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Revealing the Genetic Basis of Natural Bacterial Phenotypic
Divergence

Peter L. Freddolino,a Hani Goodarzi,a* Saeed Tavazoiea,b

Department of Systems Biology, Columbia University, New York, New York, USAa; Department of Biochemistry and Molecular Biophysics, Columbia University, New York,
New York, USAb

Divergent phenotypes for distantly related strains of bacteria, such as differing antibiotic resistances or organic solvent toler-
ances, are of keen interest both from an evolutionary perspective and for the engineering of novel microbial organisms and con-
sortia in synthetic biology applications. A prerequisite for any practical application of this phenotypic diversity is knowledge of
the genetic determinants for each trait of interest. Sequence divergence between strains is often so extensive as to make brute-
force approaches to identifying the loci contributing to a given trait impractical. Here we describe a global linkage analysis ap-
proach, GLINT, for rapid discovery of the causal genetic variants underlying phenotypic divergence between distantly related
strains of Escherichia coli. This general strategy will also be usable, with minor modifications, for revealing genotype-phenotype
associations between naturally occurring strains of other bacterial species.

Despite the exponential increase in the number of sequenced
bacterial genomes, enabled by next-generation sequencing,

our ability to decipher causal genetic variants underlying pheno-
typic differences between strains has lagged far behind. Beyond
enriching our basic understanding of bacterial evolution, this ca-
pacity is critical in many practical applications, for example, in
pinpointing the genetic basis of differing intrinsic susceptibilities
to antibiotics (1) or tolerances to organic solvents (2). Absent clear
differences, such as the presence of a known antibiotic resistance
mutation or gene, the presence of sequencing data alone generally
does not allow identification of the genetic determinants of a given
phenotypic variation, and the number of genetic differences even
between closely related strains is often too large for a brute-force
evaluation (that is, separate experiments in which each differing
region is transferred from one background to the other) of all
candidates to be practical. The development of more-efficient
methods for identifying causal genotype-phenotype associations
in natural bacterial strains is thus a crucial next step in taking
advantage of the increasing wealth of available genomic se-
quences.

The challenge of identifying the genetic basis of naturally oc-
curring phenotypic divergence is formally similar to the challenge
of distinguishing between adaptive and hitchhiking mutations in
laboratory evolution experiments (3–5) or between driver and
passenger mutations in disease states (6, 7). A conceptually simple
solution to this challenge is to swap alleles from the evolved to the
parental strain, or vice versa, separately at all mutated sites. Given
the number of mutations that are generally identified in labora-
tory evolution experiments, this approach, if deemed feasible, is
very labor-intensive. We recently introduced ADAM (array-based
discovery of adaptive mutations), a systematic experimental pipe-
line based on global linkage analysis, which employs a high-cov-
erage transposon library to effectively perform numerous such
allele swaps in parallel (8). ADAM has been applied successfully in
several cases to identify the genetic variations underlying pheno-
types in laboratory-evolved Escherichia coli strains (8, 9).

In principle, the same global linkage technology as that used in
ADAM should enable the identification of causal genetic loci un-
derlying phenotypic divergence between naturally occurring bac-

terial strains. However, the presence of nonhomologous regions
will affect library representation and will have undefined and un-
explored effects on the fitness scores obtained. In addition,
whereas ADAM needs to detect changes only in a single direction
(loss of the evolved phenotype), for comparisons between natu-
rally occurring strains, fitness differences in either direction must
be considered, and it must be possible to detect effects of various
magnitudes. We have thus built upon the foundation of our pre-
vious approach to allow the use of global linkage analysis in dis-
tantly related bacterial strains, including the development of a new
analytical framework which corrects for artifacts that render
ADAM, in its original form, unsuitable in such cases. We refer to
the combined experimental and computational methods for
global linkage analysis of distant strains as GLINT (global linkage-
based investigation of naturally occurring traits). Here we de-
scribe the GLINT method and showcase its ability to identify the
genetic basis of natural phenotypic divergence at different levels of
complexity, suggesting its general utility for rapid understanding
of the genetic basis of phenotypic variation.

MATERIALS AND METHODS
Strains and media. All strains used in this study (see Table S2 in the
supplemental material) were derived either from E. coli K-12 MG1655
(ATCC 700926) or from E. coli Crooks (ATCC 8739). We refer to the latter
strain as ATCC 8739 throughout the text due to the presence of some
ambiguity regarding its lineage (see http://ecoliwiki.net/colipedia/index
.php/Talk:ATCC_8739); this strain was originally isolated from a human
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fecal sample and has found use in a variety of laboratory tests (see, e.g.,
reference 10). Founder strains were obtained directly from the American
Type Culture Collection. Routine growth and cloning were carried out in
LB medium (10 g/liter tryptone, 5 g/liter yeast extract, 5 g/liter NaCl) or
on LB plates (LB medium plus 15 g/liter agar). During cloning, the me-
dium was supplemented with ampicillin (100 �g/ml), kanamycin (50 �g/
ml), or chloramphenicol (30 �g/ml) (all from Sigma) as needed. All phys-
iological experiments (except those explicitly noted as being performed in
LB medium) instead used MOPS (morpholinepropanesulfonic acid)
minimal medium (11) (Teknova, Inc.) supplemented with folate (4 �g/
ml), with carbon sources and additives as described below. We use nota-
tion such as “MOPS-glucose-ellagic acid” to refer to MOPS minimal me-
dium containing a carbon source (in this case, glucose) and an additive (in
this case, ellagic acid); carbon sources were present at 0.2% (wt/vol) unless
otherwise noted. 5-Keto-D-gluconate (KDG) was added from a 5% stock
solution dissolved in water, with potassium hydroxide added as needed to
ensure solubility. Ellagic acid (ELLA) stock solutions were prepared from
a freshly opened vial of ellagic acid, dissolved to 1.25 mM in 500 mM
NaOH, diluted in 500 mM NaOH to a working concentration of 250 �M
prior to addition to culture media, and then used at a final concentration
of 10 �M during all follow-up experiments (to minimize precipitation,
which we observed in the presence of bacterial growth at higher concen-
trations). Ellagic acid-containing media proved particularly vulnerable to
oxidation, and thus, the stock solution used in follow-up experiments was
stored in frozen single-use aliquots, and the ellagic acid medium was
prepared fresh immediately prior to use. For the library selections, we
used a 5-fold-higher concentration of ellagic acid (final concentration, 50
�M; obtained from dilution of a 1.25 mM stock); the use of a lower
concentration in follow-up experiments was to avoid precipitate forma-
tion, which we observed at 50 �M ellagic acid in the presence (but not in
the absence) of bacterial growth. Due to the large amount of NaOH in the
finished medium, the pH of the ellagic acid-containing medium immedi-
ately after preparation was approximately 9 (50 �M ellagic acid) or 9.5 (10
�M ellagic acid), and hence we consider the MOPS-glucose-ELLA stress
condition to represent a combination of high pH and the presence of the
ellagic acid itself.

All PCR primers used for strain construction and validation are shown
in Table S3 in the supplemental material. Aside from the parental strains,
all strains were validated by sizing of the P332/P333 product to confirm
the MG1655 or ATCC 8739 origin and by sequencing of the location of at
least some portion of the transferred region or scar expected to be present
(Sanger sequencing by Genewiz, Inc.).

Condition screening. In order to identify growth conditions under
which MG1655 and ATCC 8739 differ significantly in fitness, we obtained
growth curves for both strains on Biolog Phenotype MicroArrays 1, 2, 3B,
and 4A, which test for respiratory activity in a variety of nutrient sources
(�400 conditions). In addition, we assessed the growth of both strains in
the presence of all compounds from the DTP natural product set (ob-
tained from the Developmental Therapeutics Program of the National
Cancer Institute) in M9-glucose minimal medium with the compounds at
10 �M. All screens were performed at least in duplicate, and we identified
all cases showing consistent differences between MG1655 and ATCC 8739
in growth rate, lag time, or the integral of the growth curve. We identified
a total of 14 conditions (11 nutrient sources and 3 antibiotic compounds)
showing consistent differences between strains, of which 3 were chosen
for follow-up experiments.

Comparison of MG1655 and ATCC 8739 genomes. The alignment
used in Table S1 and Fig. S1 in the supplemental material was obtained
using Mauve, version 2.3.1 (12), with the progressiveMauve aligner and
default parameters. The homologous blocks written by Mauve to an
XMFA output file were analyzed to determine the numbers of direct
matches, mismatches, and indels between the strains; any portion of ei-
ther genome not present in those blocks was assumed to be unique to the
corresponding strain.

Transposon library construction and transposon footprinting. The
primary transposon library in the MG1655 background was prepared
using previously published methods (13, 14). The secondary library in
ATCC 8739 cells was prepared by P1vir transduction (15) and selection in
kanamycin-containing media. Detailed protocols for each step are given
in Text S1 in the supplemental material.

Construction of validation strains. All strains containing gene dele-
tions or regions transferred from MG1655 to ATCC 8739 were generated
using the system developed by Cherepanov and Wackernagel (16). For
any particular insertion, a kanamycin resistance cassette was amplified
from pKD4 using primers that yielded 40-bp regions of homology to the
target site in the genome on either end. The targeting extensions were
immediately adjacent to each other when only a tag was desired or flanked
the region to be excised if tagged deletion was desired. Target cells con-
taining pKD46 (17) were grown to mid-log phase in salt-free LB medium
supplemented with ampicillin and arabinose (100 �g/ml and 10 mM,
respectively), then electroporated with approximately 100 ng of the am-
plified resistance cassette, recovered for 1 h in SOC medium (18), and
finally plated onto LB plates containing kanamycin. All knockouts and
cassette insertions were initially performed in our MG1655 strain; if
needed, the marked insertions were transferred to ATCC 8739 using stan-
dard P1vir transduction (18). Resistance cassettes were then excised by
transforming marked strains with pCP20 (16), selecting on LB medium
plus ampicillin at 30°C, and then growing transformants for 24 h on LB
medium at 42°C. Colonies were then replica plated on LB medium, LB
medium plus ampicillin, and LB medium plus kanamycin to ensure the
loss of pCP20 and the resistance cassette. In all cases where a homologous
region was transferred from MG1655 to ATCC 8739, we constructed
strains directly in the ATCC 8739 background containing the same resis-
tance cassette scar as that present in the region transferred from MG1655;
unless otherwise noted, the resistance scar alone had no significant effect
under the conditions that we considered (that is, 95% confidence intervals
for the ratio of growth rates contained 1, and in the ellagic acid case, 95%
confidence intervals for the difference in lag times contained zero). In the
case of the htrL Kan cassette insertion used to transfer the rph locus, the
cassette was in a region unique to MG1655, so we instead confirmed that
the scar itself had no effect in the MG1655 background.

Selection of libraries under test and reference conditions. For each
selective condition (see Table 1), the secondary library described above
was thawed on ice, pelleted by centrifugation for 3 min at 17,900 � g,
resuspended in an equal volume of carbon source-free MOPS medium,
and then diluted 500-fold into 25 ml of prewarmed, preaerated selection
medium. Libraries were incubated for 16 h at 37°C with shaking at 250
rpm and were then placed on ice. The selected libraries were harvested by
centrifugation for 10 min at 5,525 � g and 4°C, and then the pellets were
immediately lysed and processed for transposon footprinting as described
below.

Transposon footprinting and microarray analysis. The abundances
of different MG1655-specific insertions in the secondary library were
measured by using transposon footprinting (14) followed by hybridizing
samples from selective and reference conditions to an Agilent tiling mi-
croarray. Details of the transposon footprinting and hybridization proce-
dures are given in Text S1 in the supplemental material.

Microarray spot intensities were extracted using Agilent Feature Ex-
traction, version 9.5. Any spots for which the IsSaturated or IsFeatNon-
UnifOL flag was true, or for which the IsPosAndSignif or IsFound flag was
false, were discarded. Log ratios of selected to reference signals for the
probe at each position were estimated by pooling data across all biological
replicates and replicate spots on the array, using the error-weighted com-
bination method in section 3.1 of reference 19. The processed log ratios
were then analyzed using the GLINT postprocessing pipeline as described
below.

Postprocessing of insertion abundance data. Due to the unique char-
acteristics of transposon insertion abundance/global linkage analysis
(compared with, e.g., expression analysis of chromatin immunoprecipi-
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tation data), we developed a novel postprocessing pipeline for normaliz-
ing global linkage analysis data and identifying regions that contribute
significantly to fitness differences between strains. Here we describe the
resulting algorithm; programs implementing this pipeline for the post-
processing of GLINT data are available for download from https:
//tavazoielab.c2b2.columbia.edu/GLINT/. Note that in the description of
the algorithm here, we provide default values for several parameters (for
example, the smoothing window width) that were used in our analysis but
may be easily changed if necessary; see the documentation included with
the program for details.

The probe-level log ratio abundance data (obtained in this case by
two-color microarrays) were first normalized to have a median of zero
and were scaled to have an interquartile range corresponding to that of a
standard normal distribution (as in the analysis of reference 20). Next, the
data were normalized for homology-dependent effects in two steps (see
Results for the exploratory data analysis and justification leading to this
procedure). All genomic regions in the donor genome that aligned to a
gap greater than 2 bases in the recipient genome were removed and were
replaced with a single representative probe at the center of the removed
region, bearing as a selection score the median for all the probes that it
replaced. The broadened distribution of selection scores in probes adja-
cent to large insertions was corrected by performing loess smoothing (21)
of the magnitude of the selection score as a function of the distance from
the nearest large insertion (here we used a value of 0.3 for the loess
smoothing parameter) and then dividing the normalized log ratio at each
point by the value predicted in the smoothed model; we henceforth refer
to the resulting value as the selection score. The selection scores were then
smoothed using a rolling median over a 21-probe window (approximately
1 kb on our tiling array) to provide the smoothed selection scores.

In order to assess the significance of the smoothed selection scores, we
modeled the background distribution of insignificant probes as arising
from an autoregressive model, in order to account for the substantial
autocorrelation between adjacent probes (a hazard originally noted for
experiments with tiling microarrays in reference 22, although we treat the
problem in a somewhat different way). The mean and standard deviation
of the modeled background were estimated to be the median of all nor-
malized probe scores and the median absolute deviation of all normalized
probe scores divided by the 75th percentile of a standard normal distri-
bution, respectively. The correlation structure was estimated by averaging
the empirical autocorrelations for all continuous windows of 41 probes or
more, excluding probes with undefined values or those in the top or bot-
tom 2% of all normalized scores. We then parameterized an autoregres-
sive model (in this case, 23rd order) to match the observed autocorrela-
tion function, with the mean and standard deviation obtained above. The
order of the model was determined by examining the autocorrelation
function of probes from the background distribution (excluding the high-
and low-value probes as described above), which reached zero within 20
to 30 probes under each condition. The null distribution of the smoothed
selection score was approximated by drawing 500,000 simulations of 21
probe windows from this distribution and calculating the median from
each draw.

With the background distribution thus established, two-tailed P val-
ues were calculated for the smoothed selection scores at all probes, and
significant probes were identified using the Benjamini-Hochberg proce-
dure (24) with a false discovery rate of 1%. Any run of 10 or more signif-
icant probes with scores of the same sign was flagged as a prospective peak.
Finally, to facilitate interpretation, prospective peaks with scores of the
same sign separated by no more than 5 kb were lumped into peaks, and
only lumped peaks of at least 5 kb in total length were retained (thus
requiring either a single prospective peak of at least 5 kb or two or more
prospective peaks covering a region of at least 5 kb with no large gaps
between them); we report lumped peaks passing this final length filter as
peaks throughout the paper. The lumping step applied here is justified by
the biology underlying the construction of the secondary library; P1vir
transduction transfers genomic regions tens of kilobases in length (18), so

any true signal from a locus that has substantial fitness effects upon trans-
fer should be sustained over a relatively large genomic distance. Tuning of
the precise parameters used in the lumping and final peak size filter may
be required for libraries constructed using other methods.

The output from this postprocessing pipeline is a set of peak calls
indicating regions of the genome for which transfers from the donor to the
recipient strain showed significant enrichments or depletions in the se-
lected secondary library, alongside diagnostic plots showing the distribu-
tion of scores used in normalization steps and (optionally) the probe-level
scores used at various points in the algorithm. The procedure used here is
very similar to well-established methods for the analysis of ChIP-chip
(chromatin immunoprecipitation with microarray technology) data (see,
e.g., references 22 and 25), but extended to appropriate-length scales and
with additional corrections dictated by the nature of the data used here,
and particularly, extensions to correct for the presence of low-homology
regions unique to GLINT. We anticipate that the same method would be
applicable to data from applications of global linkage analysis using other
methods for library construction or population abundance readout; pos-
sibly the distance and cutoff parameters used would need to be tuned in
order to ensure that they are appropriate for the case at hand. In particu-
lar, the peak-calling module is usable in isolation on data from ADAM
experiments, in which case all homology information is ignored.

While the method presented above is described in terms of analyzing
microarray data, the same procedure could be used with minor prepro-
cessing on data in which insertion abundances were instead measured
using high-throughput sequencing. In our experience, it is convenient
and computationally efficient for similar data sets (in which base pair-
level resolution is not meaningful due to the long genomic distances over
which the phenomena of interest occur) to represent the sequencing data
as log ratios of properly normalized read densities under the selective
versus unselective conditions, downsampled to representative points ev-
ery 5 to 50 bp. Sequencing data prepared in this way will have properties
very similar to microarray data (as long as counts are high enough to
approximate the read densities as continuous), and the procedure out-
lined above should yield reasonable peak calls.

Growth curves. All growth curves were measured in Costar 96-well
plates on either a Synergy MX or a PowerWave XS2 plate reader (BioTek,
Winooski, VT). Each well contained 150 �l medium and 100 �l mineral
oil (catalog no. BP26291; Fisher); both our experience and that of others
(26) indicates that this use of mineral oil does not alter culture aeration, at
least during the stages of growth during which lag times and growth rates
were measured. Plates were incubated at 37 C with shaking (“fast” for the
Synergy; “medium” for the PowerWave), and measurements of the opti-
cal density at 600 nm (OD600) were taken once every 10 min for all wells.
Cells were pregrown overnight in MOPS plus 0.04% glucose and were
then diluted approximately 400-fold into prewarmed medium appropri-
ate to the experiment. All minimal media used in plate reader experiments
were supplemented with 0.001% Tween 20 (Sigma) to prevent aggrega-
tion-based artifacts. At least two biological replicates were obtained on
different days for each strain-medium combination; each biological rep-
licate comprised 6 to 11 independent technical replicates (wells) within a
96-well plate.

For growth on MOPS-glucose-ellagic acid medium, both lag times and
growth rates proved to be important, and thus, modified protocols were
used both for the experimental setup and for data analysis. Because lag
times depend on the physiological state of the inoculum, for our purposes
we defined the lag time as arising from cells growing in mid-log phase in
MOPS-glucose medium. To this end, we pregrew cells for 5 h in MOPS-
glucose medium immediately prior to transfer to a medium containing
ellagic acid. Cells were pregrown in lidded 96-well plates, from a 400-fold
dilution of an overnight culture in MOPS plus 0.04% glucose. Cells were
then transferred as rapidly as possible to prewarmed MOPS-glucose-el-
lagic acid medium in a separate plate and were covered in prewarmed
mineral oil, and growth was measured as described above.

The raw optical density data were processed using in-house scripts to

Genetic Basis of Natural Bacterial Phenotypes

February 2014 Volume 196 Number 4 jb.asm.org 827

https://tavazoielab.c2b2.columbia.edu/GLINT/
https://tavazoielab.c2b2.columbia.edu/GLINT/
http://jb.asm.org


determine the maximum growth rate and lag time for each replicate, and
a linear mixed-effects model was then used to estimate the underlying
parameters for each strain. Details of the analysis are given in Text S1 in
the supplemental material.

Microarray data accession number. Raw microarray data have been
deposited in the Gene Expression Omnibus as accession no. GSE45421.

RESULTS

The experimental component of the GLINT method is schema-
tized in Fig. 1 (for details, see Materials and Methods). In brief,
genomic regions surrounding transposon insertions are trans-
ferred from a donor strain to a recipient, yielding a library of cells
with different portions of the donor genome in the recipient back-
ground (Fig. 1A). Genetic footprinting of the insertion sites using
previously described methods (13, 14, 27) can then be performed
on populations that are subjected to selective conditions (where
the differential phenotype of interest will be displayed) alongside
unselective conditions as controls (Fig. 1B). Comparison of trans-
poson insertion abundances throughout the genome in these se-
lected libraries, followed by postprocessing with the GLINT anal-
ysis pipeline, allows the identification of the primary contributors
to fitness differences between the donor and reference strains un-
der the selective condition of interest. As detailed below, few de-
tails of the experimental procedure are set in stone; the methods
for tagging the donor genome, transferring that genomic material
to the recipient strain, and measuring transposon abundances in
the selected populations can all be varied so long as a few basic

requirements are met. In the test application described below, the
experimental procedures closely mirrored ADAM (8) except for
the use of increased numbers of transductions that were subse-
quently pooled to yield a sufficiently diverse secondary library.

Regardless of the precise methods used for library generation,
the application of global linkage analysis to distantly related or-
ganisms requires consideration of the effects of low-homology
regions and large insertions or deletions on the resulting selection
scores. As described in more detail under “Effects of homology on
selection scores” below, correction of selection scores near large
insertions or deletions, particularly near large insertions in the
donor strain relative to the recipient, is necessary for those scores
to accurately reflect the fitness effects of genetic differences at var-
ious points in the genome. We have incorporated an appropriate
set of corrections into a postprocessing tool for GLINT data (freely
available from https://tavazoielab.c2b2.columbia.edu/GLINT/)
that is designed to automatically identify genomic regions causing
substantial fitness differences between the strains under compar-
ison, while making minimal assumptions about the experimental
details used to generate selection score data. The stages of this
postprocessing pipeline are schematized in Fig. 2. First, a global
alignment of the donor and recipient strain genomes is used to
identify donor-specific regions. Donor-specific regions are re-
moved and replaced by a single representative value to prevent
overrepresentation of these regions in the selection score results.
In addition, since we have observed that the magnitudes of selec-

FIG 1 Schematic of the library generation and library selection steps required for cross-strain global linkage analysis. (A) Library generation. A library of cells in
the donor strain is prepared with random integration of selectable markers at points throughout the genome (in this case, through random integration of a
transposon containing a kanamycin resistance gene). This “primary library” is then used to prepare a “secondary library” in the recipient strain by random
homologous recombination of genomic regions from the primary library into the recipient (in this case, using P1 transduction). The secondary library is limited
by use of the selective marker, such that it contains only cells that received a marked genomic region from the donor strain. In both panels, genomic materials
originating from the donor and recipient strains are shown in blue and red, respectively. In the application presented here, the donor and recipient strains are
MG1655 and ATCC 8739, respectively. (B) Library selection. A pool of cells from the secondary library is grown in parallel under the condition of interest and
a permissive reference condition. The abundances of DNA from the donor strain at sites throughout the genome are compared between the two conditions by
quantifying the frequency of the resistance marker (in this case, by transposon footprinting and microarray analysis), which must have originally been transferred
from the primary library.
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tion scores are artificially inflated near donor-specific insertions,
all selection scores are normalized by using a nonparametric curve
fit to estimate the dependence of the selection score on the dis-
tance from the nearest large insertion. Significant peaks or troughs
(we generally refer to both as “peaks”) in the normalized selection
score profile are then identified by assuming an autoregressive
background model (which accounts for the probe-probe correla-
tions inherent to tiling arrays), and then nearby peaks are merged
and filtered based on their sizes. The default parameters used in
the computational pipeline have been optimized for our specific
experimental procedure; we provide guidance for determining
appropriate values in Text S2 in the supplemental material.

As a test application of global linkage analysis to highly di-
verged strains, we phenotypically and genetically compared E. coli
K-12 MG1655 (ATCC 700926; referred to below as MG1655) with
E. coli strain Crooks (ATCC 8739); according to recent phyloge-
netic analysis, these strains belong to the most divergent sub-
groups present among the commensal phylogroup A E. coli strains
(28). Comparisons of the MG1655 and ATCC 8739 genomes ap-
pear in Fig. S1 and Table S1 in the supplemental material, showing
the presence of one large-scale genomic rearrangement and hun-
dreds of smaller insertions or deletions between the two strains. In
all, 7.5% of the MG1655 genome and 9.6% of the ATCC 8739
genome consist of regions not present in the other strain, whereas
within alignable regions, the sequence identity is, on average,
above 99%.

To verify our ability to characterize the genetic basis for phys-
iologically relevant phenotypes between divergent E. coli strains,
we performed a medium-throughput screen to identify condi-
tions showing qualitatively apparent differences in growth be-
tween MG1655 and ATCC 8739. From a set of 14 candidates (see

Materials and Methods for details), we chose 3 for further analysis,
summarized in Table 1. For each of these three conditions, we
used GLINT (with an MG1655 transposon insertion library as the
donor strain) to identify the most significant loci contributing to
fitness differences under that condition. Summary plots of the
results for all three cases are shown in Fig. 3 and are tabulated in
Table 2; in each case, only a small set of loci with significant selec-
tion scores is shown. Notably, different levels of complexity are
apparent in the test cases, ranging from two to seven significant
peaks. To validate the sites identified, for each condition, we chose
one or more of those with the strongest selection scores and trans-
ferred them from MG1655 to ATCC 8739; as detailed below, all
show fitness effects (measured by changes in growth rate or lag
time) consistent with the linkage analysis results.

ATCC 8739 cannot grow on 5-keto-D-gluconate as a sole car-
bon source due to the lack of a single enzymatic functionality. As
shown in Fig. 4B, ATCC 8739 grows extremely poorly on 5-keto-
D-gluconate (KDG) as a sole carbon source, whereas MG1655
grows readily. The GLINT fitness profile using growth on KDG as
a selective condition shows a single peak, centered around yjhP,
immediately adjacent to the idnDOTR operon (Fig. 4A). D-Glu-
conate metabolism in K-12 strains may occur through the action
either of the GntI system (gntT, gntU, gntK) or of the GntII system
(idnT, idnK) (29, 30); however, KDG must first be reduced to
D-gluconate by the product of idnO (30). Alignment of the
MG1655 and ATCC 8739 genomes with Mauve (12) shows that
idnDOTR is located in a K-12-specific portion of the genome,
whereas all three GntI genes are in conserved regions. Further-
more, Megablast (31) searches for regions homologous to each of
the idn genes in ATCC 8739 show that this strain contains no
region with significant homology to idnO or idnK. Consistently,

FIG 2 Schematic of computational postprocessing of GLINT experiments. As detailed in the text, donor-specific regions are each condensed into a
representative point (a), and then scores near the donor-specific insertions are rescaled to bring their magnitude in line with the remainder of the genome
(b). Candidate peak locations are identified by the presence of a run of significantly enriched or depleted selection scores (c). Finally, peaks are filtered
based on their sizes; only regions with a high enough density of candidate peaks are included in the final peak calls (d). Thus, even regions with apparent
peaks may be eliminated either because they are too narrow (i) or because they occur primarily due to the presence of a donor-specific insertion (ii). On
the other hand, true peaks will be called either for a single large significant region (iii) or for a region containing several small, closely spaced candidate
peaks of the same sign (iv).

TABLE 1 Summary of conditions considered here under which MG1655 and ATCC 8739 cells show substantial differences in growth

Comparisona Selective condition Key statistic

Fitted value (95% confidence interval) for key
statistic

MG1655 ATCC 8739

KDG vs GLU MOPS–5-keto-D-gluconate Growth rate (doublings/h) under selective condition 0.391 (0.377 to 0.408) 0.0 (N/A)b

LB vs GLU LB medium Growth rate (doublings/h) under reference condition 1.030 (1.010 to 1.050) 1.365 (1.337 to 1.391)
ELLA vs GLU MOPS-glucose-ellagic acid Relative lag time (h) under selective condition 3.953 (2.895 to 5.042) 0.0 (�1.031 to 0.935)
a KDG, MOPS–5-keto-D-gluconate; GLU, MOPS-glucose; ELLA, MOPS-glucose-ellagic acid. The reference condition was MOPS-glucose in all cases.
b N/A, not applicable.
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transfer of the idnDOT region via P1vir transduction from
MG1655 to ATCC 8739 (marked with a kanamycin cassette be-
tween yjgB and leuX) yields a strain that grows rapidly in MOPS-
KDG; however, when the same region, with idnDOT replaced with
a kanamycin resistance cassette (�idnDOT), is transferred, the
recipient strain ATCC 8739 remains unable to grow on KDG (Fig.
4B and C). Thus, GLINT immediately identifies the location of the
single gene causing the differing growth phenotypes of MG1655
and ATCC 8739 on 5-keto-D-gluconate as a sole carbon source.
We attribute the fact that ATCC 8739 cells with MG1655 idnDOT
grow faster than MG1655 cells in MOPS-KDG medium to the fact
that ATCC 8739 in general grows faster than MG1655 in minimal
medium due to pyrimidine starvation in the latter (see below).

The exact peak positioning observed in this case, offset slightly

from the actual location of the locus causing an actual fitness dif-
ference, is characteristic of patterns that we have observed in both
ADAM and GLINT data. The dominant signal in the selection
score is not typically centered on the gene of interest but rather
appears one or a few kilobases away in either or both directions.
This likely occurs because any transposon insertion inside the
gene of interest would inactivate that gene in any case and thus
yield no signal; in the absence of a signal from the precise location
of the gene causing a fitness difference, asymmetry about that
point can easily arise if there is any difference in the density of
transposon insertions in the secondary library, or in the distance
to the nearest insertion, on one side of that site versus the other.
Thus, researchers applying global linkage analysis techniques
must not assume that the gene at the center of the selection score
peak is directly responsible for the phenotype observed; rather,
they should inspect the identities of genes located within a few
kilobases of the peak to determine the most likely contributors.
Targeted follow-up experiments on the region immediately sur-
rounding GLINT peaks, such as those described in the sections
below, may become necessary if the identity of the sequence dif-
ference responsible for a selection score peak cannot be deter-
mined on the basis of available annotations.

Comparison of growth in MOPS-glucose and LB medium.
Perhaps the most obvious phenotypic difference between
MG1655 and ATCC 8739 cells is not their difference in growth
under exotic conditions but their widely disparate growth rates
under standard conditions, particularly in minimal medium.
ATCC 8739 cells grow approximately 10% faster in rich medium
(LB) and 30% faster in glucose minimal medium (MOPS-GLU)
than MG1655 cells (Fig. 5C). The relatively higher fitness (assessed
using relative growth rates) of MG1655 in rich medium allowed us
to investigate the genetic basis for the substantial difference in
growth rates between the two strains in glucose minimal medium;
as seen in Fig. 3 and 5A, GLINT profiling shows that the effects are
dominated by a single site in the vicinity of the waaQGPSBIJYZU
operon (giving rise to three closely spaced peak calls). In order to
identify the specific gene responsible for the difference, we intro-
duced a kanamycin resistance cassette into MG1655 adjacent to
the waa region and then analyzed the growth of four independent

FIG 3 GLINT-normalized fitness profiles across the genome for the three conditions considered, projected onto the MG1655 genome. In each case, the selection
score is based on the log ratio of transposon frequencies under the reference and selective conditions; thus, a positive score indicates that the presence of a genomic
segment from the donor strain is detrimental, relative to the corresponding region in the host strain, under the selective condition. All scores are corrected for
neighboring homology as described in Materials and Methods and are smoothed with a running median over a 1-kb window. Green and orange wedges
correspond to windows flagged as significant by GLINT with positive and negative mean scores, respectively. The small chromosomal schematic in the center of
each plot shows coloring corresponding to the conserved regions in Fig. S1 in the supplemental material. Labeled peaks were investigated in follow-up
experiments, as described in the text; each is referred to by the locus ultimately identified as being responsible for the phenotypic differences or by the name of
a nearby gene (if in parentheses, the locus is used only as a landmark). KDG, MOPS-KDG; GLU, MOPS-glucose; ELLA, MOPS-glucose-ellagic acid.

TABLE 2 Peak locations identified by GLINT under each condition

Selectiona

Peak location

Mean selection
scoreb Labelc

Start
position

End
position

KDG vs GLU 4494480 4511380 �2.227 idnDOT
4516980 4546830 �3.317 idnDOT

LB vs GLU 151980 157280 1.788 NA
2874580 2884980 2.153 NA
3259880 3265730 1.556 NA
3760230 3772230 �2.55 rph-pyrE
3779080 3788830 �2.358 rph-pyrE
3794780 3818430 �4.755 rph-pyrE
4349780 4357980 1.673 NA

ELLA vs GLU 1086830 1092830 �1.854 NA
1211130 1220230 �2.007 NA
2185430 2191080 �1.900 NA
2985880 2993880 �2.528 pbl
3029730 3035180 1.945 pbl
3550080 3556630 �1.874 bioH
3649480 3656580 �1.849 NA

a See Table 1, footnote a.
b Average of the rolling median statistic over the extent of the peak.
c NA, not applicable.
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ATCC 8739 transductants containing this region (simply labeled
transductants A to D in Fig. 5B). Of these, strain A showed growth
rates nearly indistinguishable from those of ATCC 8739, whereas
strains B and C showed growth rates equivalent to that of MG1655
in minimal medium and midway between those of ATCC 8739
and MG1655 in rich medium (strain D showed atypical growth
curves with a long lag time preceding steady-state growth, and
thus, its growth rate cannot be compared directly to those of the
other strains in our study; this variant was omitted from further
analysis). We sought to identify the specific gene responsible for
the fitness difference by amplifying a set of small genomic win-
dows from the vicinity of the resistance cassette insertion site from
each of the transduced strains (A to D) and determining whether
each window originated from MG1655 or from ATCC 8739 (ei-
ther by sizing or by Sanger sequencing of the PCR products). The
results, shown in Fig. 5B, reveal that the gene responsible for the
different growth of our baseline strains must be between positions
3813150 and 3823233 (in MG1655 numbering), since this is the
only region of MG1655-specific DNA shared by chimeras B and C
but not by chimera A. This range excludes the waa operon but
includes the rph-pyrG region. MG1655 is known to contain a
frameshift in the rph gene that exerts polar effects on pyrE, leading
to reduced growth due to pyrimidine deficiency (32, 33), which
could easily yield the phenotypic difference observed. Consistent
with this interpretation, supplementation of MOPS-GLU me-
dium with uracil (20 �g/ml) equalizes the growth rates of ATCC
8739 and all three chimeric strains and shows a proportionally far
greater effect on MG1655 and the chimeras (B and C) containing
the rph frameshift than on ATCC 8739 (Fig. 5C and D).

Effects of ellagic acid on MG1655 and ATCC 8739. Ellagic acid
is a naturally occurring tannin that has been shown to inhibit
bacterial DNA gyrase in vitro (34) and exhibits modest antibacte-
rial activity in vivo (34, 35). In both our initial screens and fol-
low-up experiments, we found that exposure to sublethal concen-
trations of ellagic acid (ELLA) causes a lag of several hours in the
growth of both MG1655 and ATCC 8739 cells but that the lag for
any given concentration of ellagic acid is much longer in MG1655
(Fig. 6D). Our application of GLINT to identify the genetic basis
for the differing susceptibilities of the strains to ellagic acid iden-
tified several regions with significant, and roughly equal, contri-
butions (Fig. 3). Surprisingly, in light of the actual differences in
growth in an ellagic acid-containing medium between MG1655
and ATCC 8739 (which strongly favor ATCC 8739), we identified
loci with fitness effects (assessed by GLINT) in either direction
(that is, those predicted to increase or decrease the fitness of ATCC
8739 upon transfer from MG1655). Detailed characterizations of
two such cases are shown below. One should note that the condi-
tion referred to here as “ellagic acid” is in fact a compound stress
condition, comprising both ellagic acid and a high-pH medium to
avoid precipitation (see Materials and Methods for details); we

FIG 4 GLINT results for selections using 5-keto-D-gluconate (KDG) as a
carbon source. (A) Normalized selection scores (averaged with a running me-
dian over a 5-kb window), genome schematic, and conservation status be-
tween MG1655 and ATCC 8739 for the region surrounding the dominant peak
from the KDG selections. Negative selection scores indicate a lower fitness for
the ATCC 8739 variant at a given position. (B) Growth curves in MOPS-KDG
for the two baseline strains in this study, as well as for ATCC 8739 with a
genomic region transferred from MG1655 by using either a Kan cassette
downstream of yjgB (� idnDOT) or a cassette knocking out idnDOT

(�idnDOT). (C) Growth rates in MOPS-glucose or MOPS-KDG for the base-
line strains or strains with modifications to this genomic region. Growth rates
were calculated as described in Text S1 in the supplemental material; error bars
indicate 95% confidence intervals obtained by resampling the posterior distri-
bution of model parameters. Twin bars indicate the presence of two indepen-
dently transduced strains of a given genotype; a single broad bar indicates that
only a single strain of a given genotype was used. Growth rates of zero are
assigned to strains that failed to reach an OD of 2.0 � 10�6 within 48 h of
inoculation.
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refer to this condition as MOPS-GLU-ELLA for the sake of brev-
ity.

The bioH region. The GLINT profiles in ellagic acid show a
large negative peak in the vicinity of bioH (Fig. 6B), suggesting that
transfer of this region from MG1655 to ATCC 8739 would in-
crease fitness. Indeed, we constructed two test strains in the ATCC
8739 background where the bioH region had been transferred
from MG1655 and found that both chimeric strains showed sig-
nificantly shorter lag phases in MOPS-GLU-ELLA (Fig. 6) than
ATCC 8739 or MG1655. While the chimeric strains consisting of
ATCC 8739 with MG1655 bioH also show somewhat lower max-
imal growth rates (Fig. 6E), the difference in lag times is sufficient
to give the chimeric strains a competitive advantage for at least 15
doublings (more than enough to saturate the culture in our selec-
tions, and almost any other conceivable environment). Unlike the
KDG and LB cases discussed above, it is not clear from our find-
ings what feature of this region conveys an advantage to the ATCC

8739 cells that receive it (we refer to this region as the bioH region
simply as a landmark, not to imply some causal role of bioH itself).
There are six small MG1655- and ATCC 8739-specific regions
within a 50-kb window centered on this peak, any of which might
provide the growth phenotype observed here. In a GLINT appli-
cation where an investigator wishes to determine precisely what
genetic difference between the two strains gives rise to the fitness
effect observed, more-detailed analysis is straightforward; it can
be done either through the analysis of the exact transfer boundar-
ies of several transductants of this region (as in our investigation of
the LB case, above, and the pbl region, below) or by constructing
strains in the recipient background with each recipient-specific
region deleted, and transferring strains from the donor to the
recipient in which each donor-specific region is replaced by a se-
lective marker. Phenotypic characterization of either set of strains
would provide a more precise location for the genetic difference
responsible.

FIG 5 Effects of the MG1655 rph allele on the growth of ATCC 8739 cells. (A) Normalized selection scores (averaged over 5-kb windows) in the vicinity
of the pyrE peak in the “LB vs GLU” selection (see Table 1), along with the locations of sequence mismatches between ATCC 8739 and MG1655. Orange
bars under the selection scores show the extent of peak calls in this region. The region labeled waa contains waaQGPSBIJYZU. (B) Origins of genomic
material for the region shown in panel A in each of four independently transduced ATCC 8739 derivatives containing the pyrE region from MG1655
(tagged with a kanamycin resistance cassette between htrL and rfaD). Ticks along the x axis show points at which identity was evaluated (by PCR or
sequencing); regions of MG1655 origin are shown in blue, regions of ATCC 8739 origin in red, and regions where uncertainty exists (due to being between
tested locations) in purple. The numbering corresponds to the MG1655 genome for consistency with panel A. (C) Growth rates of MG1655, ATCC 8739,
and the ATCC 8739 derivatives containing the pyrE region from MG1655 (transductants A to C). Error bars indicate 95% confidence intervals based on
resampling of the posterior model distribution. (D) Ratio of growth rates in MOPS-glucose plus uracil to those in MOPS-glucose for each of the strains
for which results are shown in panel C. The color key applies to panels C and D.
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FIG 6 Growth of strains with the bioH region transferred in MOPS-glucose-ellagic acid medium. (A) Structure of ellagic acid (public domain image). (B)
Normalized selection scores (averaged over 5-kb windows) in the vicinity of bioH. The location of the kanamycin cassette used to transfer the region is shown.
GLINT peak calls are shown by orange bars. (C) Maximum growth rates of the two wild-type strains in MOPS-glucose-ellagic acid medium, compared with those
of two independent transductants in which the bioH region of MG1655 was transferred to ATCC 8739. Growth rates are scaled relative to the average for ATCC
8739 replicates from the same day. (D) Lag times in MOPS-glucose-ellagic acid medium for the strains for which results are shown in panel C. All times are offset
relative to the average lag for ATCC 8739 replicates from the same day. (E) Model-based growth curves for ATCC 8739 versus ATCC 8739-plus-MG1655 bioH
transfer strains upon transition into a medium containing ellagic acid. Using the definitions provided in the text, strains are assumed to show no growth until
their lag times and then to grow at their maximum specific growth rate for all subsequent times. The solid lines show the results from model fits; dashed lines show
95% confidence intervals (constructed for each strain using results from 1,000 draws of growth rates and lag times from the posterior distribution).
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The pbl region. Unlike all other peaks identified in the course
of this study, one region of the ellagic acid selection showed a pair
of significant peaks in opposite directions directly adjacent to each
other: a negative peak (one for which transfer from MG1655 to
ATCC 8739 is expected to be beneficial) at positions 2985880 to
2993880 (8 kb) and a positive peak (one for which transfer from
MG1655 to ATCC 8739 should be deleterious) from positions
3029730 to 3035180 (5.5 kb) (Fig. 7A). To characterize the effects
of transferring this region of the genome to ATCC 8739, we placed

a kanamycin resistance cassette upstream of the pbl pseudogene
and generated six independently transduced strains in which this
region was moved to the ATCC 8739 background (the boundaries
of the transferred regions for these six strains are shown in
Fig. 7B); the resulting chimeric strains are arbitrarily labeled with
the letters A through F. Three of the resulting strains, strains C to
E, show essentially no growth for 36 to 48 h upon transfer to a
medium containing ellagic acid (substantially worse than the
growth of the parental strain); one (strain A) shows a significantly

FIG 7 Growth of strains with the pbl region transferred in MOPS-glucose-ellagic acid medium. (A) Normalized selection scores in the vicinity of pbl (averaged
over 5-kb regions). Orange and green bars mark negative and positive peak calls, respectively. (B) Strain of origin of genetic material in the region shown in panel
A in each of six independently transduced ATCC 8739 derivatives (strains A to F) containing MG1655 DNA marked by a kanamycin resistance cassette upstream
of pbl. Ticks along the x axis show points at which identity was evaluated; regions of MG1655 origin are shown in blue, regions of ATCC 8739 origin in red, and
regions where uncertainty exists in purple. Note that the abscissas of these panels are not aligned. (C) Maximum growth rates of the two wild-type strains in
MOPS-glucose-ellagic acid medium, compared with those of the transductants diagramed in panel B. Dots at point 0 are shown for strains that did not grow
sufficiently for fitting during a 48-h experiment. Growth rates are scaled relative to the average for ATCC 8739 replicates from the same day. (D) Lag times in
MOPS-glucose-ellagic acid medium for the strains for which results are shown in panel C. All times are offset relative to the average for ATCC 8739 replicates
from the same day. Dots at point 0 are shown for strains that did not grow sufficiently for fitting during a 48-h experiment. Because the antibiotic resistance scar
also had a measurable effect on lag times in the ATCC 8739 background, growth data for a strain containing this scar but no transfer of genomic material from
MG1655 are also shown.

Freddolino et al.

834 jb.asm.org Journal of Bacteriology

http://jb.asm.org


higher growth rate than the parental strain in this medium but no
change in lag time; one (strain B) shows a slightly increased lag
time relative to the strain with the scar alone; and the last (strain F)
does not differ significantly from wild-type ATCC 8739 or the
strain with the transduction scar alone in either growth rate or lag
time. Thus, the presence both of an allele near pbl causing a de-
crease in fitness in ellagic acid medium upon transfer from
MG1655 to ATCC 8739 and of a separate allele causing a substan-
tial fitness increase are confirmed.

Analysis of the locations of transferred genomic material
shown in Fig. 7B permits more-detailed identification of the genes
responsible for this behavior. The only section of transferred DNA
unique to strain A (which showed enhanced growth) was between
positions 3034395 and 3052000 in the MG1655 genome. The
strains rendered unable to grow in ellagic acid medium (strains C
to E) share some portion of the region between positions 2970000
and 2981310, as does strain A, whereas the neutral strains (B and
F) do not. Both of these regions are largely homologous, but not
identical, between MG1655 and ATCC 8739. The most parsimo-
nious explanation for these observations is that the MG1655 allele
for some gene between positions 3034395 and 3052000 provides a
substantial growth benefit in ellagic acid medium when trans-
ferred into the ATCC 8739 background, and the MG1655 allele for
some gene between positions 2970000 and 2981310 is deleterious
upon transfer. The beneficial allele must suppress the loss of
growth caused by the deleterious allele, given the growth behavior
of strain A. If desired, a more-detailed analysis could be performed
by knockouts or targeted transfers of individual genes of interest
in these regions, but we did not do so for the present application
(the most obvious targets, based on relatively low sequence iden-
tity and annotated functionality, would be ygfZ for the beneficial
MG1655 allele and aas for the deleterious MG1655 allele). Our
analysis presented above assumes that during the transduction,
only a single, contiguous block of the genome was transferred
between MG1655 and ATCC 8739; we have observed a single case
where multiple recombination events lead to the incorporation of
two discontinuous, but nearby, sections of the donor genome
(P. L. Freddolino, unpublished data), and thus, it is also, in prin-
ciple, possible that some of our observations are explained by the
presence of multiple crossovers that could be revealed only by
further follow-up experiments.

The situation in the pbl region deserves particular attention
regarding the interpretation of GLINT selection scores, given that
it contains a strong negative peak and a weaker positive peak in
close proximity (separated by �35 kb). The results described in
the preceding paragraph indicate that the effects of the beneficial
MG1655 allele (negative selection score) suppress those of the
deleterious MG1655 allele, consistent with the magnitude of the
positive peak in this region being lower than expected for such a
strong phenotypic effect (that is, lack of viability under the selec-
tive condition). While the positive peak here nevertheless passed
the final size filter imposed by GLINT, the fact that it is relatively
narrow means that it is less robust to user decisions regarding
peak-calling thresholds than the other selection score peaks dis-
cussed above (see Text S2 in the supplemental material for further
information). Users of GLINT in other contexts should be aware
that in the (presumably rare) case of nearby loci with strongly
opposed effects, one of the two may show partly suppressed selec-
tion scores due to the other, which may necessitate examination of
the raw (rather than merged and filtered) significant probe calls if

unexpected results are observed during follow-up experiments.
These intermediate significance calls are also output by the GLINT
software.

Effects of homology on selection scores. The principal differ-
ence between the application of global linkage analysis described
here and previous applications such as ADAM (8) is the presence
of substantial variations in the level of homology of the donor and
recipient strains throughout the genome; thus, it is crucial to an-
alyze the effects of homology on the resulting selection scores and
to ensure that any biases are minimized during postprocessing.

Spearman correlations between the normalized selection score
data and local homology scores (using a variety of averaging win-
dow sizes for the homology) are shown in Fig. S2A in the supple-
mental material, alongside similar results from a recent ADAM
experiment performed using identical methods (data from refer-
ence 9). The striking pattern that emerges is that while there is no
monotonic correlation between selection score and homology, a
significant negative correlation exists in all cases between the local
homology and the magnitude of the selection score—that is, low-
homology regions show larger signals (no such correlation is ob-
served in the ADAM results, where the transfer is between strains
with no more than few dozen base pairs changed between them).
Investigation of the distribution of selection scores at different
levels of local homology shows that the distribution in all cases
remains roughly symmetric and centered at zero even for low
homologies, and thus, even for low-homology regions, the major-
ity of transfers show no significant effect.

More detailed exploratory data analysis suggested that ex-
tended MG1655-specific portions of the genome showed particu-
larly high variances in selection scores and, more importantly,
high autocorrelations. Both observations can be easily understood
as follows: in ADAM, where one strain of interest is a direct de-
scendant of the other, a 1:1 mapping exists between essentially all
positions on the donor and recipient genomes, and thus, each
transposon insertion is representative of an equal-size chunk of
the genome. In cases where a large insertion exists in the donor
strain, however, any transposon insertions in the donor strain
within that insertion will be indistinguishable in the recipient
strain, and thus, when the transposon locations are mapped to the
donor strain genome, the effects of all transposon insertions in a
given donor-specific region should be highly correlated. In the
nonnormalized GLINT selection score profiles, this phenomenon
manifests itself as the presence of highly correlated, and often
high-magnitude, scores in and around MG1655-specific regions.
A schematized example of this phenomenon is shown in Fig. S3 in
the supplemental material.

The above observations regarding the effects of donor-specific
insertions suggested a highly effective set of corrections for the
analysis of GLINT data: any donor-specific regions are mapped to
a single location (to equalize the weight given to different trans-
poson insertions), and then the magnitudes of scores as a function
of the distance to the nearest large insertion are rescaled to stan-
dardize their distribution (to correct for the increased variances
observed adjacent to MG1655-specific insertions). In practice, the
latter step is done in GLINT by fitting a loess model to the probe-
level distance-versus-selection score magnitude data and then di-
viding the raw selection score at each probe by the magnitude
predicted at that homology by the loess model. As shown in Fig.
S2B in the supplemental material, the correction applied is effec-
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tive in eliminating the observed correlation between selection
scores and local homology.

Despite the presence of some increased noise in low-homology
regions, among the small number of examples that we studied in
detail, we were able to identify fitness contributions from loci
located in low-homology regions (the idnDOT operon in KDG
medium described above), a point mutation adjacent to a low-
homology region (the rph frameshift in glucose minimal me-
dium), differences located in a high-homology region (the bioH
region in ellagic acid-containing medium), and fitness differences
due to nearby loci with opposed effects located in a high-homol-
ogy region (the pbl region in ellagic acid-containing medium).
Thus, with appropriate corrections, our method does not appear
constrained to high- or low-homology regions and additionally is
able to identify multiple strongly contributing loci when they
exist.

DISCUSSION

Global linkage analysis, exemplified by the original ADAM
method, provides a general-purpose method for identifying ge-
netic differences between closely related organisms that give rise to
selectable phenotypes. Here we provide a corresponding method,
GLINT, for identifying similarly meaningful genetic differences
between distantly related bacterial strains, using global linkage
analysis followed by appropriate computational postprocessing.
The method described here is highly modular, allowing it to be
applied to a broad range of microbial systems. All that is required,
in principle, are genome sequences for both strains of interest (of
sufficient quality to align the genomes to each other), a method for
generating a library of genomic DNA from one of the two strains,
tagged with a selectable marker (the primary library), a method
for transferring random portions of that library to the genome of
the second strain (the secondary library), and a method for ana-
lyzing the abundances of different tagged library elements in dif-
ferent populations of the secondary library. In the present appli-
cation, we used Tn5 transposon insertions to generate the primary
library, P1vir transduction to generate the secondary library, and
two-color tiling microarrays to measure insert abundance. De-
pending on the species and strains of interest, a wide variety of
other options could be chosen (for example, the use of a different
transposon, such as mariner [36], for primary-library generation,
the use of a method such as conjugation for secondary-library
generation, or the use of high-throughput sequencing instead of
microarrays to quantify marker abundance). The only strong con-
straints on the selection of specific methods for each of these steps
are that the primary library must cover the donor strain’s genome
as broadly and uniformly as possible and the secondary library
should contain replacements of homologous portions of the re-
cipient strain’s genome with the corresponding region of the do-
nor strain. The software pipeline described here should be appli-
cable, after minor preprocessing, to any global linkage analysis
data set, since the primary considerations in its design are invari-
ant for any choice of specific methods for implementing the work-
flow described above.

Under all three conditions that we studied, the transfer of
genomic regions identified by GLINT provided strong pheno-
types that were consistent with the direction predicted by the anal-
ysis. Nevertheless, in the GLU-versus-LB and ELLA-versus-LB
cases, the particular regions on which we focused did not com-
pletely explain the differences in growth characteristics between

strains, and other unexplored peaks do exist in the GLINT fitness
score profiles (Fig. 3). Further contributors to the fitness differ-
ences between these strains could easily be identified by further
follow-up experiments targeting other selection score peaks, or by
a new GLINT experiment applying the same selections to a sec-
ondary library in which characterized points of difference between
the strains had already been transferred (a procedure similar to the
ADAM procedure followed to identify a pair of epistatically inter-
acting mutations in reference 9). While it is not clear from the
present data what is the weakest phenotypic difference (in terms of
relative fitness) that can be identified using this method, equiva-
lent footprinting methods in transposon-mutagenized libraries
have enabled the detection of growth rate differences on the order
of 10% (9) or antibiotic MIC changes of 1.5-fold (14). One should
expect a similar level of sensitivity from GLINT. It should also be
noted that GLINT, like ADAM, does not distinguish between phe-
notypic differences due to changing expression patterns and phe-
notypic differences due to changes in the functional molecules
(protein or RNA) themselves; rather, the location of any genetic
difference causing a phenotypic difference will be detected.

An inherent asymmetry in the design and execution of GLINT
experiments should also be kept in mind: the secondary library, by
construction, will in general contain cells with all but one small
genomic region derived from the recipient. This means that for
complex traits, cases where multiple alleles contribute indepen-
dently or show epistatic interactions between the variants present
in the recipient strain will be readily identified due to the large
fitness effects of perturbing them, but epistatic interactions that
are mechanistically present only between portions of the donor
genome will not show their expected effects (except in the case of
antagonistic epistasis within the donor genome, in which the vari-
ants present there may show their individual effects when placed
in the recipient genome). Thus, for example, a trait that arises only
due to synergistic interactions within the donor genome may not
have its genetic basis properly mapped by GLINT. The possibility
of new interactions between loci that arise only when a donor-
specific variant is placed in the recipient genome must also be
considered; in such cases, any phenotypic effects of the interaction
will appear in the GLINT signal as centered on the donor locus
that causes the interaction. As a practical matter, all of the above
considerations suggest that the strain with the more “interesting”
or extreme phenotype, if such a distinction can be made, should be
the recipient strain in any GLINT pairing, since this will maximize
the sensitivity of the method in detecting any recombination event
that alters this phenotype.

The applicability of the method described here to other pairs of
bacterial strains or species hinges primarily on the ability of the
method chosen for the generation of the secondary library to
transfer all portions of the donor genome into the recipient back-
ground: any insertions whose effects should be evaluated cannot
be larger than the size of the region transferred (tens of kilobases,
for P1 transduction [18]), and the strains under consideration
must possess enough homology to allow homologous recombina-
tion at sites throughout the genome. At present, insufficient data
are available to provide a hard cutoff for how distantly related
strains may be to satisfy the latter condition. It is evident from our
results that GLINT performs fairly efficiently even in the vicinity
of strain-specific insertions and low-homology regions: the
idnDOT insertion identified as crucial to growth on KDG, for
example, is contained in a 16-kb window (in the MG1655 ge-

Freddolino et al.

836 jb.asm.org Journal of Bacteriology

http://jb.asm.org


nome) in which only �50% of bases match between MG1655 and
ATCC 8739; in addition, idnDOT itself is part of a 5-kb MG1655-
specific insertion and is adjacent to 8-kb and 29-kb MG1655-
specific insertions. Nevertheless, as seen in Fig. 4A, GLINT pro-
vides a strong indicator of the presence of a key difference between
the strains in this particular low-homology region. Extrapolating
from this experience, it appears likely that P1 transduction is suf-
ficiently efficient even for low-homology regions, so that even the
presence of large strain-specific regions does not necessarily pose a
barrier. The only regions for which effects on fitness differences
are likely to be missed are those in insertions that are simply too
large to be transferred at all by the secondary-library generation
method in use (that is, around 90 kb for P1 transduction [18]).
This constraint should be considered in the context of extremely
distantly related strains that might be investigated using GLINT.
For example, Welch et al. (37) showed that in pairwise compari-
sons with MG1655, a uropathogenic E. coli strain (CFT073) and
an enterohemorrhagic E. coli strain (EDL933) show as few as
52.2% of predicted proteins in common, and only 39.2% are com-
mon to all three strains. However, in spite of this extremely low
overall homology, only 5 to 10 islands specific to each strain are
large enough to be nontransferable using P1 transduction (see Fig.
3 of reference 37). While we have not attempted to identify fitness
differences arising between such distantly related strains, in prin-
ciple we expect that any important alleles outside of these very
large strain-specific regions should be detectable using GLINT,
and the use of a less size limited secondary-library generation
method might remove this barrier.

GLINT should thus be useful in comparisons even between
very distantly related strains, provided that a few limitations are
kept in mind. Ideally, investigators attempting to apply the
method to very distantly related strains, or to a cross-genus com-
parison, should confirm (preferably by footprinting of transposon
insertion locations) that the secondary library contains suffi-
ciently broad coverage of the recipient strain that all potential
regions of interest are close to one or more marker insertions
(with “close” defined relative to the sizes of the genomic regions
transferred during secondary-library generation). This is a fairly
simple quality control step for the secondary library that should
make it clear which genomic regions will not be covered by GLINT
results. Even if such regions exist, GLINT will provide usable re-
sults for the remainder of the genomes under comparison. In such
a case, the absence of a sufficiently strong difference identified in
GLINT-comparable regions to account for an observed pheno-
typic difference could itself be taken as evidence that more atten-
tion must be focused on the very large insertions, ruling out con-
tributions from the remainder of the genome.

One other possible complication that arises during the analysis
of GLINT data is that transposon insertions are frequently not
phenotypically neutral, and direct effects of insertions could in
principle either mask an important phenotypic difference be-
tween strains or give rise to a false-positive result if an insertion
were itself beneficial under the selective condition of interest. The
former case (a transposon insertion masking the effects of an im-
portant allele) is unlikely to pose a problem in a sufficiently dense
secondary library; given that P1 transduction spans linkage dis-
tances of tens of kilobases, there will be several distinct labeled
strains in the secondary library near any particular locus of inter-
est, and even if one or more of them contain a transposon inser-
tion that masks the phenotype of interest, the effects of that locus

will still be detectable from the other nearby strains. The possibil-
ity of a transposon insertion directly causing a change in fitness
that is strong enough to appear in the GLINT fitness profile, how-
ever, does remain, and could in principle result in a false-positive
result (although the signal due to such an insertion would still
have to survive averaging with many other adjacent insertions that
would show no such effect). We have never observed such a false-
positive result in applications of either ADAM or GLINT, but the
possibility of such an insertion underscores the need for validation
of any loci identified by GLINT using follow-up experiments on
independently generated chimeric strains.

A method conceptually similar to GLINT, extreme quantita-
tive trait locus mapping (X-QTL) (38), has also recently been de-
veloped in Saccharomyces cerevisiae. X-QTL makes use of yeast
genetics to generate a large pool of haploid progeny from a cross
between two strains of interest and then applies high-throughput
sequencing or a custom microarray to measure the allelic frequen-
cies in this pool under selective versus unselective conditions. X-
QTL and GLINT address similar problems in yeast and bacteria,
respectively, using methods for generating libraries of hybrid
strains appropriate to the organism being used; a few practical
differences in the application and interpretation of the methods
also exist. To our knowledge, there is no X-QTL analog of the
computational postprocessing used in GLINT to correct for the
effects of low-homology regions, although we have shown that
such a correction is important for the comparison of naturally
occurring strains of E. coli. We are not in a position to judge
whether similar corrections would be useful in yeast populations.
The methods will also differ substantially in their behavior sur-
rounding complex polygenic traits. Consider a trait involving the
interaction of n loci; in X-QTL, the hybrid library will contain
strains with a roughly binomial distribution of the number of
these loci obtained from each parental strain, and thus, library
strains with 1 or n � 1 of those loci from one parent will be
relatively rare. In GLINT, on the other hand, the library will con-
tain almost entirely strains with either n or n � 1 alleles at these
loci from the recipient strain, and zero or 1 from the donor strain.
Thus, in principle, GLINT should provide a more-focused picture
of the most strongly contributing alleles in the context of the re-
cipient strain background, whereas X-QTL will provide informa-
tion on the effects of each allele averaged over a distribution of
genotypes at other contributing loci. Neither of these behaviors
seems inherently superior (and because these behaviors arise due
to the necessary genetic manipulations of the host rather than due
to some design choice, they cannot be easily altered in any case),
but they should be kept in mind when one is interpreting results
obtained using either of these methods.

In summary, we have extended a previously developed global
linkage analysis method to enable rapid identification of the ge-
netic differences responsible for differing phenotypes of naturally
occurring bacterial strains. Using GLINT, we are able to identify
the genetic bases of both simple and complex traits, present in
high- or low-homology regions of the genomes of distantly related
strains. The applicability of this family of methods is limited only
by the presence of suitable methods for generating the requisite
tagged library in one strain of interest and for performing homol-
ogous transfer of genomic segments from the tagged library to the
second strain. These methods will be useful in any case where
researchers seek to identify the genetic basis of a selectable trait in
a specific microbial population. Two particularly pertinent exam-
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ples are the identification of specific genetic variations giving rise
to different levels of antibiotic resistance in natural or clinical
populations (39) and the optimization of strains for biosynthetic
applications by improving their usage of particular carbon sources
or their tolerance of toxic intermediates or by-products (23,
40, 41).
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