2) − ŷ(1))

= γ(t)′X(t)′(I−H1)2X(t)γ(t)

= γ(t)′X(t)′(I−H1)X(t)γ(t). (6.11)

Now,

X(t)′H1X
(t) =

 X(1)′

X23
′

H1

(
X(1) X23

)

=

 X(1)′X(1) X(1)′X23

X23
′X(1) X23

′H1X23



=



∑4
i=1 ni

∑4
i=1 nixi

∑4
i=1 nix

2
i

∑4
i=1 nix

3
i∑4

i=1 nixi
∑4

i=1 nix
2
i

∑4
i=1 nix

3
i

∑4
i=1 nix

4
i∑4

i=1 nix
2
i

∑4
i=1 nix

3
i P R∑4

i=1 nix
3
i

∑4
i=1 nix

4
i R Q


, (6.12)

where

P = X2
′H1X2 = A

4∑
i=1

nix
2
i + C

4∑
i=1

nix
3
i ,

Q = X3
′H1X3 = B

4∑
i=1

nix
3
i +D

4∑
i=1

nix
4
i ,
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R = X2
′H1X3 = A

4∑
i=1

nix
3
i + C

4∑
i=1

nix
4
i ,

and A,B,C, and D are defined right after (6.7). Therefore

X(t)′(I−H1)X(t) =

 0 0

0 X23
′(I−H1)X23

 ,

and

X23
′(I−H1)X23 =

 ∑4
i=1 nix

4
i − P

∑4
i=1 nix

5
i −R∑4

i=1 nix
5
i −R

∑4
i=1 nix

6
i −Q


=

1

Det1

 P ∗ R∗

R∗ Q∗

 = SJ (say). (6.13)

where P,Q, and R are defined right after (6.12) and

P ∗ =n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2

+n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2

+n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2

+n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2,

Q∗ = n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2(x1 + x2 + x3)
2

+ n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2(x1 + x2 + x4)
2

+ n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2(x1 + x3 + x4)
2

+ n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2(x2 + x3 + x4)
2,
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R∗ = n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2(x1 + x2 + x3)

+ n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2(x1 + x2 + x4)

+ n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2(x1 + x3 + x4)

+ n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2(x2 + x3 + x4),

and

Det1 =
∣∣X(1)′X(1)

∣∣ = n1n2(x1 − x2)2 + n1n3(x1 − x3)2 + n1n4(x1 − x4)2

+ n2n3(x2 − x3)2 + n2n4(x2 − x4)2 + n3n4(x3 − x4)2.

Using (6.11), (6.12), and (6.13) we get

J = γ(t)′

 0 0

0 SJ

γ(t)

=
1

Det1

[
P ∗γ22 +Q∗γ23 + 2γ2γ3R

∗] , (6.14)

We now consider the fitted value criterion J in (6.14) under the class of designs

D1 in (2.19). We note that under D1,

R∗ = 0,
P ∗

Det1
=

2 (b2 − a2)2 n1n2

(n1 + n2)
, and

Q∗

Det1
=

2a2b2 (b2 − a2)2 n1n2

(n1b2 + n2a2)
.

Thus under D1, J takes the form

J = γ22

[
2 (b2 − a2)2 n1n2

(n1 + n2)

]
+ γ23

[
2a2b2 (b2 − a2)2 n1n2

(n1b2 + n2a2)

]
. (6.15)
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The fitted value criterion involves two unknown model parameters γ2 and γ3. As

a consequence it is not possible to maximize it directly with respect to the design

parameters only. But we can maximize J using K criterion as discussed in the

next section.

6.3.1 An Interesting Observation

We define γ(∗) =

(
γ2 γ3

)′
and note that (Rao (1973))

V ar
(
γ̂(t)
)

= σ2
[
X(t)′X(t)

]−1
⇔

 V ar(γ̂(1)) Cov(γ̂(1), γ̂(∗))

Cov(γ̂(∗), γ̂(1)) V ar(γ̂(∗))

 = σ2

 X(1)′X(1) X(1)′X23

X′23X
(1) X′23X23


−1

⇒ V ar
(
γ̂(∗)

)
= σ2 [X23

′(I−H1)X23]
−1

⇔ V ar
(
γ̂(∗)

)
= σ2SJ

−1, (6.16)

where SJ is defined in (6.13). We also note that

|SJ| = |X23
′(I−H1)X23| =

∣∣X(t)′X(t)
∣∣

|X(1)′X(1)|

where∣∣X(t)′X(t)
∣∣ = n1n2n3n4[(x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4)]2.

It is to be noted that maximizing |SJ| implies minimizing the volume of the confi-

dence ellipsoid of the parameter estimates (γ̂(∗)).
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6.4 Expression of KJ Criterion

Under the class of designs D in (1.3) we have,

KJ = |SJ|

=
n1n2n3n4 [(x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4)]2[
n1n2(x1 − x2)2 + n1n3(x1 − x3)2 + n1n4(x1 − x4)2

.

+ n2n3(x2 − x3)2 + n2n4(x2 − x4)2 + n3n4(x3 − x4)2
]

(6.17)

Considering the subclass of designs D1 in (2.19) the criterion reduces to,

KJ =
8a2b2 (b2 − a2)4 n2

1n
2
2

n (n1b2 + n2a2)
since (n1 + n2) =

n

2

⇔ KJ

n2
=

8a2b2 (b2 − a2)4 p21p22
(p1b2 + p2a2)

since (p1 + p2) =
1

2
. (6.18)

We note that for a given value of b, KJ attains its maximum when p1 = 1
5

and

a = b√
6

(Appendix-B.1). We define the design below in D1,

d7 =

[
(x1, x2, x3, x4;n1, n2, n3, n4) : x1 = −b, x2 = − b√

6
, x3 =

b√
6
, x4 = b;

n1 = n4 =
n

5
, n2 = n3 =

3n

10
, Rank(X(t)) = 4

]
,

(6.19)

and get the following theorem.

Theorem 21. For a given value of b in the class of designs D1, the design d7 is

optimum with respect to the criterion KJ .
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Now from Appendix B.2 we note that criterion KJ attains its maximum possible

value when b = 1. So, we define the following design in D1

d8 =

[
(x1, x2, x3, x4;n1, n2, n3, n4) : x1 = −1, x2 = − 1√

6
, x3 =

1√
6
, x4 = 1;

n1 = n4 =
n

5
, n2 = n3 =

3n

10
, Rank(X(t)) = 4

]
,

(6.20)

and get the following theorem.

Theorem 22. For the class of designs D1, the design d8 is optimum with respect

to the criterion KJ .

6.5 Expression of I Criterion

Under the class of designs D in (1.3) we have

E(ŷ(1)(x)) =

(
1 x

)
E(γ̂(1))

=

(
1 x

) 1 0 A B

0 1 C D

γ(t) from (6.7)

= γ0 + γ1x+ γ2(A+ Cx) + γ3(B +Dx), (6.21)

and

E(ŷ(2)(x)) =

(
1 x x2 x3

)
γ(t) from (6.6)

= γ0 + γ1x+ γ2x
2 + γ3x

3, (6.22)
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where A,B,C, and D are defined right after (6.6). From (6.21) and (6.22) we get

E(ŷ(1)(x)− ŷ(2)(x)) = γ2
[
A+ Cx− x2

]
+ γ3

[
B +Dx− x3

]
(6.23)

Now, under the subclass of designs D1 in (2.19) we have

Det1 = 2n(b2n1 + a2n2), B = C = 0,

A =
2

n
(b2n1 + a2n2), D =

(b4n1 + a4n2)

(b2n1 + a2n2)
.

Thus from (6.23) we have,

[
E(ŷ(1)(x)− ŷ(2)(x))

]2
=
[
γ2
(
A− x2

)
+ γ3

(
Dx− x3

)]2
. (6.24)

Hence the predicted value criterion under D1 is given by

I =
1

2

∫ 1

−1

[
γ2
(
A− x2

)
+ γ3

(
Dx− x3

)]2
d x

= γ22

[
A2 − 2A

3
+

1

5

]
+ γ23

[
D2

3
− 2D

5
+

1

7

]
(6.25)

where 0 < A = (b2n1+a2n2)
(n1+n2)

< 1 and 0 < D = (b4n1+a4n2)
(b2n1+a2n2)

< 1. The expression

of criterion I is still dependent on two model parameters γ2 and γ3. We optimize

I using K criterion which is discussed in the next section.
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6.6 Expression of KI Criterion

From (6.25) we obtain the KI criterion for the predicted values as

KI = φ(A)φ(D), (6.26)

where φ(A) =
(
A2 − 2A

3
+ 1

5

)
, φ(D) =

(
D2

3
− 2D

5
+ 1

7

)
, 0 < A = (b2n1+a2n2)

(n1+n2)
< 1,

and 0 < D = (b4n1+a4n2)
(b2n1+a2n2)

< 1. Now, to maximize KI , we have to simultaneously

maximize φ(A) and φ(D). From Fig-6.1) we note that φ(A) is maximum when
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Figure 6.1: Plots of φ(A) against A and φ(D) against D

A → 1 and φ(D) is maximum when D → 0. Therefore when A → 1 and D → 0

we should have the maximum value of KI . The other possibilities of finding a

maximum value of KI is given in Table-6.1. But some choices are not realized here

because A and D change in the same direction: if A increases so does D and if A

decreases so does D. Therefore the maximum possible value of KI is attained when
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Table 6.1: Finding Maximum of Criterion KI

Value of A,D KI Realizable

A→ 1, D → 1 0.04063492 Yes

A→ 0, D → 0 0.02857143 Yes

A→ 1, D → 0 0.07619048 No

A→ 0, D → 1 0.01523810 No

A→ 1 and D → 1. We assume b = 1 and obtain some numerical choices for a and

p1 to maximize A and D to optimize KI . Some optimal designs in D1 with respect

to KI criterion are proposed in Table-6.2. We note that designs those perform well

with respect to KI do not perform well with respect to KJ and vice versa. We

consider the design d8 of (6.20) here and we note that it performs the best in the lot

with respect to KJ but not well with respect to KI . We also consider the design

with points x1 = −1, x2 = −1
2
, x3 = 1

2
, and x4 = 1 with equal allocation and note

that it performs better with respect to KJ than KI .
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Table 6.2: Some KI-Optimal Designs in D1

b a p1 p2 A D KJ KI

1 0.20 0.48 0.02 0.961600 0.9984027 0.000052 0.03664073

1 0.24 0.48 0.02 0.962304 0.9977437 0.000070 0.03662306

1 0.26 0.48 0.02 0.962704 0.9973811 0.000078 0.03661450

1 0.30 0.48 0.02 0.963600 0.9966002 0.000094 0.03659924

1 0.80 0.47 0.03 0.978400 0.9858708 0.000035 0.03660706

1 0.70 0.48 0.02 0.979600 0.9897958 0.000050 0.03723345

1 0.72 0.48 0.02 0.980736 0.9898174 0.000042 0.03734432

1 0.74 0.48 0.02 0.981904 0.9899080 0.000034 0.03746759

1 0.75 0.48 0.02 0.982500 0.9899809 0.000031 0.03753414

1 0.76 0.47 0.03 0.974656 0.9849807 0.000060 0.03614353

1 0.78 0.47 0.03 0.976504 0.9853611 0.000047 0.03636415

1 0.80 0.48 0.02 0.985600 0.9906494 0.000016 0.03792034

1 1√
6

1
5

3
10

0.500000 0.8333333 0.009259 0.00478395

1 1
2

1
4

1
4

0.625000 0.8500000 0.007910 0.00760032
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Chapter 7

Quadratic vs. Special Cubic when

the True Model Is Full Cubic

7.1 Introduction

Here we consider that the response variable Y is dependent on the explanatory vari-

able X with two possible dependence as described by two models MI, a quadratic

linear regression model and MII, a cubic regression model without the quadratic

coefficient. We assume the full cubic regression model MT to be the true model.

So, our goal is to discriminate between these two models MI and MII at the design

stage assuming MT to be the unknown true model.

7.2 Models and Associated Designs

We consider the general class of designs D in (1.3). We also consider the full cubic

model from (1.1) as the true model and denote it by MT. Our aim is to discriminate

between the two models MI and MII assuming MT to be the unknown true model.
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The three models considered here are given by

MT: E(yj(xi)) = γ0 + γ1xi + γ2x
2
i + γ3x

3
i ,

V ar((yj(xi))) = σ2, Cov((yj(xi)), (yj′ (xi′ ))) = 0, (7.1)

MI: E(yj(xi)) = γ0 + γ1xi + γ2x
2
i ,

V ar((yj(xi))) = σ2, Cov((yj(xi)), (yj′ (xi′ ))) = 0, (7.2)

MII: E(yj(xi)) = γ0 + γ1xi + γ3x
3
i ,

V ar((yj(xi))) = σ2, Cov((yj(xi)), (yj′ (xi′ ))) = 0, (7.3)

where i, i
′

= 1, 2, 3, 4; j = 1, 2, . . . , ni, j
′

= 1, 2, . . . , ni′ , (i, j) 6= (i
′
, j

′
). The matrix

representations of MT, MI, and MII are given by

E(y) = X(t)γ(t), V ar(y) = σ2I, (7.4)

E(y) = X(1)γ(1), V ar(y) = σ2I, (7.5)

E(y) = X(2)γ(2), V ar(y) = σ2I, (7.6)

where

X(1) =


1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

x1 . . . x1 x2 . . . x2 x3 . . . x3 x4 . . . x4

x21 . . . x21 x22 . . . x22 x23 . . . x23 x24 . . . x24


′

,γ(1) =


γ0

γ1

γ2

 ,
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X(2) =


1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

x1 . . . x1 x2 . . . x2 x3 . . . x3 x4 . . . x4

x31 . . . x31 x32 . . . x32 x33 . . . x33 x34 . . . x34


′

,γ(2) =


γ0

γ1

γ3

 ,

X(t) =



1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

x1 . . . x1 x2 . . . x2 x3 . . . x3 x4 . . . x4

x21 . . . x21 x22 . . . x22 x23 . . . x23 x24 . . . x24

x31 . . . x31 x32 . . . x32 x33 . . . x33 x34 . . . x34



′

,γ(t) =



γ0

γ1

γ2

γ3


.

We define

X2 =

(
x21 . . . x21 x22 . . . x22 x23 . . . x23 x24 . . . x24

)′
,

X3 =

(
x31 . . . x31 x32 . . . x32 x33 . . . x33 x34 . . . x34

)′
.

7.3 Expression of J Criterion

We first consider the fitted value criterion J (ref. Chapter-1) and obtain the efficient

design within the class of designs D in (1.3) for model selection and discrimination

purposes. Let ŷ(1) and ŷ(2) be the fitted values of the two models MI and MII. First

we find the expression of E(ŷ(1) − ŷ(2)).

The least square estimate of γ(1) for MI is given by (Rao (1973))

γ̂(1) =


γ̂
(1)
0

γ̂
(1)
1

γ̂
(1)
2

 = (X(1)′X(1))−1X(1)′y, (7.7)
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and the least square estimate of γ(2) for MII is given by

γ̂(2) =


γ̂
(2)
0

γ̂
(2)
1

γ̂
(2)
3

 = (X(2)′X(2))−1X(2)′y. (7.8)

It can be checked that

E(γ̂(1)) = (X(1)′X(1))−1X(1)′E(y)

= (X(1)′X(1))−1X(1)′X(t)γ(t)

=


1 0 0 A

0 1 0 B

0 0 1 C

γ(t), (7.9)

and

E(γ̂(2)) = (X(2)′X(2))−1X(2)′E(y)

= (X(2)′X(2))−1X(2)′X(t)γ(t)

=


1 0 E 0

0 1 F 0

0 0 G 1

γ(t), (7.10)
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where

A =
1

Det1

[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2x1x2x3

+n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2x1x2x4

+n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2x1x3x4

+n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2x2x3x4
]
,

B =
−1

Det1

[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2(x1x2 + x1x3 + x2x3)

+n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2(x1x2 + x1x4 + x2x4)

+n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2(x1x3 + x1x4 + x3x4)

+n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2(x2x3 + x2x4 + x3x4)
]
,

C =
1

Det1

[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2(x1 + x2 + x3)

+n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2(x1 + x2 + x4)

+n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2(x1 + x3 + x4)

+n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2(x2 + x3 + x4)
]
,

Det1 =
∣∣X(1)′X(1)

∣∣ =[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2 + n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2

+n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2 + n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2
]
,
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E =
−1

Det2

[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2(x1 + x2 + x3)x1x2x3

+n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2(x1 + x2 + x4)x1x2x4

+n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2(x1 + x3 + x4)x1x3x4

+n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2(x2 + x3 + x4)x2x3x4

]
,

F =

1

Det2

[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2(x1 + x2 + x3)(x1x2 + x1x3 + x2x3)

+n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2(x1 + x2 + x4)(x1x2 + x1x4 + x2x4)

+n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2(x1 + x3 + x4)(x1x3 + x1x4 + x3x4)

+n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2(x2 + x3 + x4)(x2x3 + x2x4 + x3x4)
]
,

G =
1

Det2

[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2(x1 + x2 + x3)

+n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2(x1 + x2 + x4)

+n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2(x1 + x3 + x4)

+n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2(x2 + x3 + x4)
]
,

Det2 =
∣∣X(2)′X(2)

∣∣ =
[
n1n2n3(x1 − x2)2(x1 − x3)2(x2 − x3)2(x1 + x2 + x3)

2

+ n1n2n4(x1 − x2)2(x1 − x4)2(x2 − x4)2(x1 + x2 + x4)
2

+ n1n3n4(x1 − x3)2(x1 − x4)2(x3 − x4)2(x1 + x3 + x4)
2

+ n2n3n4(x2 − x3)2(x2 − x4)2(x3 − x4)2(x2 + x3 + x4)
2
]
.
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The expected fitted values from the two models are given by

E(ŷ(1)) = X(1)E(γ̂(1))

= X(1)(X(1)′X(1))−1X(1)′X(t)γ(t)

= H1X
(t)γ(t), (7.11)

E(ŷ(2)) = X(2)E(γ̂(2))

= X(2)(X(2)′X(2))−1X(2)′X(t)γ(t)

= H2X
(t)γ(t), (7.12)

⇒ E(ŷ(1) − ŷ(2)) = (H1 −H2)X(t)γ(t), (7.13)

where H1 = X(1)(X(1)′X(1))−1X(1)′ and H2 = X(2)(X(2)′X(2))−1X(2)′. We note that

H1 and H2 are symmetric and idempotent (Rao (1973)) i.e. H1
′
= H1, H2

1 = H1,

H2
′

= H2 and H2
2 = H2. It is to be noted that here H2H1 6= H1. Clearly using

(7.13) we get

J = E(ŷ(1) − ŷ(2))
′
E(ŷ(1) − ŷ(2))

= γ(t)′X(t)′(H1 −H2)2X(t)γ(t)

= γ(t)′X(t)′(H2 + H1 −H1H2 −H2H1)X(t)γ(t). (7.14)

Now we consider the subclass of designs D1 in (2.19) which is a subclass of D
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in (1.3). We note that under D1 we have

Det1 = 8n1n2(b
2 − a2)2(b2n1 + a2n2), B =

(b4n1 + a4n2)

(b2n1 + a2n2)
A =0, C =0

Det2 = 4nn1n2a
2b2(b2 − a2)2, E =

2

n
(b2n1 + a2n2), F =0, G =0,

and the fitted value criterion is given by

J = γ(t)′



0 0 0 0

0 0 0 0

0 0 2n1n2(b2−a2)2
(n1+n2)

0

0 0 0 2n1n2a2b2(b2−a2)2
(b2n1+a2n2)


γ(t)

= γ22

[
2n1n2(b

2 − a2)2

(n1 + n2)

]
+ γ23

[
2n1n2a

2b2(b2 − a2)2

(b2n1 + a2n2)

]
. (7.15)

It is interesting to observe that under the class of designs D1, the expressions of

J in (6.15) of Chapter-6 and in (7.15) of Chapter-7 are identical. The fitted value

criterion J involves two unknown model parameters γ2 and γ3 and as a consequence

it is not possible to maximize it directly with respect to the design parameters only.

We define

SJ =

 2n1n2(b2−a2)2
(n1+n2)

0

0 2n1n2a2b2(b2−a2)2
(b2n1+a2n2)

 ,

and obtain the KJ criterion as |SJ| in the next section.
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7.4 Expression of KJ Criterion

The criterion KJ is obtained under the class of designs D1 in (2.19) as

KJ = |SJ|

=
8a2b2 (b2 − a2)4 n2

1n
2
2

n (n1b2 + n2a2)
since (n1 + n2) =

n

2

⇔ KJ

n2
=

8a2b2 (b2 − a2)4 p21p22
(p1b2 + p2a2)

since (p1 + p2) =
1

2
. (7.16)

Clearly, the criterionKJ observed in (7.16) is identical to the criterionKJ in (6.18)

of Chapter-6. Hence from Chapter-6 the theorems follow.

Theorem 23. For a given value of b in the class of designs D1, the design d5 in

(6.19) is optimum with respect to the criterion KJ .

Theorem 24. For the class of designs D1, the design d6 in (6.20) is optimum with

respect to the criterion KJ .

7.5 Expression of I Criterion

Here we consider the predicted value criterion under the class of designs D in (1.3).

Let ŷ(1)(x) and ŷ(2)(x) be the predicted values of the two models MI and MII at

X = x. We first find the expression for E(ŷ(1)(x)− ŷ(2)(x)) assuming MT to be the

true model.
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We know that

E(ŷ(1)(x)) =

(
1 x x2

)
E(γ̂(1))

=

(
1 x x2

)
1 0 0 A

0 1 0 B

0 0 1 C

γ(t) from (7.9)

= γ0 + γ1x+ γ2x
2 + γ3(A+Bx+ Cx2), (7.17)

and

E(ŷ(2)(x)) =

(
1 x x3

)
E(γ̂(2))

=

(
1 x x3

)
1 0 E 0

0 1 F 0

0 0 G 1

γ(t) from (7.10)

= γ0 + γ1x+ γ2(E + Fx+Gx3) + γ3x
3, (7.18)

where A,B,C,D,E, F, and G are defined right after (7.10).

Thus from (7.17) and (7.18) we get

E(ŷ(1)(x)− ŷ(2)(x)) = γ2
[
x2 − E − Fx−Gx3

]
+ γ3

[
A+Bx+ Cx2 − x3

]
(7.19)

Now considering the class of designs D1 in (2.19), we have A = C = F = G = 0,

B = (b4n1+a4n2)
(b2n1+a2n2)

, and E = 2
n
(b2n1 + a2n2). Therefore under this class of designs we
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get from (7.19),

[
E(ŷ(1)(x)− ŷ(2)(x))

]2
=
[
γ2
(
x2 − E

)
+ γ3

(
Bx− x3

)]2
. (7.20)

Hence the predicted value criterion under D1 is given by

I =
1

2

∫ 1

−1

[
γ2
(
x2 − E

)
+ γ3

(
Bx− x3

)]2
d x

= γ22

[
E2 − 2E

3
+

1

5

]
+ γ23

[
B2

3
− 2B

5
+

1

7

]
(7.21)

where 0 < E = (b2n1+a2n2)
(n1+n2)

< 1 and 0 < B = (b4n1+a4n2)
(b2n1+a2n2)

< 1. The expression

of criterion I depends on two unknown model parameters γ2 and γ3. Hence it is

not possible to directly optimize I with respect to design parameters only. We

use criterion K to optimize I in this case. But it is interesting to note that the

expression of I is identical to the expression of I in (6.25) of Chapter-6. So all the

KI optimal designs obtained in Chapter-6 apply here.
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Chapter 8

Conclusion

In this dissertation we consider the problem of model identification and discrimina-

tion for the class of models describing the dependence of the response variable Y on

an explanatory variable X by at most a third order polynomial regression model.

Hence the class consists of models up to a maximum of third order with linear,

quadratic, and cubic terms present. We include an intercept parameter for all the

models. A general class of designs with replicated four distinct points is considered.

While discriminating between the two models within the class, the unknown true

model may or may not be one of them. Ghosh and Pal (2008) proposed two opti-

mality criterion functions J and I for the model identification and discrimination.

The fitted value criterion J and a modified predicted value criterion I by replacing

the absolute difference with the squared difference, are chosen as the optimality

criterion functions. When the criterion functions J and I are dependent on more

than one model parameter, we define a new criterion K to optimize J and I and

denote them by KJ and KI .

We observe that the T -optimality criterion (Atkinson and Fedorov (1975a))
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is not meaningful when the unknown true model is not one of the two models

that we consider for model identification and discrimination (Chapter-2, 5, and 7).

When one of the two models considered for identification and discrimination is the

unknown true model, the J -optimality criterion is identical to the T -optimality

criterion as shown in Chapter-3.

For discrimination between a linear and a special cubic regression models with

the latter being the unknown true model (Chapter-3), we obtain a class of designs

that are better than the Dette-Titoff T -optimal designs (Dette and Titoff (2009))

under the criterion I. However the Dette-Titoff design is naturally better than our

class of designs under the criterion T (or equivalently J). We also obtain a class

of J -optimal designs indicating the non-uniqueness of the J -optimal design.

For discrimination between a quadratic and a full cubic regression models with

the latter being the unknown true model, we obtain a class of designs that are better

than the Kiefer-Wolfowitz optimum design (Kiefer and Wolfowitz (1959)) under the

criterion I. However the Kiefer-Wolfowitz optimum design performs better than

our class under the criterion J .

For discrimination between a quadratic and a cubic regression models with no

quadratic term (γ2 = 0) with the unknown true model being the full cubic model,

we introduce the KJ and KI criterion functions to obtain optimal designs for the

model identification and discrimination (Chapter-7). For discrimination between

a linear and a full cubic regression models with the latter being the unknown

true model, the optimal designs are also obtained with the proposed KJ and KI

criterion functions (Chapter-6).
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Appendix A

A.1 Maximization of J for a given b

Jb

nγ23
=

2p1p2a
2b2(b2 − a2)2

(b2p1 + a2p2)
where (p1 + p2) =

1

2
. (A.1)

Taking the common logarithm of both sides and assuming F = log
(

Jb

nγ23

)
we get

F = log 2 + log p1 + log

(
1

2
− p1

)
+2 log a+ 2 log b+ 2 log(b2 − a2)

− log

[
(b2 − a2)p1 +

a2

2

]
. (A.2)

Now, differentiating (A.2) with respect to a and p1 we get Fa and Fp1 respectively

where

Fa =
2

a
− 4a

(b2 − a2)
− 2a(1− 2p1)

[2(b2 − a2)p1 + a2]
, (A.3)

Fp1 =
1

p1
− 2

1− 2p1
− 2(b2 − a2)

[2(b2 − a2)p1 + a2]
. (A.4)
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Equating each of (A.3) and (A.4) to zero, we get

Fa = 0⇒ 2(b2 − 3a2)

a2
=

2(b2 − a2)(1− 2p1)

[2(b2 − a2)p1 + a2]
(A.5)

Fp1 = 0⇒ (1− 4p1)

p1
=

2(b2 − a2)(1− 2p1)

[2(b2 − a2)p1 + a2]
(A.6)

⇒ 2(b2 − 3a2)

a2
=

(1− 4p1)

p1

⇒ p1 =
a2

2(b2 − a2)
.

Hence from (A.5) we get

2(b2 − 3a2)

a2
=

2(b2 − a2)(b2 − 2a2)

2a2(b2 − a2)
⇒ a =

b

2
and hence p1 =

1

6
. (A.7)

Therefore the function F has an optimum at p1 = 1
6

and a = b
2
. We have to check

if this is a maximum or a minimum. We first differentiate (A.3) with respect to a

and p1 and obtain Faa and Fap1 respectively, where

Faa = − 2

a2
− 4(b2 + a2)

(b2 − a2)2
− 2(1− 2p1) [2(b2 + a2)p1 − a2]

[2(b2 − a2)p1 + a2]2
, (A.8)

Fap1 =
4ab2

[2(b2 − a2)p1 + a2]2
. (A.9)

Then differentiating (A.4) with respect to a and p1 we obtain Fp1a and Fp1p1 re-

spectively, where

Fp1a =
4ab2

[2(b2 − a2)p1 + a2]2
, (A.10)

Fp1p1 = − 1

p12
− 4

(1− 2p1)2
+

4(b2 − a2)2

[2(b2 − a2)p1 + a2]2
. (A.11)
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The Hessian matrix H(F ) obtained in this case is given by

H(F ) =

 Faa Fap1

Fp1a Fp1p1

 . (A.12)

At p1 = 1
6

and a = b
2
, H(F ) takes the value:

H(F ) =

 −160
9b2

8
b

8
b

−36

 ,
which is a negative definite matrix. Hence, F is maximum at p1 = 1

6
and a = b

2
.

A.2 Maximization of J for any b

The fitted value criterion Jb in (A.1) is maximum when p2 = 2p1 = 1
3

and a = b
2

and

the maximum value is Jb[max] = nb6

16
. Clearly Jb[max] is monotonically increasing

in b where 0 < b ≤ 1. Hence the maximum value of Jb i.e. Jb[max] attains its

maximum when b = 1.
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Appendix B

B.1 Maximization of KJ for a given b

The criterion KJ in Chapter-6 is given by

KJ

n2
=

8a2b2 (b2 − a2)4 p21p22
(p1b2 + p2a2)

where (p1 + p2) =
1

2
. (B.1)

Taking the common logarithm of both sides and assuming F = log
(
KJ

n2

)
we get

F = log 8 + 2 log a+ 2 log b+ 4 log(b2 − a2)+2 log p1 + 2 log

(
1

2
− p1

)
− log

[
(b2 − a2)p1 +

a2

2

]
. (B.2)

Now, differentiating (B.2) with respect to a and p1 we get Fa and Fp1 respectively

where

Fa =
2

a
− 8a

(b2 − a2)
− 2a(1− 2p1)

[2(b2 − a2)p1 + a2]
, (B.3)

Fp1 =
2

p1
− 4

1− 2p1
− 2(b2 − a2)

[2(b2 − a2)p1 + a2]
. (B.4)
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Equating each of (B.3) and (B.4) to zero, we get

Fa = 0⇒ (b2 − 5a2)

a2
=

(b2 − a2)(1− 2p1)

[2(b2 − a2)p1 + a2]
(B.5)

Fp1 = 0⇒ (1− 4p1)

p1
=

(b2 − a2)(1− 2p1)

[2(b2 − a2)p1 + a2]
(B.6)

⇒ (b2 − 5a2)

a2
=

(1− 4p1)

p1

⇒ p1 =
a2

(b2 − a2)
.

Now, from (B.5) we get

(b2 − 5a2)

a2
=

(b2 − 3a2)

3a2

⇒ a =
b√
6

and hence p1 =
1

5
. (B.7)

Therefore for a given b, F is optimum when a = b√
6

and p1 = 1
5
. Therefore the

function F has an optimum at p1 = 1
5

and a = b√
6
. We have to check if this is a

maximum or a minimum. We first differentiate (B.3) with respect to a and p1 and

obtain Faa and Fap1 respectively, where

Faa = − 2

a2
− 8(b2 + a2)

(b2 − a2)2
− 2(1− 2p1) [2(b2 + a2)p1 − a2]

[2(b2 − a2)p1 + a2]2
, (B.8)

Fap1 =
4ab2

[2(b2 − a2)p1 + a2]2
. (B.9)
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Then differentiating (B.4) with respect to a and p1 we obtain Fp1a and Fp1p1 re-

spectively, where

Fp1a =
4ab2

[2(b2 − a2)p1 + a2]2
, (B.10)

Fp1p1 = − 2

p12
− 8

(1− 2p1)2
+

4(b2 − a2)2

[2(b2 − a2)p1 + a2]2
. (B.11)

The Hessian matrix H(F ) obtained in this case is given by

H(F ) =

 Faa Fap1

Fp1a Fp1p1

 . (B.12)

At p1 = 1
5

and a = b√
6
, H(F ) takes the value:

H(F ) =

 − 672
25b2

16
b
√
6

16
b
√
6
−550

9

 ,
which is a negative definite matrix. Hence, F is maximum at p1 = 1

5
and a = b√

6
.

B.2 Maximization of KJ for any b

The criterion KJ in (B.1) is maximum when p1 = 1
5
, p2 = 3

10
and a = b√

6
and

the maximum value is KJ [max] = b8

108
. Clearly KJ [max] is monotonically increasing

in b where 0 < b ≤ 1. Hence the maximum value of KJ i.e. KJ [max] attains its

maximum when b = 1.
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