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Original Article

Predicting antibiotic resistance in Enterobacterales to support
optimal empiric treatment of urinary tract infections in
outpatient veterans

Ben J. Brintz PhD1,2 , Karl Madaras-Kelly MD3,4 , McKenna Nevers MS1,2, Kelly L. Echevarria PharmD5,

Matthew B. Goetz MD6,7 and Matthew H. Samore MD1,2

1Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA, 2IDEAS Center, VA Salt Lake City Healthcare System,
Salt Lake City, UT, USA, 3College of Pharmacy, Idaho State University, Meridian, ID, USA, 4Pharmacy Service, Boise VA Medical Center, Boise, ID, USA, 5Pharmacy
Benefits Management Program, U.S. Department of Veterans Affairs, Hines, IL, USA, 6David Geffen School of Medicine at UCLA, Los Angeles, CA, USA and 7VA
Greater Los Angeles Healthcare System, Los Angeles, California, USA

Abstract

Objective: Bacterial resistance is known to diminish the effectiveness of antibiotics for treatment of urinary tract infections. Review of recent
healthcare and antibiotic exposures, as well as prior culture results is recommended to aid in selection of empirical treatment. However, the
optimal approach for assessing these data is unclear. We utilized data from the Veterans Health Administration to evaluate relationships
between culture and treatment history and the subsequent probability of antibiotic-resistant bacteria identified in urine cultures to further
guide clinicians in understanding these risk factors.

Methods: Using the XGBoost algorithm, a retrospective cohort of outpatients with urine culture results and antibiotic prescriptions from 2017
to 2022 was used to develop models for predicting antibiotic resistance for three classes of antibiotics: cephalosporins, fluoroquinolones, and
trimethoprim/sulfamethoxazole (TMP/SMX) obtained from urine cultures. Model performance was assessed using Area Under the Receiver
Operating Characteristic curve (AUC) and Precision-Recall AUC (PRAUC)

Results: There were 392,647 prior urine cultures identified in 214,656 patients. A history of bacterial resistance to the specific treatment was the
most important predictor of subsequent resistance for positive cultures, followed by a history of specific antibiotic exposure. The models
performed better than previously established risk factors alone, especially for fluoroquinolone resistance, with an AUC of .84 and PRAUC of
.70. Notably, the models’ performance improved markedly (AUC = .90, PRAUC = .87) when applied to cultures from patients with a known
history of resistance to any of the antibiotic classes.

Conclusion: These predictive models demonstrate potential in guiding antibiotic prescription and improving infection management.

(Received 28 March 2024; accepted 22 May 2024)

Introduction

The efficacy of antibiotic treatment for urinary tract infection
(UTI) is in part dependent on the susceptibility of the infecting
pathogen; however, prescribing decisions are often made empiri-
cally before culture results become available. There is a need for
tools that can support a clinician’s ability to select effective
empirical therapy. As UTIs usually result from colonization with
exogenous or endogenous Gram-negative flora; prior hospitali-
zation, antibiotic exposure, and previous culture of antibiotic-
resistant organisms are known risk factors for subsequent culture
of multi-drugresistant organisms (MDRO).1–8 In contrast, clonal

spread of resistance determinants may result in pathogens that are
resistant to antibiotics that the patient has not previously
received.9,10 Several tertiary references recommend that prior
hospitalization, antibiotic exposure, or prior antibiotic resistance
to commonly utilized UTI treatments within the past three
months is an indication for initial therapy with a carbapenem or
aminoglycoside.6–8 The optimal approach to utilizing these risk
factor data is unclear. The Veterans Health Administration (VHA)
is the largest integrated healthcare system in the United States with
over 9 million Veterans, for which antibacterial prescription
and susceptibility data are captured electronically.11 Therefore,
VHA data offers unique insight into the study of the temporal
relationship between antibiotic exposure and bacterial resistance.

To provide further insight into the relationships between these
risk factors and subsequent antibiotic resistance we evaluated
susceptibility profiles of Enterobacterales from urine cultures
collected from veterans in the outpatient setting. These data were
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used to 1) examine the relationship between past antibiotic class
exposures, prior antibiotic resistance identified through culture,
and subsequent urine culture susceptibility profiles to enhance
understanding of antibiotic selective pressure, and 2) develop
predictive models to support choice of empiric antibiotics pending
results of susceptibility testing. In particular, we sought to predict the
probability that a pathogen recovered from urine culture was
susceptible (or resistant) to any of three commonly utilized classes of
antibiotics utilized to treat UTIs: fluoroquinolones (FQ), trimetho-
prim/sulfamethoxazole (TMP/SMX), or cephalosporins (cephs).

Methods

A retrospective cohort of veterans with urine culture results
obtained between January 2015 and October 2022 with outpatient
antibiotic prescription data of interest available was developed.
For each culture, we identified organisms of interest including
Escherichia coli (E. coli), Citrobacter spp., Enterobacter spp.,
Klebsiella spp., Proteus spp., and Serratia spp., and established
whether they were susceptible (S), intermediate (I), or resistant(R)
to ceph (any reported generation), FQ, and TMP/SMX. To predict
resistance on subsequent culture in the outpatient setting, we
evaluated cultures for all patients (inpatient and outpatient
settings) with susceptibility results available for the three antibiotic
classes of interest. For each qualifying culture, we identified a
collection date. If two positive cultures were collected from a
patient on the same day they were combined and counted as
resistant if at least one of the cultures was resistant (Figure 1). For
each antibiotic, values of susceptible or intermediate were classified
as susceptible to create a binary variable.

The following data elements were extracted from the VHA
Corporate Data Warehouse: patient demographics (age, sex, and
Charlson comorbidity index), culture collection date, organism
identification and semi-quantitative sensitivity results, outpatient
antibiotic prescription history, dates and types of healthcare
exposures including acute care admissions and nursing home
stays.11,12 We connected each subsequent (i.e., index) culture to
patient demographics, treatment history, and patient-specific
positive and negative urine culture history.

Treatment history was defined as the number of prescriptions
the patient received for each antibiotic class within weekly intervals
prior to the positive index urine culture. Similarly, a negative
culture history variable was based on the number of negative
cultures, i.e., cultures that came back with no organisms identified
collected in identical time intervals. Finally, the positive culture
history variable included a count of resistant positive cultures in
one feature and count of susceptible positive cultures in another
feature for ceph, FQ, and TMP/SMX prior to the index positive
urine culture. The weekly intervals used to classify variables have
been shown to capture the effect of patients’ history on the
subsequent development of resistance.13

The following covariates were considered to develop each
model: prior inpatient stay within the last 90 or 365 days, prior
nursing home stay within the last 90 or 365 days; age, sex, Charlson
Comorbidity Index, date by quarter for trend, quarter alone for
seasonality, history of antibiotic prescription (set A), history of
negative cultures (set A), and positive culture history (set B)
(Table 1).

We used the XGBoost algorithm, an ensemble approach that
uses gradient boosted decision-trees to derive predictivemodels for
estimating the probability that a pathogen recovered from culture
was resistant to each ceph, FQ, and TMP/SMX antibiotic class.14

The importance of each predictor using built-in XGBoost output
which calculates the fractional contribution of each predictor to the
model based on the total gain in performance of the predictors’
decision tree splits was utilized. A higher percentage indicates a
more important predictor. Finally, Shapley Additive Explanations
(SHAP), a value that expresses the additive contribution of each
feature to the predicted value, was used to evaluate the direction
and magnitude of main effects and to assess the interactions
between having a history of resistant or susceptible urine culture
and having had an antibiotic treatment.15 Interactions were
assessed by calculating the average change in the SHAP values
based on the presence of treatment in each interval dependent on
the presence or absence of a resistant or susceptible culture in each
interval (Table S1).

The generalizable performance of each model was estimated by
training on a random 80% of data and tested on the remaining
20%. Before fitting a model on full training data, five-fold cross-
validation within the training set to tune hyperparameters: max
depth, η (learning rate), and number of rounds (trees). Area under
the receiver operating characteristic curve (AUROC or AUC) was
used to assess performance for both cross-validation, model fitting,
and importance metrics. To assess performance on the test set,
precision-recall (PR) curves, representing the trade-off between
sensitivity and positive predictive value (PPV), and the area under
the PR curves were calculated. Using precision, or PPV instead of

Figure 1. Consort diagram showing number of urine cultures and number of unique
patients with urine cultures at each step of data cleaning. CDW, Corporate Data
Warehouse; NH, Nursing Home.

Table 1. Week intervals used for summarizing antibiotic prescription and
culture collection history

Set A: Antibiotic prescription and
negative culture history (Weeks)

0–1, 2–4, 4–8, 8–16, 16–32,
32–64, 64–128

Set B: Positive culture history (Weeks) 1–2, 2–4, 4–8, 8–16, 16–24,
24–32, 32–40, : : : 112
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specificity is particularly useful in the presence of an imbalanced
outcome when a strong specificity is more easily achievable due to
the smaller rate of positive outcomes. ROC curves and PR curves
were compared to the sensitivity and specificity as well as
sensitivity and PPV which could be achieved on test set patients
based on previously published MDRO risk factors6–8 for selection
of empirical antibiotic treatment for UTI including:

1. Antibiotic-resistant Gram-negative urinary isolate cultured in
the prior 3 months

2. Recent (3 months) specific antibiotic exposures (i.e., FQ, TMP/
SMX, ceph)

3. Recent (3 months) inpatient stay (i.e., hospital, nursing home,
and long-term acute care facility)

Each model was assessed for calibration, first by estimating the
calibration intercept and slope as well as by fitting smoothed curves
to show the relationship between estimated risk and observed
proportion of events.16 All analyses were conducted using
R version 4.1.017 using the XGBoost package.18 This research
complies with all federal guidelines and Department of Veterans
Affairs policies relative to human subject research.

Results

The cohort included 392,647 positive urine cultures obtained from
214,656 unique patients with a complete treatment history
obtained between 2017 and 2022. Patients were elderly, predomi-
nantly male, and had moderate co-morbidity (Table 2). The
majority (54%) of positive urine cultures grew Escherichia coli
(Table S2). Of those cultures, 14.9, 27.4, and 24.5 percent were
resistant to ceph, FQ, and TMP/SMX, respectively.

Based on tuning from cross-validation on the training set, an
XGboost model with 30 trees, a max depth of 7, and a learning rate
(η) of .3 was fit for predicting the probability that an index culture
was resistant for each of the antibiotic classes of interest. When
applied to test data, model AUCs were .76, .84, and .79 and
PRAUCs were .52, .70, and .60 for ceph, FQ, and TMP/SMX,
respectively (Figure 2). At a negative predictive value of .90, the
ceph model achieved a PPV of .35, a specificity of .75, and
sensitivity of .63, the FQ model achieved a PPV of .72, a specificity
of .94, and a sensitivity of .60, and the TMP/SMXmodel achieved a
PPV of .41, a specificity of .76, and a sensitivity of .67. At a lower
negative predictive value of .82, the PPV for all three antibiotics
improved (ceph .93, FQ .93, TMP/SMX .88), the specificity is 1.00,
but the sensitivity drops (ceph .01, FQ .15, TMP/SMX .13). The
distribution of predictions on the test set for each model was right-
skewed and uni-modal for antibiotic susceptible cultures but was
bimodal for resistant cultures indicating strong specificity but not
necessarily strong sensitivity or negative predictive values (Figure
S1). The ROC and PR curves demonstrate that the XGBoost-
derived models outperformed MDRO risk factor criteria in terms
of sensitivity, specificity, and PPV (Figure 2). The same is true
when the MDRO risk factor criteria were compared for any or all
ceph, FQ, or TMP/SMX previous resistant isolates or antibiotic
exposures for each resistance outcome (Figure S2).

All three models achieved weak (i.e. not over- or under-
estimating risk) calibration with calibration intercepts close to 0
and calibration slopes close to 1 (Figure S3).

A history of antibiotic resistance to the specific treatment
was the most important predictor of subsequent resistance for
positive index cultures, followed by a history of specific antibiotic

exposures. The next most influential variable for FQ and TMP/
SMX models was patient age with a 96% relative decrease in
importance from the most important variable. The next most
influential variable in the ceph model was the Charlson
Comorbidity Index with a 90% relative decrease in importance.

A history of antibiotic resistance between 8 and 16 weeks
prior to index culture was the most important predictor of
resistance for all three models (Figure 3). The interval of 1 to 8
weeks prior contained the most important predictors related to
treatment history with the specific antibiotic class on index
culture susceptibility (Figure 4). Neither Figure 3 nor Figure 4
suggest evidence of prior resistance or antibiotic prescription
influencing subsequent antibiotic resistance to a different class on
index culture.

The SHAP value represents the contribution of prior antibiotic
exposure and resistance history to the predicted value for the full
model (Figure S4). All plots indicate the variables have a positive
effect on the prediction of subsequent resistance. The smallest
contribution occurred with prior ceph exposure or ceph resistance,
and the largest contribution occurred with prior FQ exposure or
resistance which is consistent with Figures 4 & 5. Finally, there is
evidence of an interaction between each prior treatment and
history of a resistant or susceptible culture to the prescribed
treatment (Figure S5). The contribution of treatment to the
prediction is lessened when there is a history of a resistant culture

Table 2. Summary of unique patients and prior exposures

Characteristic N = 214,656

Age(years), Mean (S.D.) 68.9 (14.8)

Male sex [N, (%)] 167,439 (78.0)

Charlson Comorbidity Index, Median (IQR) 2.00 (0, 4)

Positive Urine Cultures Per Patient

Mean (S.D.) 1.83 (1.70)

Median (IQR) 1.00 (2.00, 4.00)

Prior Antibiotic Resistance [N, (%)]

None 243,053 (61.9)

Cephalosporin 32, 981 (8.4)

Fluoroquinolone 26,879 (6.8)

TMP/SMX 28655 (7.3%)

Cephalosporin & Fluoroquinolone 10,808 (2.8)

Cephalosporin & TMP/SMX 7,592 (1.9)

Fluoroquinolone & TMP/SMX 22,951 (5.8)

Cephalosporin, Fluoroquinolone, TMP/SMX 19,728 (5.0)

Exposure to Antibiotic Class in prior
128 weeks, [N, (%)]

Cephalosporin 113,262 (28.9)

Fluoroquinolone 109,020 (27.8)

TMP/SMX 97,707 (24.9)

Healthcare Exposure, [N, (%)]

Prior Inpatient Stay in last 90 days 53,399 (13.6)

Prior Nursing Home Stay in last 90 days 4,004 (1.0)

Prior Inpatient Stay in last 365 days 111,904 (28.5)

Prior Nursing Home Stay in last 365 days 10,954 (2.8)
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and increases when there is history of a susceptible culture. The size
of the interaction is less for ceph than it is for either FQ or TMP/
SMX. The impact of prior cumulative antibiotic class exposures
across multiple time intervals does not appear to be additive to
the subsequent identification of resistance in the index culture

(Figure 5). This decrease in effect dissipates as the treatment time
intervals increase. As seen previously, this interaction effect is less
strong in ceph.

In a post-hoc analysis, the predictive performance restricted to
cultures with any history of susceptibilities reported (i.e., any
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isolate with susceptibilities reported for ceph, FQ, or TMP/SMX)
achieved AUC of .83, .91, and .87 and PRAUC of .65, .83, and .73
for ceph, FQ, and TMP/SMX models, respectively. This provides
strong evidence that the models perform better when used to
predict resistance for positive urine cultures with any prior history
of resistance (P-value < .0001).

Discussion

Successful management of bacterial infections depends on
prescribing antibiotics that are active against the causative
pathogen. Models to predict the probability of resistance have
the potential to improve the empiric choice of antibiotics. Our
approach extends previously published models of resistance in

0.001

0.003

0

0.001

0

0

0

0

0

0

0.001

0.002

0

0.001

0

0

0

0

0

0

0.001

0.005

0

0.001

0

0

0

0

0

0

0.001

0.001

0

0.001

0.001

0

0

0

0

0

0.001

0.003

0

0

0

0

0

0

0

0

0.002

0.001

0.001

0.002

0.002

0.001

0

0

0

0

0.001

0.001

0.001

0.001

0.001

0

0

0

0

0

0.001

0.002

0.001

0.001

0.001

0.001

0

0.001

0

0

0.016

0

0

0

0

0

0

0

0

0

0.012

0.001

0

0

0

0

0

0

0

0

0.011

0

0

0

0.001

0

0

0

0

0

0.009

0

0

0

0

0

0

0

0

0

0.003

0

0

0

0

0

0

0

0

0

0.002

0.001

0.001

0.001

0.001

0

0

0

0

0

0.003

0

0

0

0

0

0

0

0

0

0.002

0.001

0

0.001

0.001

0

0

0

0

0

0.004

0

0

0

0.011

0.001

0

0

0

0

0.002

0

0.001

0

0.013

0

0

0

0

0

0.003

0

0

0

0.014

0

0

0

0

0

0.001

0

0

0

0.011

0

0

0

0

0

0

0

0

0

0.006

0

0

0

0

0

0.001

0.001

0.002

0.001

0.003

0.001

0.001

0

0

0

0.001

0.001

0

0

0.003

0

0

0

0

0

0.002

0.001

0.001

0.001

0.003

0.001

0

0

0

0

Cephalosporin Fluoroquinolone TMP/SMX

64
−1

28

32
−6

4

16
−3

2

8−
16 4−
8

2−
4

1−
2

0−
1

64
−1

28

32
−6

4

16
−3

2

8−
16 4−
8

2−
4

1−
2

0−
1

64
−1

28

32
−6

4

16
−3

2

8−
16 4−
8

2−
4

1−
2

0−
1

CEPHALOSPORINS

CLINDAMYCIN

FLUOROQUINOLONES

FOSFOMYCIN

MACROLIDES

METRONIDAZOLE

NITROFURANTOIN

PENICILLINS

TETRACYCLINES

TMP/SMX

Weeks Prior to Index Culture

A
bx

0.000

0.004

0.008

0.012

Gain

Figure 4. Heat plot presenting the importance of treatment history of a range of antibiotics for predicting the outcomes. The x-axis represents the presence of a resistant isolate in
culture at weekly interval. The color and the annotated text represent the gain in AUC when the variable is included in the predictive model.

0.02

−0.01

0.11

0.02

0

0.03

−0.03

0.03

0

0.01

0

0

0

0.02

0.02

0

−0.01

0.01

0

0.01

0

0.07

0.04

0.08

0.09

0.05

0.06

0.04

0.01

0

0

0

0.03

0

0.01

0

0.01

0.02

−0.02

0.03

0.01

0.01

0.02

0.01

0.01

0

0.01

0.01

0.01

0.04

0.03

0.02

−0.03

0.03

0.01

0.03

0.01

−0.09

−0.08

0.1

−0.15

−0.01

−0.01

0

−0.01

−0.02

−0.01

−0.01

−0.02

−0.01

−0.05

−0.02

−0.04

−0.06

−0.09

−0.03

−0.21

−0.09

−0.07

0

−0.04

−0.36

−0.03

−0.28

0.02

−0.03

−0.07

−0.02

−0.06

−0.04

−0.08

−0.08

−0.06

−0.03

−0.44

−0.05

−0.04

−0.1

0.02

−0.02

−0.02

0.03

−0.02

−0.01

−0.03

0

−0.07

−0.19

−0.23

−0.08

−0.28

−0.08

0.02

−0.07

0.04

−0.15

−0.22

−0.05

−0.05

0.04

0.04

0.04

0.02

0.04

0.01

0.04

0.03

0.04

0.05

0.02

−0.03

0.06

−0.09

−0.02

−0.04

−0.04

−0.09

−0.2

−0.08

−0.07

−0.06

0

−0.02

0

0.03

0

−0.02

−0.15

0.06

0.06

−0.19

0

0.05

−0.02

0.03

0.02

0.05

0.03

0.03

0.04

0.01

0.07

0.03

−0.09

−0.09

0.02

−0.1

0.01

Cephalosporin Fluoroquinolone TMP/SMX

64
−1

28

32
−6

4

16
−3

2

8−
16 4−
8

2−
4

1−
2

0−
1

64
−1

28

32
−6

4

16
−3

2

8−
16 4−
8

2−
4

1−
2

0−
1

64
−1

28

32
−6

4

16
−3

2

8−
16 4−
8

2−
4

1−
2

0−
1

0−1

1−2

2−4

4−8

8−16

16−32

32−64

64−128

Treatment: Weeks Prior to Index Culture

Tr
ea

tm
en

t: 
W

ee
ks

 P
rio

r 
to

 In
de

x 
C

ul
tu

re

−0.4

−0.3

−0.2

−0.1

0.0

0.1
Difference

Figure 5. Heat plot presenting the difference in average SHAP values for antibiotic exposed versus unexposed cases by week interval (x-axis), according to whether or not there is
a history of the same antibiotic class exposure in a different weekly interval (y-axis). The color represents themagnitude of difference, i.e., the interaction effect. Blue suggests that
the effect of the treatment on the prediction is lessened among individuals who have a history of treatment during a different week interval. In some circumstances, predictive
power was reduced when individuals received treatment during multiple time intervals. eg, the -.44 in the middle panel at the 4 on the x-axis and 2 on the y-axis suggests that the
difference in average Shapley Additive Explanations value between those having received fluoroquinolones (FQ) treatment 2–4 weeks prior and not having received FQ treatment
2–4 weeks prior decreases by .44 in those who also had treatment with FQ 1–2 weeks ago.

Antimicrobial Stewardship & Healthcare Epidemiology 5



urinary pathogens in several key ways.13,19,20 We created a
longitudinal dataset from VA electronic health records that was
national in scope, representing diverse populations and multiple
types of outpatient settings. Novel predictors in our analysis
included history of negative urine cultures and history of urine
cultures that yielded bacteria resistant to drugs other than the
target antibiotic. We used SHAP values to interpret the relative
contribution of different variables to the predictive model and to
explore interactions.

Our models confirm that recovery of antibiotic-resistant
organisms in prior cultures, followed by antecedent antibiotic
exposure, are the most important predictors for antibiotic
resistance to ceph, FQ, and TMP/SMX. We found that the model
of FQ resistance had the highest accuracy, followed by TMP/SMX,
then ceph. Similarly, prior treatment with FQ was a better
predictor of FQ resistance than TMP/SMX was for TMP/SMX
resistance, which was stronger than for ceph treatment and ceph
resistance. The time window for which treatment had its maximal
predictive power was 1-4 weeks prior to the index culture.
However, for all three outcomes, a history of prior antibiotic
resistance during the time window of 8 -16 weeks was more
predictive of resistance than history of resistance during the time
window of 1-7 weeks. This surprising finding should be examined
in other patient populations.

Another striking finding was that history of prior resistance to
antibiotics other than the target class was far weaker as a predictor
than history of resistance to the target antibiotic class, despite
the correlation between susceptibility results for ceph, FQ, and
TMP/SMX. Moreover, exposures to antibiotics other than the
target antibiotic class were relatively not predictive of resistance to
the target drug. Similar results have been previously reported.13

The lack of evidence of co-selection may at least in part be
explained by the built-in regularization of the XGBoost algorithm
which can diminish the importance of the final prediction of a
feature in a collinear set.

Our models outperform the published risk factor criteria for
UTI treatment, though it is important to recognize that the prior
risk factors were originally developed to identify patients with
likely MDRO and not necessarily select appropriate treatment.6–8

Similar to other studies, we found that prior exposure in healthcare
settings, which is sometimes used as a proxy for history of
resistance, had low predictive power.

SHAP scores are useful for quantifying the explanatory power
of individual features and for exploring how a feature’s predictive
power depends on the values of other features. However, they
should not be interpreted as estimations of causal effects. Using
SHAP values to explain the magnitude and direction of feature
effects, there was evidence of interaction between a history of
treatments in different intervals and a history of resistant or
susceptible culture. Both Figure S4 and Figure 5 suggest that
treatments do not have additive contributions within or between
intervals, respectively. They also suggest that the combination of a
history of susceptible form of an organism plus treatment with the
target antibiotic is predictive of the emergence of resistance.

These models condition on the presence of a positive culture.
Therefore, its potential usefulness for clinical decision-making
would be to guide therapy during the interval from when it is
known that a urine culture is positive to the time that susceptibility
results are reported. Our models could be combined with a model
that predicts whether the culture is positive to guide antibiotic
choice at the time the urine specimen is collected, in the situation
where empiric treatment is warranted. Due to the models’

calibration, they are best used as a risk prediction for which a
clinician determines a course of action based on the continuous
risk value (Figure S3). This would allow the clinician to choose
their own risk threshold, which is often dependent on the patient’s
morbidity.

The study has several limitations. First, as stated above, the
predicted outcome is antibiotic resistance, given a positive urine
culture. As a result, this prediction can not be used before the
determination that the urine culture has yielded an enteric Gram-
negative rod. However, it is feasible to develop a predictive model
for a positive urine culture test and to condition based upon a
positive urine culture prediction. Further research is needed to
assess the effect of conditioning on a previous prediction. Second,
our analysis of antibiotic exposure did not include treatments
administered in acute care hospitals or nursing homes or cultures
or treatments received outside of the VHA system, a more general
limitation of integrating prediction models into an electronic
medical record. Finally, we did not compare different machine
learning algorithms. Some methods, such as the random forest
conditional permutation algorithm, have been developed to be
robust to collinearity when measuring importance. However, this
algorithm is memory-intensive and computationally intractable
for this data in the VHA system. In conclusion, we developed a
decision-making tool that incorporates a patient’s history in order
to guide antibiotic prescription. We demonstrate that these tools,
especially the FQ model, have strong discriminatory performance
and predict risk that reflects observed event rates. Such a predictive
model can potentially improve the management of infection and
guide the use of antibiotics in the VHA.
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