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Summary paragraph: The origin of the Moon’s large-scale topography is important for 

understanding lunar geology
1
, lunar orbital evolution

2
, and the Moon’s orientation in the sky

3
.  

Previous hypotheses for its origin have included late accretion events
4
, large impacts

5
, tidal 

effects
6
, and convection processes

7
.  However, testing these hypotheses and quantifying the 

Moon’s topography is complicated by the large basins that have formed since the crust 

crystallized.  Here we estimate the low-order lunar topography and gravity spherical harmonics 

outside these basins and show that the bulk of the degree-2 topography is consistent with a crust-

building process controlled by early tidal heating throughout the Moon.  The remainder of the 

degree-2 topography is consistent with a frozen tidal-rotational bulge that formed later, at a semi-

major axis of 32 Earth radii.  The probability of the degree-2 shape having these two separate 

tidal characteristics by chance is less than 1%.  We also infer that internal density contrasts 

eventually reoriented the Moon’s polar axis 36  4°, to the present configuration we observe 

today.  Together, these results link the geology of the near and far sides, and resolve long-

standing questions about the Moon’s low-order shape, gravity, and history of polar wander. 
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Main Text 

 

The theory of equilibrium figures of rotating fluid bodies is a classic problem in geophysics, and 

it has been helpful in understanding the shapes of the Sun and planets.  However, the origin for 

the Moon’s shape has remained an open problem in the last century
2,6,8-10

, and the body’s 

deviations from any simple tidal-rotational (spherical harmonic degree-2) figure are large
11

.  This 

difficulty is surprising given the Moon’s presumably simple early thermal history: born hot and 

quickly cooled, one might expect the Moon to be described by a simple figure of equilibrium. 

 

Researchers have traditionally suggested that the Moon’s degree-2 spherical harmonic gravity 

coefficients, which have been used as proxies for the degree-2 shape, are especially large when 

compared to higher degree coefficients
9,12

.  Figure 1 shows a power law or “Kaula’s rule” fit to 

degrees n = 3 to 50 for the Moon’s gravity
13

 and topography data
14

.  The power at degree 2 is 4.5 

times and 2.6 times the power expected from extrapolating the best-fit power law, for gravity and 

topography, respectively, supporting the idea that the degree-2 coefficients are unique.  Indeed, 

the fraction of excess power for topography is greater than the excesses for Venus, Earth, and 

Mars (SI).  Authors have tried to interpret the Moon’s strong degree-2 power as a frozen tidal-

rotational state inherited from when the Moon was closer to the Earth, known as the fossil bulge 

hypothesis
6
. An open problem, however, has been that the ratio of the C2,0 and C2,2 spherical 

harmonic coefficients is different from the expected value by a factor of 2.6 (refs. 2,10). 

 

Adding to the fossil bulge idea and motivated by tidal processes in Europa’s ice shell
15

, Garrick-

Bethell et al.
16

 inferred that the farside highlands crust has a degree-2 shape explainable by tidal 

heating during the magma ocean epoch.  However, they left open the rest of the Moon’s shape, 

the Moon’s orientation history, and the details of gravity and topography when they are 

examined together.  In particular, they did not reconcile their results with the classic fossil bulge 

hypothesis
10

, or explain its anomalous C2,0/C2,2 ratio.  To address these problems and create a 

unified explanation for the Moon’s degree-2 shape and orientation, we will consider two effects: 

the Moon’s largest basins, and the reference frame in which we analyze lunar topography. 
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The South Pole-Aitken basin (SPA) is the largest
17

, deepest
1
, and oldest lunar basin

5
, and its 

degree-2 power affects our interpretation of the primordial degree-2 shape.  In addition to SPA, 

we focus on the 12 largest basins that produce obvious local anomalies in topography, crustal 

thickness, or gravity (in all, 22% of the surface, Fig. 2a-c).  To determine the Moon’s degree-2 

shape without these basins, we fit spherical harmonics of degrees n = 0 to 5 to data outside their 

boundaries.  Figures 2d and 2f show the Moon’s topography and appearance after rotation to the 

reference frame where the only non-zero degree-2 terms are C2,0 and C2,2 (with C2,0 < 0), 

hereafter the “principal frame.”  If the Moon’s outer figure, as opposed to its internal density 

distribution, once controlled the lunar moments of inertia (revisited later), this would be the 

reference frame that once faced Earth.  This frame’s largest principal axis is at (-6   4°, 30   1° 

E), its polar axis is at (54   5°, 309   6°), and its intermediate axis is at (-35.1   5°, 296.4   

4°) (Figs. 2a-c). 

 

Without the largest basins, the Moon’s topography power spectrum displays substantially less 

variance at low degrees.  Performing a power-law fit for n = 3 to 50 using the new power at 

degrees 3, 4 and 5 (Fig. 1, dashed red line), we find the degree-3 and degree-4 power is much 

closer to the predictions from Kaula’s rule.  However, the degree-2 power remains in excess by a 

factor of 2.8.  The Moon’s strong degree-2 power, even without its large basins, implies that 

purely local explanations for the degree-2 character of the farside, such as a late-accreting second 

moon
4
, are less plausible. 

 

To address the origin of the Moon’s primordial degree-2 shape, we must also consider the degee-

2 gravity potential of the Moon (Fig. 2b).  If we again fit degree-2 coefficients outside the basins, 

we find that gravity’s largest principal axis shifts only 5 ± 2°, from (0°, 180° E) to (-5 ± 2°, 182 

± 1° E), and its polar axis only 5   2° to (85   2°, 203   35°) (SI Table S7).   In addition, the 

degree-2 gravity power decreases by a small amount, 12% (Fig. 1, blue dot).  The weak effect of 

basins on the degree-2 gravity potential is partly due to SPA’s nearly-compensated state
18

, and 

SPA’s large contribution (45%) to the area removed. 

 

The gravity and topography principal frame calculations above reveal a previously unappreciated 

but critical problem in understanding the lunar shape: while both gravity and topography have 
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anomalously high degree-2 power, the principal topography and gravity reference frames do not 

align presently (i.e. using global data), and nor do they when using degree-2 harmonics fit 

outside the largest basins.  Using global data, the largest gravity and topography principal axes 

are separated by 34°, and using data outside large basins, the largest principal axes are separated 

by 30° ± 5°.  Therefore, other non-basin events distorted the Moon from any single, simple 

equilibrium figure in either gravity or topography, making it ambiguous which data set 

represents the primordial frame where any tidal-rotational effects were acquired. 

 

However, a simple argument suggests that topography’s principal frame formed first.  Degree-2, 

tidally-produced crustal thickness variations
16

, if they exist, must have developed early when the 

lithosphere was weak enough to permit significant tidal flexing, and will therefore be 

isostatically compensated (with a relatively small gravity signature).  Furthermore, any 

uncompensated fossil component of shape, if it exists, must have frozen-in after the lithosphere 

cooled and strengthened, and degree-2 crustal thickness growth largely ceased.  Therefore, as 

long as the crustal thickness variations produced degree-2 topography that dominated any 

subsequent fossil topography, and the principal axes remained mostly fixed while forming, 

topography’s principal frame will be the Moon’s first-established Earth-oriented principal frame.  

Below we will demonstrate that topography components from both crustal-thickening 

(compensated) and fossil-bulge (uncompensated) processes likely exist in topography’s principal 

frame, with the crustal component being larger, and that each topography component has the 

C2,0/C2,2 ratio expected from each unique process. 

 

To assess the nature of the degree-2 topography in the primordial, basin-removed principal 

topography frame, we examine the associated gravity harmonics in the same frame (Fig. 2e).  In 

this frame, we use a joint analysis of gravity and topography to find that neither completely 

compensated nor completely uncompensated topography can alone explain the C2,0 and C2,2 

gravity coefficients (SI Section S4). However, in Table 1 we show that a linear combination of 

compensated and uncompensated topography is consistent with gravity and topography 

observations; the topography is effectively 80% compensated (shown graphically in SI Fig. S9). 
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Table 1.  Solution for the combination of compensated and uncompensated topography to match the C2,0 

and C2,2 gravity and topography harmonics shown in Fig. 2d and 2e.  Compensated and uncompensated 

topography are associated with crustal thickness variations and a frozen fossil bulge, respectively. The 

solution assumes a crustal density 2550 kg/m
3
, mantle density 3200 kg/m

3
, mean lunar density 3340 

kg/m
3
, and a mean crustal thickness of 40 km

19
.  C2,0 values do not sum to -0.65 km due to rounding. 

  Compensated topography ( 1σ) Uncompensated topography ( 1σ)  

C2,0  -0.53 ± 0.07 km -0.11 ± 0.04 km  
C2,2   0.40 ± 0.06 km  0.11 ± 0.03 km  

C2,0/C2,2  -1.3 ± 0.2  -1.0 ± 0.3  

 

 

Having established that both fossil (uncompensated) and crustal thickness (compensated) 

topography components are required, we can examine their coefficient ratios to test their origins.  

The ratio of C2,0/C2,2 for normalized gravity and topography coefficients is -0.96 (-1.0) for 

frozen tidal-rotational fossil bulges in low-eccentricity synchronous orbits (and normalized polar 

moment of inertia = 0.4)
10,12,20

.  The classic problem has been that the observed present-frame 

ratio is very different from -1.0: -2.6 for global gravity
2,10

 (Fig. 2b) and -6.1 for global 

topography (Fig. 2a).  However, we must now also consider the expected topography ratio for 

tidally-controlled crustal thickness variations
16

.  Unlike the case for fossil topography, this ratio 

is variable, depending on the amount of tidal dissipation.  While dissipation depends on a 

number of parameters that are difficult to estimate, such as lower crustal viscosity, we find that 

for 114 model calculations spanning a variety of conditions, C2,0/C2,2 approaches -1.1 to -1.3 as 

the mean global tidal heat flux increases above 50 mW/m
2
 (Fig. 3). 

 

From Table 1, we see the ratio C2,0/C2,2 for compensated topography in topography’s principal 

frame is -1.3 ± 0.2, and for uncompensated topography, the ratio is -1.0 ± 0.3.  These values are 

consistent with the ratios predicted for a crust sculpted by tidal heating, and a frozen fossil-bulge, 

respectively.  A similar spherical harmonic coefficient fit to a model of crustal thickness
19

, with 

large basins removed, yields C2,0/C2,2 = -1.1 ± 0.2 (SI Fig S10), in good agreement with the 

compensated topography ratio.  The observed topography C2,0/C2,2 ratios are robust (compared to 

their uncertainties) to the inclusion or exclusion of different basins, as well as increases in the 

size of SPA up to 50% (30% for other basins), and changes in the maximum fit degree (SI Table 

S4).  If we had not removed the effects of large basins, the solution for compensated and 
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uncompensated topography in the global-topography principal frame yields C2,0/C2,2 values of     

-2.0 and -6.1, respectively (SI Table S10).   

 

To assess the likelihood that the unique C2,0/C2,2 ratios arise by chance, we performed Monte 

Carlo simulations with topography and gravity with the same statistical properties as the 

observed data.  This topography and gravity could arise from any source, including early mantle 

convection processes, or the process that produced the Moon’s center-of-mass/center-of-figure 

offset.  We find that the probabilities of the compensated and uncompensated topography 

C2,0/C2,2 ratios randomly falling between -1.1 to -1.3, and -0.9 to -1.1 (ranges taken to represent 

the predicted values for each mechanism), are 8% and 5%, respectively (SI Section 9, Figs. S12 

& S13).  The joint probability is only 0.3%, suggesting the degree-2 shape is tidally produced. 

 

In the principal topography frame, we also obtain gravity terms S2,1, C2,1, and  S2,2, which 

constitute 59% of the basin-removed degree-2 gravity power (Fig. 2e).  Since these terms are 

associated with zero topography, they arise from subsurface density anomalies that must have 

developed after a rigid lithosphere formed.  Dynamically-produced hemisphere-scale density 

changes have been proposed
21-23

 , and they would likely have degree-2 power that could have 

affected the Moon’s degree-2 tidal signatures.  We can estimate the probability that the Moon’s 

tidal characteristics would survive such an event.  For example, starting with just the C2,0 and 

C2,2 gravity and topography values for the basin-removed Moon, a randomly placed hemisphere-

sized gravity anomaly that yields the same total degree-2 gravity power as the basin-removed 

Moon, permits survival (<30% alteration) of the compensated topography C2,0/C2,2 ratio 92% of 

the time, and the uncompensated ratio 37% of the time (SI Section S10).  This simple model 

demonstrates that if the Moon’s unique tidal signatures form (which is seldom by chance, 

above), their recovery is quite plausible despite subsequent internal gravity changes.  This is 

largely because the C2,0/C2,2 ratios are dependent on topography, not gravity alone. 

 

Our tidal calculations indicate that above semi-major axis a  25 Earth radii (RE), no realistic 

models can produce significant tidal heating, and below a  10RE, the orbital evolution 

timescales (<1 My) are too short to have built a significant amount of crust.  The uncompensated 

C2,0 and C2,2 values imply fossil freeze-in at a  32RE, or 30RE allowing for 18% relaxation after 
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4 billion years
24

.  This freeze-in location is larger than 25RE (above), and therefore consistent 

with the requirement that the lithosphere forms after the crust-building epoch.  The location is 

also consistent with freeze-in before the Cassini state transition (30-34 RE)
25

, which would have 

affected the lunar shape.  Nominally, it takes roughly 200-300 My for the Moon to evolve to 

32RE after accretion
26

. This lithosphere development timescale is consistent with estimates of 

100-200 My for complete magma ocean crystallization, based on radioisotope studies and 

thermal-modeling
27-29

.  By combining timescales such as these, and our inferred fossil formation 

position at a  32RE, the orbital evolution and tidal properties of the early Earth-Moon system 

can be further constrained. 

 

Finally, we find the principal topography frame places the Moon’s paleopole in northern 

Oceanus Procellarum (54   5°, 309   6°), and about 30° from the center of the thorium-rich 

Procellarum KREEP Terrane (SI Fig. S14).  This paleopole location may be testable by using the 

poles of magnetized portions of the crust
30

.  Eventually, the additional gravity in C2,1, S2,1, and 

S2,2, plus the basins we have removed, changed the lunar moments of inertia, and reoriented the 

Moon to the present frame we see today. While the details and timing of these later processes are 

not yet fully understood, a self-consistent origin of the primordial degree-2 shape helps provide a 

framework for understanding the many subsequent events in lunar evolution. 
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Methods Summary: 

 

Spherical harmonic coefficients were fit outside large basins with a least squares algorithm. 

Monte Carlo methods were used to estimate uncertainties that arise from the non-orthogonal 

nature of spherical harmonics calculated on a partial sphere.  The maximum spherical harmonic 

degree of the fit was determined by the largest degree that minimized the total error, before the 

solution became unstable due to the size of the unfit area inside the South Pole-Aitken basin.  

The equations for the amounts of degree-2 compensated and uncompensated topography are 

based on the work of ref. 38.  The probability of finding the characteristic compensated and 

uncompensated topography C2,0/C2,2 ratios by chance is based on the statistics of the ratios of the 

Moon's higher degree topography harmonics.  The tidal heating calculations are based on the 

methods discussed in ref. 16.  See Supplementary Information for more details. 
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Figure captions: 

 

Fig. 1. Lunar topography and gravity power, with best-fit power laws for degrees n = 3 to 50.  

The blue dots show the power using data outside of large basins ( 1σ).  The blue dot at degree-1 

for gravity is due to a small displacement of the lunar center of mass when the basins are 

removed. 

 

Fig. 2. The topography, gravity, and appearance of the Moon, with black lines illustrating basins 

removed in the analysis.  (A) Lunar topography. Black circles, triangles, and squares are the 

primordial minimum, intermediate, and maximum principal moment of inertia axes, respectively, 

respectively (also used in parts B and C, Table S7).  (B) Expansion of degree 2 to 360 lunar 

gravity potential coefficients (multiply by 2.823 x 10
6
 m

2
 s

-2
 to obtain surface potential). (C) 

Lunar 750-nm spectral reflectance, with data above 75° latitude blacked out.  (D) Part A after 

rotation to the topography principal frame, using rotation angles calculated from data outside of 

large basins. (E) Part B after rotating to the topography principal frame, as in part D.  (F) Part C 

after rotation to the principal topography frame, as in part D. 

 

Fig. 3. The ratio C2,0/C2,2 for crustal thickness (or compensated topography), as a function of 

global mean tidal heat flux, for 114 model cases considered (Table S13).  The observed ratio of       

-1.3  0.2 (1σ, dashed lines) for compensated topography outside of large basins is illustrated 

(Table 1).  Inset: Model crustal thickness map with C2,0/C2,2 = -1.26 (SI Section S8). 

Supplementary Information: 

Methods 

Figures S1-S14 

Tables S1-S13 

References (31-53)
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S1. Topography and gravity power spectra methods 

 

S1.1 - Background and methods 

 

A body’s gravitational potential U can be represented by a sum of spherical harmonic functions, 

 

𝑈 =
𝐺𝑀

𝑟
   

𝑅

𝑟
 
𝑛

𝑃𝑛,𝑚 (sin𝜑) ×  𝐶𝑛,𝑚 cos 𝑚𝜃 + 𝑆𝑛,𝑚 sin𝑚𝜃 

𝑛

𝑚=0

∞

𝑛=0

 

 

, (S1) 

and its topography t can be represented similarly, 

 

𝑡 = 𝑅 +   𝑃𝑛,𝑚 (sin𝜑) ×  𝐶𝑛,𝑚 cos 𝑚𝜃 + 𝑆𝑛,𝑚 sin𝑚𝜃 

𝑛

𝑚=0

∞

𝑛=1

 

 

, (S2) 

where R is the planet’s reference radius, r is the observation radius, G is the gravitational 

constant, M is the planet’s mass, Pn,m are associated Legendre polynomials of degree n and order 

m, Cn,m and Sn,m are the normalized spherical harmonic coefficients,  is latitude, and  is 

longitude. The harmonics are normalized by equation 3 of ref. 31.  We define the power W by 

(ref. 31), 

 

𝑊 𝑛 =  𝐶𝑛,𝑚
2 + 𝑆𝑛,𝑚

2

𝑛

𝑚=0

 

 

. (S3) 

The power spectra of planetary topography and gravity can often be approximated by a power 

law, known as Kaula’s rule
32

,   

 
log10 𝑊 = 𝑎log10 𝑛 + 𝑏  . (S4) 

 

Equation S4 was used to calculate the best-fit lines shown in Fig. 1 in the main text. 

 

S1.2 - Uniqueness of the Moon’s degree-2 power 

 

To assess the uniqueness of the Moon’s degree-2 power relative to other bodies, we can compare 

the lunar power spectrum to gravity and topography spectra of Venus, Mars, and the Earth (for 

an earlier analysis of this problem see ref. 33).  Before we do so, we remove the rotational 

hydrostatic component from the Earth and Mars from their C2,0 terms.  For the Moon and Venus, 

the rotational deformation is small enough to be ignored.   

 

To estimate the hydrostatic flattening we first use the Darwin-Radau relation to estimate the fluid 

deformation Love number h2 from the polar moment of inertia C,  

 

𝐶

𝑀𝑅2
=

2

3
 1 −

2

5
 

5

ℎ2
− 1 

1/2

  

 

. (S5) 
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For Mars, we assumed C = 0.365MR
2
 (ref. 34) and for the Earth C = 0.3307MR

2
 (ref. 35).  The 

hydrostatic ellipticity is obtained from 

 
𝛿 − 𝜖

𝑅
=

1

2

𝑅3𝜔2

𝐺𝑀
ℎ2 

 

, (S6) 

where δ is the equatorial radius, 𝜖 is the polar radius, and ω is the planetary rotation rate. The 

ellipticity was then converted to the equivalent C2,0 value, which was subtracted from the 

observed topography.  For gravity, we subtracted the hydrostatic gravity coefficient C2,0 using 

 

𝐶2,0 =
𝐶 − 𝐴

𝑀𝑅2
=

1

3

𝑅3𝜔2

𝐺𝑀
𝑘2 , (S7) 

 

where k2 = h2 – 1, and A is the minimum principal moment of inertia. 

 

Figure S1 shows the best-fit power spectra (eq. S4) for degrees 3 to 50 for Venus, Earth, Mars, 

and the Moon with and without large basins.  Table S1 gives the best-fit power law coefficients a 

and b. To calculate the best-fit power law for lunar topography and gravity without large basins, 

we substituted the global degree 3 to 5 coefficients with the values shown in Tables S5 and S6.  

The methods used to calculate these coefficients and their uncertainties are discussed in Section 

S2. 

 

Table S2 shows the ratio of the observed degree-2 power and the power at degree-2 from 

extrapolating the best-fit power law for Venus, Earth, Mars, and the Moon (with and without 

large basins).  Using global data, the Moon’s degree-2 topography power is 2.6 times higher than 

its best-fit power at degree 2.   Excluding large basins, the degree-2 topography power is 2.8 

times higher than its best-fit power extrapolated to degree 2, which is still higher than the any of 

the other bodies shown.  This implies that the Moon’s degree-2 topography power can still be 

considered “anomalous” even when large basins are removed. 

 

Interestingly, the Earth, Mars and the Moon all show excess degree-2 gravity power, with 

observed/extrapolated power ratios of 4.4, 6.4, and 4.5, respectively (Table S2).  Using a lunar 

gravity power law excluding large basins, the degree-2 power is in excess by a factor of 5.2.  On 

Mars, the excess degree-2 power can be explained by Tharsis.  To demonstrate this, we removed 

Tharsis according to the methods of Zuber and Smith (1997)
36

.  We find that the degree-2 

observed/extrapolated power ratio for Mars is reduced to 0.23 and 0.48 for topography and 

gravity, respectively, when Tharsis is removed.  For the Earth, there are several theories for the 

origin of the low degree gravity power (e.g. ref. 33), including mantle density anomalies. 

S2. Spherical harmonic coefficient estimation methods 

 

S2.1 - Methods 

 

The Moon’s large basins are local features that have spherical harmonic power at all degrees, and 

we seek an estimate of the Moon’s low-degree coefficients without their contributions.  To 

estimate topography and gravity harmonics outside of these basins, we performed least-squares 

regressions to data outside of their boundaries (defined in Section S2.2).  The least squares 
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method was tested on global data sets and reproduced the input coefficients with errors < 0.01%.  

Uncertainties associated with the non-orthogonal nature of spherical harmonics on a partial 

sphere are discussed in Section S2.6. 

 

Using the estimated degree-2 harmonics, we calculate the “principal” reference frame that brings 

the minimum moment of inertia into the Earth-Moon line, and the maximum moment of inertia 

into the polar axis (for topography, the assumption is that the topography influences the moment 

of inertia).  This reference frame has only C2,0 and C2,2 terms (with C2,0 negative), and this frame 

is calculated by diagonalizing the following matrix, using unnormalized coefficients (e.g. ref. 

37): 

 

 
 
 
 
 

1

3
𝐶2,0 − 2𝐶2,2 −2𝑆2,2 −𝐶2,1

−2𝑆2,2
1

3
𝐶2,0 + 2𝐶2,2 −𝑆2,1

−𝐶2,1 −𝑆2,1 −
2

3
𝐶2,0 

 
 
 
 

 . (S8) 

 

The resulting eigenvectors were then converted into three sequential rotations required to bring 

the present Earth-facing reference frame into the new principal frame.  As shown in Fig. S2, the 

rotation angles are all referenced to a point on the farside anti-Earth point (0° N, 180° E), and 

performed in the following order: 

 

1) Shift in longitude θ (positive values shift data eastward), 

 

2) Shift in latitude φ (positive values shift farside data south),  

 

3) Finally, rotation about the largest principal axis, passing through (0°, 180°), λ (positive values 

clockwise when viewed from the farside). 

 

S2.2 - Choice of basins and their boundaries 

 

For the South Pole-Aitken basin (SPA), we used the “outer” topography SPA boundaries defined 

by Garrick-Bethell and Zuber (2009)
17

, except we use the “inner” topography center, which is 

further north by 1.8°.  These boundaries are centered at (-53.2°, 191° E), and have a semi-major 

axis of 1200 km, semi-minor axis of 1030 km, and a tilt angle of -18.8° (positive is a rotation 

clockwise when viewing the farside).   

 

We also identified the next 12 largest basins with clearly defined signatures in topography, 

gravity, or crustal thickness.  While several lunar basins or purported basins are larger than those 

included in our analysis, they have very weak or poorly defined topography, gravity, or crustal 

thickness signatures.  For example, Mare Tranquilitatis and Mare Nubium were not included in 

our study.  Figure S3 shows maps of topography, crustal thickness, and gravity, to illustrate all 

basin boundaries, and Table S3 lists the basin names and properties.  In some cases, such as 

Orientale, there are positive crustal thickness anomalies included in the basin boundaries.  In 

other cases, such as Imbrium and Serenitatis, the basins have minimal topography expressions, 

but strong positive gravity anomalies (mascons). 
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S2.3 - Effect of maximum fit degree 

 

Because spherical harmonics of different degrees are not orthogonal when fit over a partial 

sphere, the degree-2 coefficients we seek will change as a function of the maximum fit degree.  

As the maximum fit degree increases, the total error of the solution decreases, but above degree 5 

the “hole” created by SPA becomes apparent in the best-fit solution.  This strong distortion of the 

solution results from no constraints on the solution in the SPA region (Fig. S4).  The distortion 

appears at degree 6 because the size of SPA’s boundary is approximately degree 5 to 6. 

 

For gravity and topography, the best-fit coefficients and rotation angles , , and  are generally 

similar for maximum fit degrees less than 6 (illustrated in Fig. S5).  However, at degree 6, C2,0 

for topography starts to decrease monotonically, and the angles , , and  also exhibit abrupt 

changes.  Most significantly, the ratios C2,0/C2,2 for compensated and uncompensated topography 

are stable up to degree 5, but start to change rapidly at degree 6.  This is not surprising given the 

distortion visible for degrees higher than 5 in Fig. S4. 

 

The topography power spectra are relatively consistent for maximum fit degrees up to 5.  

However, the degree 2 to 5 power abruptly increases when the maximum fit degree is 6 or higher 

(illustrated in Fig. S6a).  For gravity, the degree 2 to 5 power also abruptly increases for fits 

above degree 5, but the effect is weaker than for topography (Fig. S6b). 

 

In our final analysis, we use the results from fitting over degrees 0 to 5, which is the minimum 

error solution without distortion (Fig. S4).  Using the degree 0 to 4 solution produces nearly 

identical results and the same qualitative conclusions (shown in Table S4, discussed below).  In 

the future, one could perform fits above degree 5 by constraining the solution to obey a certain 

range of power-laws.  However, given the good visual agreement between the best-fit 

coefficients and the original data (see Figs. S4 and S7), the best-fit values are not likely to 

change substantially. 

 

S2.4 - Effect of excluding different basins and the size of the basins 

 

It is important to determine if the best-fit topography and gravity solutions are stable when 

certain basins are included or excluded.  In particular, we are most interested in the stability of 

the ratio C2,0/C2,2 for uncompensated and compensated topography.  Therefore, we have 

calculated these ratios for a number of different scenarios with basins included or excluded 

(listed in Table S4).  We also calculated the coefficients for SPA with up to 50% larger semi-

axes, and basins with up to 30% larger diameters.  We find that for all scenarios including a 

nominally-sized or 50% larger SPA, with fits from degree 0 up to degree 3, 4 or 5, the 

compensated coefficients vary from -1.1 to -1.6, and the uncompensated coefficients vary from   

-0.5 to -1.3 (Table S4).  These ranges are close to the nominal case including all 13 basins when 

including 1σ Monte Carlo-derived uncertainties (Table 1 and Section S2.6). 
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S2.5 - Fits for coefficients are approximations 

 

The mass in SPA and other basins creates a dominantly local perturbation in the gravity 

potential.  However, unlike for topography, removing basins from the global gravitational 

potential is complicated by the fact that basin mass within the boundaries we define affects the 

potential globally.  Therefore, the calculated harmonics must be treated as approximations.  

However, the chosen basin boundaries enclose nearly the entire visually apparent potential 

anomaly, suggesting that the potential anomaly outside the boundaries is small.  Furthermore, the 

basins’ effect on the degree-2 coefficients is very modest anyway, as reflected in the small 

change in the location of the Moon’s principal gravity axes without large basins, and the modest 

changes in the degree-2 gravity coefficients (a 12% change in the gravity power, compared to 

44% for topography power), as discussed in the main text (e.g. Fig. 1, Table S7).  In particular, 

SPA, which contributes 45% of the total surface area ignored, is in a state of compensation and 

exhibits only a weak gravity anomaly
18,24

.  These modest changes imply that the uncertainty 

associated with the gravity coefficient approximation outside of these basins is low.  Finally, it is 

important to mention that the new gravity terms C2,1, S2,1, S2,2 (Table S6, row 3, column 2) arise 

from the mass effectively removed by our analysis, not from the small unaccounted-for potential 

outside of the basin boundaries. 

 

An additional complication is that topography and gravity may be altered outside the boundaries 

we use.  For example, there may be unaccounted for ejecta deposits and tectonic modifications of 

gravity and topography.  However, the boundaries we use were chosen to account for a large 

fraction of the signature of the basins, and therefore are expected to be reasonable 

approximations.  We discuss the effect of a possibly larger SPA boundary in Section S.4. 

 

S2.6 - Monte Carlo methods to determine uncertainties in non-global spherical harmonic fits 

 

The non-global area outside of the Moon’s large basins leads to a loss of orthogonality of 

harmonics at different degrees, which affects the degree-2 harmonics that we seek to recover.  It 

is critical to properly account for this effect and the uncertainties in the fitting process to 

determine if the estimated harmonics are sufficiently well known to make conclusions about 

their origins.  Fortunately, we will show that the effects can be quantified and they are small 

enough to permit useful conclusions. 

 

As discussed above, the fit we use is limited to a maximum of degree 5, since above degree 5 the 

space created by SPA begins to distort the solution.  While we do not estimate the harmonics 

above degree 5, we would like to quantify how their variability influences our best-fit estimate of 

the degree 0 to 5 harmonics (since they are no longer orthogonal).  The influence of these 

unknown higher-degree harmonics ultimately provides an uncertainty estimate for the lower 

degree harmonics (if the primordial pre-basin-formation Moon had only harmonics of degree 0 

to 5, this would not be necessary, and a fit to degrees 0 to 5 would recover them perfectly, over a 

partial sphere).  To quantify this effect, we produce topography maps with the best-fit 

coefficients from 0 to 5, plus random harmonics from degree 6 to 50.  The power of the random 

topography harmonics from degree 6 to 50 are constrained to obey the best-fit power law when 

large basins are ignored (red dashed line in Fig. 1).  We then perform the least-squares fitting 

process on the synthetic map over degrees 0 to 5, and determine the difference between the 
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original best-fit coefficients, and the new best-fit coefficients for the synthetic map (Fig. S7 

illustrates this process).  The differences between the two sets of coefficients serve as an estimate 

of the leakage of power from the poorly known higher degree terms, into the degree 0 to 5 terms.  

The process is repeated 500 times, and the variance of the differences at each degree and order, 

as well as the variance of the principal frame rotation angles, are used as the uncertainties in the 

final reported coefficients and rotation angles (listed in Tables S5 and S6).  Uncertainties in the 

principal reference frame are obtained in a similar manner. 

 

For the uncertainty in the gravity coefficients, the same process is used.  However, since the real 

lunar gravity potential is strongly dependent on topography, we use the random topography 

coefficients from 6 to 50 to create the degree 6 to 50 gravity coefficients, based on the empirical 

relationship Cn,m,gravity = Cn,m,topography  10
-4

 n
-0.5

 km
-1

 [the relationship produces a gravity power 

law with coefficients a = -2.07, b =  -8.33 (compare to a = -2.04, b = -8.18 for observed gravity, 

Table S1)]. Using this relationship produces a map that is visually very similar to the observed 

gravity potential (see Fig. S7).  Coupling gravity to the random topography coefficients produces 

slightly lower uncertainty in the final ratio of C2,0/C2,2 for uncompensated and compensated 

topography, since the C2,0 and C2,2 coefficients for each type of topography depend on both 

topography and gravity.  In fact, to obtain the final uncertainty estimate on the ratios of C2,0/C2,2, 

we calculate these ratios for each of the 500 random maps, rather than calculate the errors for 

individual C2,0 and C2,2 values, and propagate those errors forward into the ratio.  The reasons for 

this method are discussed in more detail below. 

 

S2.7 - Uncertainty in C2,0/C2,2 ratios and gravity coefficients in topography’s principal reference 

frame, due to non-linear propagation of error during coordinate frame rotations 

 

A consequence of the uncertainty in the principal frame rotation angle λ for topography is that 

when the gravity coefficients are rotated into the topography principal frame by the same angle 

(see main text), there is a similar uncertainty in the required rotation angle.  However, this 

uncertainty in the gravity data produces a much wider range of variability in the gravity 

coefficients C2,0 and C2,2, compared to topography, because there are off-diagonal degree-2 terms 

when the gravity data are analyzed in topography’s principal frame (shown in Fig. 2e).  For 

example, for a generic map in its principal frame with only C2,0 = -1 and C2,2 = 1, a rotation by λ 

= ± 10° changes the coefficients to only -0.98 and 1.01, respectively.  However, with C2,0 = -1, 

and C2,1 = S2,1 = C2,2 = S2,2 = 1, a rotation of +10° yields C2,0 = -0.69 and C2,2 = 1.19, which is a 

much larger change in C2,0 and C2,2 than for the case of zero non-diagonal terms.  Therefore, to 

determine the 1σ uncertainty in C2,0 and C2,2 for gravity coefficients in the topography principal 

reference frame (Fig. 2e, Table  1), we use the largest and smallest coefficients produced by the 

largest and smallest uncertainty limits of the topography angle λ (which are obtained by the 

Monte Carlo methods in Section S2.6). We verified that the other two rotation angles  and  do 

not have as great an effect on the gravity coefficient uncertainty. 

 

For the linear combination of uncompensated and compensated topography coefficients 

consistent with both gravity and topography observations (Table 1), we use the 1σ values 

obtained empirically by Monte Carlo methods. 

 



8 

 

In summary, while it is somewhat surprising that small uncertainties in the topography angle λ 

lead to large uncertainty in gravity, the uncertainties for the compensated component of 

topography are small enough to make conclusions about its origin.  As discussed in the main 

text, the compensated ratio C2,0/C2,2 = -1.3  0.2, has an uncertainty that spans a range of values 

that might be expected from tidal processes (Fig. 3).  For uncompensated topography, the ratio 

C2,0/C2,2 is -1.0  0.3.  This value has a larger uncertainty, but the fact that it is equal to the value 

expected for a fossil bulge, even when various basins are included or excluded from the analysis 

(Table S4), suggests it is in fact due to a fossil bulge. 

 

S2.8 - Principal axis locations 

 

Table S7 gives the minimum, intermediate, and maximum principal axes for global topography, 

topography outside of large basins, and gravity outside of large basins (referenced to the present-

day Earth-facing reference frame).  Uncertainties were calculated by propagating the Monte 

Carlo-derived uncertainties for the individual rotation angles , , and  (see Fig. S2). 

 

S.3 Alternative method of estimating spherical harmonic coefficients 

 

An alternative method to estimate the lunar gravity and topography spherical harmonic 

coefficients outside the largest basins is to set the topography or gravity inside the basins to the 

local mean outside the basins.  This method has the advantage that the calculated harmonics are 

orthogonal and stable up to any maximum degree, but the disadvantage that creating constant-

valued disk-shaped features introduces new sources of uncertainty. 

 

To estimate the coefficients with this method, we calculated the mean topography or gravity in 

the region between the diameters given in Table S3, and a diameter that was either 10% or 20% 

larger.  We then reset all values inside the basin to these mean values, and calculated the degree-

2 coefficients with these new maps (shown in Figure S8).  Following our methods from the 

previous section, we then calculated the principal frame rotation angles , , and  for 

topography, rotated the topography and gravity data into the topography principal frame, and 

calculated the compensated and uncompensated degree-2 coefficients (shown in Table S8). 

 

We have identified two sources of uncertainty in this procedure.  The first is that even if the 

Moon had a perfect primordial degree-2 shape outside of these 13 basins, introducing constant-

valued disk-shaped features would change the calculated degree-2 coefficients when computed 

globally.  The second effect is that the data outside the basins are not perfect representations of 

the true, local primordial mean. 

 

To quantify the first effect, we created pure degree-2 synthetic maps with the coefficients 

calculated by the basin filling method, then re-performed the basin filling procedure on these 

synthetic maps for SPA and the 12 other basins.  We then calculated the differences between the 

synthetic input coefficients and the coefficients obtained after the filling procedure.  Finally, we 

used the differences to correct the coefficients obtained from real lunar data (shown in Table S8).   

 

To quantify the second effect, we calculated the mean and the standard deviation of the 

difference between the local real topography (or gravity) outside each basin, and the local pure 
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degree-2 topography (or gravity) calculated from the basin-filling method.  These statistics were 

taken to represent a Gaussian distribution of how the local data differs from a perfect degree-2 

shape.  We then repeated the synthetic-map fitting procedure (previous paragraph) 1000 times, 

but this time adding a random component to the local topography (or gravity) values calculated 

outside of basins, with the same mean and standard deviation calculated in the previous step.  We 

then took the resulting set of 1000 degree-2 coefficients and calculated their standard deviation, 

which we use as a rough measure of their uncertainty (shown in Table S8). 

 

We find that the ratios for compensated and uncompensated topography are –1.4 to -1.5  0.6 

(1σ) and -0.8  0.2 (1σ), respectively.  These ratios are close to the values predicted for tidal 

heating and a frozen fossil-bulge, respectively, and are indistinguishable from the ratios reported 

in the main text, since they are within their uncertainties.  Here there is higher uncertainty in the 

compensated topography component, perhaps because the local topography values outside of 

basins yield a much higher variance than for gravity (compared to a pure degree-2 sphere), and 

the compensated component depends more strongly on topography.  Because of the higher 

uncertainty in the compensated topography component here, the values in the main text are 

preferred. 

 

S4. Equations for compensated and uncompensated topography 

 

To determine the tidal character of the Moon’s degree-2 topography, we seek the fractions that 

are due to compensated and uncompensated topography, since each of these components are 

produced by two different mechanisms (tidal heating and a frozen tidal-rotational bulge, 

respectively).  To do so, we use a method that analyzes the observed gravity and topography 

coefficients together (determined outside of large basins), as described below. 

 

The C2,m gravity spherical harmonic coefficient resulting from completely compensated or 

completely uncompensated topography can be obtained from the relationships for top-loaded 

crust developed by Ojakangas and Stevenson (1989)
38

, 
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where Q2,m is given by, 

 

a

t
Q

mc

m




5

3 ,2

,2   , (S10) 

 

where ρm is the density of the mantle (assumed 3200 kg/m
3
), ρc is the density of the crust 

(assumed 2550 kg/m
3
), 𝜌  is the mean density of the Moon (assumed 3340 kg/m

3
), Δρ = ρm - ρc, 

here a is the mean radius (assumed 1747.2 km), t2,m is the crustal thickness spherical harmonic 

coefficient, bc is the mean crustal thickness (assumed 40 km), and Cw is a measure of the degree 

of compensation. 
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For uncompensated topography we set Cw = 0, and in this case t2,m is the observed surface 

topography.  For compensated terrain we set Cw = 1 and assume t2,m = h2,m(1+ρc /Δρ), where h2,m 

is the topography observed at the surface.  If we use equation 2.7 from ref. 38 to estimate the 

value of Cw, and reasonable geophysical values for a floating early lunar crust in the magma 

ocean epoch (Poisson’s ratio = 0.25, thickness of the lithosphere = 2 km, degree-2 rigidity = 10
 

GPa) we obtain Cw = 0.97, which implies that the crust will be largely compensated during this 

time.  In reality, the case of a growing crust in the magma ocean epoch calls for a bottom-loading 

approach, but the implied nearly complete state of compensation justifies using the top-loading 

approach, which equals the bottom-loading value in the limit of complete isostasy. 

 

The simultaneous equations to solve for the theoretical degree-2 components of compensated 

topography, h2,m,c, and uncompensated topography, h2,m,u, that produce observed topography and 

gravity coefficients C2,m, are of the form 

ℎ2,𝑚,𝑐 + ℎ2,𝑚,𝑢 = 𝐶2,𝑚,𝑡𝑜𝑝𝑜      

 
𝛽ℎ2,𝑚,𝑐 + 𝛾ℎ2,𝑚,𝑢 = 𝐶2,𝑚,𝑔𝑟𝑎𝑣  

 

, (S11) 

where β and γ are obtained from equations S9 and S10. The solutions are: 

 

ℎ2,𝑚,𝑐 =  
5𝜌 𝑎

3𝜌𝑐
𝐶2,𝑚,𝑔𝑟𝑎𝑣 − 𝐶2,𝑚,𝑡𝑜𝑝𝑜  ×   1 +

𝜌𝑐

∆𝜌
  

4𝑏𝑐

𝑎

∆𝜌

𝜌𝑚
 − 1 

−1

 

 

ℎ2,𝑚,𝑢 =  
5𝜌 𝑎

3𝜌𝑐
𝐶2,𝑚,𝑔𝑟𝑎𝑣 − 𝐶2,𝑚,𝑡𝑜𝑝𝑜  1 +

𝜌𝑐

∆𝜌
  

4𝑏𝑐

𝑎

∆𝜌

𝜌𝑚
  ×  1 −  1 +

𝜌𝑐

∆𝜌
  

4𝑏𝑐

𝑎

∆𝜌

𝜌𝑚
  

−1

 

 

 (S12) 

These solutions are used to produce the values in Table 1 and Table S9. 

 

The ratio of gravity to topography for completely compensated or completely uncompensated 

terrain is shown graphically in Fig. S9.  In Fig. S9 we also plot C2,0 and C2,2 for gravity and 

topography, in the topography principal frame, when ignoring large basins (from Table 1).  The 

line that passes near both points is for an effective compensation state of 79%. 

 

In Table S9 we show the theoretical values of topography required to produce the observed C2,0 

and C2,2 gravity observations (outside of large basins), assuming either completely compensated, 

or completely uncompensated topography.  The table shows that the observed topography is too 

low, or too high, to be explained by either completely compensated or uncompensated 

topography, respectively.  We also show the linear combination of compensated and 

uncompensated topography to produce the observed topography and gravity (outside of large 

basins, also shown in Table 1). 

 

S5. Topography and gravity analysis using global data 

 

To demonstrate the effect of the Moon’s large basins on our conclusions, we can calculate the 

uncompensated and compensated topography coefficients in the topography principal frame 

obtained from global data.  Table S10 presents these calculations, analogous to Table S9, using 
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the coefficients and rotation angles for global topography.  We find the ratios C2,0/C2,2 are -2.0 

and -6.1, for compensated (crustal thickness variations) and uncompensated (fossil) topography, 

respectively (the uncertainties are small since the coefficients are well known).  These ratios are 

higher than the values for known formation theories of degree-2 topography, as discussed in the 

main text. 

 

S6. Crustal thickness coefficients outside of large basins 

 

We can compare the compensated topography coefficients in the main text (Table 1) with a 

recent model of lunar crustal thickness derived from topography and gravity data
19

 (shown in 

Fig. S3).  The mean crustal thickness of the model is 43 km, which is slightly larger than the 

mean (40 km) assumed in the topography and crustal thickness calculations in the main text and 

Table 1.  The power spectrum for this crustal thickness model is shown in Fig. S10a (see Table 

S1 for the power law coefficients). 

  

To estimate the degree 0 to 5 crustal thickness coefficients outside of large basins, we used the 

same methods as for topography.  Table S11 shows the best-fit crustal thickness coefficients and 

Fig. S10b shows crustal thickness in its principal frame.  The angles required to rotate 

topography (θ = -30.5°, φ = 5.8°, λ = -35.5°) and crustal thickness data (θ = -33.4°, φ = 2.9°, λ = -

52.8°) into their principal frames (ignoring large basins) are similar, consistent with the 

interpretation that degree-2 topography is dominated by crustal thickness contributions. 

 

Most importantly, the ratio C2,0/C2,2 for crustal thickness in its principal frame is -1.1  0.2, 

which is close to the value expected for strong tidal heating, as discussed in the main text.  If we 

use global crustal thickness data, we find that the ratio C2,0/C2,2 in the crustal thickness principal 

frame is -2.2.  This is higher than the values of -1.1 to -1.3 predicted in the case of strong tidal 

heating, emphasizing the importance of considering the Moon’s large basins. 

 

S7. Degree-4 harmonics 

 

Tidal heating in the crust also predicts degree-4 crustal thickness variations.  Therefore, 

comparisons of the predicted degree-4 harmonics and the observed degree-4 harmonics can help 

test the tidal heating model.   

 

We find that in strong tidal-heating models (>50 mW/m
2
 mean global heat flux), the largest 

degree-4 term is C4,4 (positive valued), with other degree-4 terms having a lower strength by 

approximately an order of magnitude.  The C4,4 harmonic gives rise to the bulge-shaped features 

at 90° and 270° longitude in the inset map in Fig. 3.  Furthermore, we find that the ratio of C2,0 

(the largest degree-2 term) to C4,4 has a characteristic ratio of approximately -0.43 to -0.50.   

 

Table S12 shows the degree-2 and degree-4 topography, gravity, and crustal thickness 

harmonics, calculated outside of SPA and large basins.  We will not perform a full analysis of 

the degree-4 topography and gravity here, but we can make some basic observations.  Firstly, in 

the topography principal frame, the C4,4 topography and crustal thickness harmonics are positive 

and one of the larger degree-4 terms.  Secondly, C2,0/C4,4 =  –0.28  0.14 (1σ) for crustal 

thickness, in the topography principal frame.  This ratio is the correct sign and marginally 
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supportive of the tidal heating hypothesis, given its uncertainty.  It is possible that a number of 

events may have taken place that altered the degree-4 harmonics, with less of an effect on the 

degree-2 harmonics.  For example, erosion of degree-4 surface features due to large impacts or 

relaxation due to lower crustal flow may take place more rapidly than at degree-2.  A more 

complete analysis of the degree-4 terms can be performed in a future study. 

 

S8. Tidal heating calculations 
 

S8.1 - Methods and results 

 

To determine the range of C2,0/C2,2 for crustal thickness (or compensated topography) patterns 

that result from tidal heating in a crust floating over a magma ocean, we used the same methods 

described in Garrick-Bethell et al. (2010)
16

.  Briefly, we solve for the quasi-equilibrium structure 

of a dry anorthositic crust with a temperature-dependent viscosity profile, undergoing tidal 

deformation and basal heating from below, while including the effects of surface insolation. 

 

The amount of dissipation in the crust depends on the orbital eccentricity, orbital semi-major 

axis, the mean thickness of the crust at the time of the modeled dissipation, the basal heat flux 

from background heat sources (which, in conjunction with the tidal heat flux, controls the mean 

thickness), the viscosity structure of the crust, and the temperature profile of the crust (which we 

assume controls the viscosity).  A number of unmodeled effects can have a large influence on the 

viscosity, and in turn the amount of dissipation, such as the amount of interstitial melt in the 

lower crust, the amount of water in the crust, and uncertainties in the anorthosite flow law that 

we assumed in Garrick-Bethell et al. (2010)
16

. In order to simplify the analysis, our goal is to 

determine the shape of the crust for the extremes of almost no dissipation and high dissipation.  

To quantify the amount of dissipation, we calculate the global mean tidal heat flux.  We choose a 

fixed semi-major axis of 20 Earth radii, and vary the eccentricity between 0.02-0.03 to decrease 

or increase dissipation, respectively (the current mean eccentricity is 0.055 and is increasing).  

We also varied the background basal heat flux from 20 – 40 mW/m
2
.  Garrick-Bethell et al. 

(2010)
16

 estimated the primordial basal heat flux was 30 mW/m
2
, compared to today’s global 

mean 10 mW/m
2
.   

 

The values we used for the basal temperatures (which set the viscosity of the base of the crust) 

range up to 1450° C, which is an extreme value that is likely too high for a lunar magma ocean 

during crystallization.  However, changes in temperature provide an easy means of altering the 

viscosity structure of the crust, in order to test the limits of zero to high dissipation, and obtain 

the function C2,0/C2,2 vs. global mean tidal heat flux. 

 

One of the results we report is the mean equilibrium crustal thickness.  However, because crustal 

thickness growth may have continued after dissipation was important, the mean thickness 

reported here is not as relevant for comparison with the present day Moon as the C2,0/C2,2 ratio.  

The magnitudes of the coefficients are also important, but with the caveat that when tidal 

dissipation decreases, high coefficient values can become muted as crystallization of crust and 

mantle materials continue in an ocean with degree-2 depth variations. 
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Figure 3 shows that for very low dissipation (mean tidal heat flux < 1 mW/m
2
), the ratio C2,0/C2,2 

is positive, which results from positive C2,0 and C2,2 values (Table S13).  The positive C2,0 results 

from the effect of insolation: at the poles the lower temperature leads to higher crustal thickness 

(by a small amount), which is the opposite sign of crustal thickness variations from tidal heating.  

If the crustal thickness under these conditions was solely responsible for the moments of inertia, 

the Moon would reorient to distribute this mass excess to the equator, and create a negative ratio 

C2,0/C2,2 in the new reference frame.  (As an example of this, a planet with only a harmonic C2,0 = 

+1, rotated 90° in latitude to the equator will then have C2,0 = -0.5, and C2,2 = 3
1/2

/2).  For tidal 

dissipation cases that are strong enough to overcome this weak insolation effect, the value of 

C2,0/C2,2 quickly reaches a negative minimum at 5 mW/m
2
, and then increases to approximately 

-1.1 to -1.3 above 50 mW/m
2
.   

 

Table S13 shows the assumed eccentricity, basal background heat flux, and basal crustal 

temperature, and the resulting shape and global mean tidal heat flux values for 114 model 

calculations.  Note that not all temperature/eccentricity combinations were calculated, due to 

some numerical limitations.  Tidal heat fluxes >225 mW/m
2
 are difficult to produce with 

reasonable parameters, and have not been calculated. 

 

The result in Fig. 3 (case 38 in Table S13) is based on model calculations with a basal crust 

temperature of 1350°C, but other cases have C2,0/C2,2 values close to the proper ratio for 

temperatures near 1200°C.  For example, case 87 has a ratio C2,0/C2,2 = -1.15, with a basal 

temperature of 1200°C.  Ilmenite, a mineral which forms after 95% of magma ocean 

crystallization, is expected to crystallize at 1125-1180°C (ref. 39), and therefore it is plausible 

that temperatures were >1200°C early in magma ocean crystallization (which is also when the 

Moon would have been closer to the Earth, and tidal deformations would have been higher).  

Again, there may also be other effects that increase the dissipation or viscosity that we have not 

modeled. 

 

Regardless of the precise conditions, it is evident that significant tidal heating can take place 

within a range of plausible parameters of the early Moon, and that the crustal structure of the 

Moon is consistent with that process. 

 

S8.2 – Lower crustal flow 

 

It is important to consider how early degree-2 crustal thickness differences may have been 

moderated by lower crustal flow after tidal heating ceased.  Similar calculations have been 

performed for tidally-produced ice shell thickness differences on Europa
40-42

.  Previously, 

Garrick-Bethell et al. (2010)
16

 (their Supporting Online Material Section 6) found that significant 

crustal flow was not likely to take place in less than 150 By.  In those calculations, they used a 

creep flow law from Rybacki and Dresen (2000)
43

, with stress exponent n = 3 (indicating non-

Newtonian dislocation creep), and an assumed basal temperature of 1175° C.  However, in the 

present study, we calculated tidal heating cases with higher temperatures (Table S13).  As 

described in the main text and Section S8.1, there are many uncertainties in the properties of the 

early crust, and while some temperatures we use may not be achieved, they illustrate the effect of 

progressively higher tidal heat fluxes on the shape parameters C2,0 and C2,2. 
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Before we calculate the timescale for crustal flow at temperatures >1175° C, we will establish 

that the flow law used previously for anorthosite is appropriate.  We assume a strain rate 𝜖 , 

𝜖 = 𝐴𝜎𝑛𝑑−𝑚𝑒(−𝑄/(𝑅𝑇𝑏)) (S13) 

where here A, Q, n, and m are rheological constants that depend on the flow law, R is the gas 

constant, Tb is temperature (K), σ is stress, and d is the grain size. Rybacki and Dresen (2000)
43

 

found that dry anorthosite likely flows via diffusion (Newtonian flow n = 0, m = 3) or dislocation 

creep (non-Newtonian, n = 3, m = 0), depending on σ and T.  The driving stress for crustal flow 

is  Δρhg, where here Δρ is the crust-ocean density contrast, h is the thickness contrast, and g is 

gravity.  For Δρ = 300 kg/m
3
 and h = 10 km, σ  5 MPa.   

To determine which flow law dominates for σ = 5 MPa and Tb = 1350° C (e.g. tidal heating case 

38, main text, Table S13), we calculate 𝜖  for dislocation and creep flow laws, assuming d = 1000 

μm (appropriate for mid to lower crustal rocks), Q = 648 kJ/mol and log10(A) = 12.7 MPa
-n

 s
-1

 

(for dislocation creep), and Q = 467 kJ/mol and log10(A) = 12.1 MPa
-n

 μm
m
 s

-1
 (for diffusion 

creep).  We find that for all σ > 0.1 MPa, 𝜖  for dislocation creep is higher than for diffusion creep 

(at 0.1 MPa and 10 MPa, 𝜖  is greater by two and five orders of magnitude, respectively).  

Because the strain rate for dislocation creep is higher at the relevant stresses and temperatures, 

our use of the dislocation creep (n = 3, m = 0) flow law is appropriate.  This is also the flow law 

used in our tidal heating calculations. 

Equation S8 of Garrick-Bethell et al. (2010)
16

 (or eq. A.10 of ref. [42]) gives the time for a 

crustal thickness contrast to relax by 1/e, assuming non-Newtonian flow.  The equation assumes 

flow takes place in a channel of thickness δ.  Previously, Garrick-Bethell et al. (2010)
16

 assumed 

a channel thickness related to the e-folding scale of temperature (and viscosity): 

𝛿 =
𝑅𝑇𝑏

2𝐷𝑚

𝑄(𝑇𝑏 − 𝑇𝑠)
 (S14) 

where Ts is the surface temperature and Dm is the mean crustal thickness.  This expression 

assumes a linear crustal temperature gradient and yields δ = 0.4 km for Dm = 17.8 km (the value 

for case 38), using Q = 648 kJ/mol, Tb = 1350° C, and Ts = -20° C.  In Figure S11 we plot the 

model crustal temperature profile for case 38 from Table S13.  At the base of the crust, where the 

majority of tidal dissipation takes place, the temperature gradient is steeper than in the rest of the 

crust.  The thickness of this layer is 1.5 km.  Therefore, we use δ = 1.5 km instead of 0.4 km. 

This yields 2.6 By for the 1/e crustal thickness difference relaxation time, assuming an initial 

crustal thickness contrast of 20 km (conservatively high).  As the crust eventually cools, the 

timescale will increase quickly, such that this timescale estimate is conservatively low.  This 

timescale is shorter than the 150 By timescale originally reported in Garrick-Bethell et al. 

(2010)
16

, but ultimately, the crustal flow timescale must only be shorter than the time until the 

lithosphere gains strength at degree-2.  We have shown that this takes place at 30-32 Earth 

radii, or nominally 200-300 My after accretion (main text).  Therefore, in light of the order of 

magnitude difference between the crustal relaxation timescale and the time until lithosphere 

development, we conclude that the modeled crustal thickness contrasts will persist after tidal 

heating ceases.  If the starting basal temperature was lower, it would further increase the 

timescale for crustal flow. 
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S9. – Statistics of the lunar topography coefficients 

 

S9.1 – Topography statistics 

 

We would like to assess the possibility that the ratios C2,0/C2,2 for compensated and 

uncompensated topography are equal to their predicted ratios by chance.  For example, one 

might initially guess that the mean ratio between all harmonics is close to unity.  To help answer 

this question we first determine: 1) The natural distribution of the ratio of all other zonal 

harmonics (harmonics Cn,0), to the even tesseral harmonics of the same degree, with even order 

m, and same index type C (i.e, we find the ratios of C3,0/C3,2, C4,0/C4,2, C4,0/C4,4, etc.), and 2) 

Assuming a set of C2,0/C2,2 ratios sampled from this distribution, what is the C2,0/C2,2 ratio 

distribution after rotating to the principal frame?  The second question is important because 

while in an arbitrary reference frame the ratio Cn,0/Cn,m may be any value (see below), not all 

ratios of C2,0/C2,2 are allowed in the principal frame, which we use in the text.  This is because 

some initial C2,0 and C2,2 values will result in the largest moment of inertia being in a non-polar 

axis, which would result in polar wander, and thereafter a different C2,0/C2,2  value.  The criteria 

for this reorientation are, in normalized harmonics (Ojakangas and  Stevenson (1989)
38

 eq. 3.2-

3.4), 

 

𝐼𝑥𝑥 > 𝐼𝑧𝑧  ∶   𝐶2,0 −  1/3𝐶2,2 > 0 

𝐼𝑦𝑦 > 𝐼𝑧𝑧  ∶   𝐶2,0 +  1/3𝐶2,2 > 0 , 

(S15) 

 

where Ixx, Iyy, and Izz are the moments of inertia about the Earth-Moon line, orbit-tangent line, 

and polar axis, respectively. For unnormalized harmonics, the coefficient in front of C2,2 

becomes 2.   

 

Figure S12a shows the distribution of the Cn,0/Cn,m ratios for lunar topography (up to degree 50, 

no basin corrections) is Gaussian-like, except with a large number of ratios close to zero.  The 

standard deviation of the best-fit Gaussian of the distribution is 1.10, and the mean is -0.06, 

which we take to be zero.  

 

If we take 10,000 random samples from the observed lunar Cn,0/Cn,m distribution, use these 

values as C2,0/C2,2 (assuming it would be similarly distributed), and determine the new 

topography C2,0/C2,2 ratios in the implied principal frame, we obtain the distribution in Fig. S12b.  

The ratios are always negative, as expected, and have an upper limit at -(1/3)
1/2

 (= -0.58), which 

comes from the criteria for reorientation (eq. S15). 

 

S9.2 – Gravity statistics 

 

We wish to also understand the statistics of the Moon’s gravity harmonics, such that we can 

calculate the C2,0/C2,2 ratio statistics for the compensated and uncompensated topography 

components.  However, this is complicated by the fact that gravity is partially correlated with 

topography, and partially random.  To address this, we sample topography C2,0 and C2,2 values 

from the distribution in Fig. S12b, and then create C2,0 and C2,2 gravity terms with the same 

topography to gravity ratio as observed for the actual basin-removed degree-2 terms (i.e. for C2,0 
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this ratio is: 0.65 km / 4.3  10
-5

, and for C2,2 the ratio is: 0.51 km / 3.9  10
-5

).  An additional 

random gravity component is then added to the gravity terms C2,0, C2,2, as well as C2,1, S2,1, and 

S2,2 terms, such that on average, the total degree-2 gravity power is equal to the total observed 

basin-removed power (= 8.4  10
-9

, Fig. 1, Table S6).  The standard deviation of this generated 

degree-2 gravity power is 3.8  10
-9

, which we consider small enough to be a good 

approximation for the actual Moon.  On average, 36% of the generated gravity power is found in 

terms with zero topography (i.e. C2,1, S2,1, and S2,2), which of the same order as for the basin-

removed Moon (59%, main text).  The lower percentage in the simulation actually provides more 

conservative statistics (below), since the implied tighter correlation between topography and 

gravity in the simulation improves the odds that the ratios will assume their tidally predicted 

values.  That is, it would be extremely fortuitous to find gravity and topography that provide the 

predicted coefficient ratios for compensated and uncompensated topography, if both topography 

and gravity were totally uncorrelated (two random variables), but less fortuitous if they were 

100% correlated (one random variable). 

 

Note that we also scale the topography harmonics to their observed basin-removed power before 

these operations (= 0.67 km
2
, Fig. 1, Table S5). 

 

S9.3 – Uncompensated and compensated topography coefficients 

 

When the compensated topography coefficients are calculated from the topography and gravity 

coefficient distributions generated above (using equation S12), we find that the probability of 

obtaining a compensated topography C2,0/C2,2 ratio between -1.1 to -1.3 is 8% (Fig. S13a).  

Figure S13a reveals a small number of positive C2,0/C2,2 values.  The input topography ratios 

from Fig. S12b are always negative, but the calculated compensated topography ratios are 

sometimes positive because the compensated component of topography is physically weakly 

dependent on gravity (i.e. large changes in gravity can be explained by small changes in 

uncompensated topography), and some extreme gravity values occasionally produce positive 

ratios. 

 

For uncompensated topography, we find the fraction of C2,0/C2,2 ratios between -0.9 and -1.1 is 

5% (Fig. S13b).  This probability is smaller than for the compensated ratios, since the 

uncompensated component is physically more strongly dependent on gravity.  Therefore, this 

ratio is essentially dependent on two random variables: topography and gravity (with gravity 

constructed on average to be about 64% correlated with topography, described above).  This 

gravity dependence can also be seen in the higher abundance of positive ratios in the 

uncompensated topography C2,0/C2,2 ratio distribution (Fig. S13b), compared with the 

compensated distribution (Fig. S13a).   

 

Note that it would not be appropriate to perform any coordinate system rotations on the 

positive-valued ratios to make them negative (negative ratios imply moments of inertia that 

would lead to polar wander, Section S9.1), since all of these values were already derived from 

total topography with C2,0/C2,2 ratios that are negative (Fig. S12b). 

 

Finally, we find the probability of finding both compensated and uncompensated C2,0/C2,2 ratios 

in their respective ranges is 0.3%, which we report in the main text.  This probability is slightly 



17 

 

lower than the simple 0.08  0.05 calculation that assumes the two probabilities combine 

linearly. 

 

S10. Alteration of the degree-2 shape by subsequent processes  

 

S10.1 - Spherical cap gravity anomaly 

 

In Section 9 we established that the Moon’s tidal signature would rarely be produced by random 

processes.  If the Moon’s topography was sculpted by tides, we can also estimate the probability 

of witnessing it today, in spite of the additional gravity power added after its formation (main 

text).  If this probability is reasonable, it further supports the hypothesis that the Moon’s         

degree-2 topography is tidal in origin.  To do so, we created gravity maps using just the Moon’s 

C2,0 and C2,2 gravity harmonics outside of large basins (Fig. 2e), and added a randomly placed 

half-sphere gravity anomaly cap of constant value (1.5  10
-4

).  As discussed in the main text, a 

spherical cap is a reasonable first-order approximation for the process that may have contributed 

power to the Moon’s degree-2 gravity field.  The amplitude of the cap anomaly was chosen so 

that on average, the total degree-2 gravity power is equal to the observed degree-2 power outside 

of large basins (8.4  10
-9

, Table S6).  We then recomputed the degree-2 harmonics for 5000 test 

cases, and calculated the compensated and uncompensated topography C2,0/C2,2 ratios (equation 

S12), using the C2,0 and C2,2 values for topography (see Fig. 2d).   

 

The results of these calculations are that the compensated topography ratio C2,0/C2,2 survives 

92% of the time, while the uncompensated ratio survives 37% of the time, assuming that survival 

is a ratio change of less than 30% (reported in the main text).  While the latter survival rate is 

somewhat low, it is certainly high enough that it is plausible the Moon’s tidal signature could 

have survived for us to observe.  A different model for the anomaly may produce different 

values.  Again, for Moons derived from totally random sets of topography and gravity (Section 

S9), very few would have ratios that fall close to the observed values, which implies tidally-

produced ratios did in fact survive the gravity anomaly’s formation. 

 

Because the Moon’s topography, as opposed to just gravity, is a key portion of the calculation of 

the ratio C2,0/C2,2 for each type of topography (compensated or uncompensated), the survival rate 

is fairly high when new gravity power is added.  Finally, the degree-2 gravity anomaly we model 

here also has the advantage of producing some degree-1 topography power, which is observed in 

the real Moon (via the center-of-mass/center-of-figure offset). 

 

S10.2 - Mantle convection 

 

One particular phenomenon that could have altered the degree-2 tidal shape is mantle 

convection.  While mantle convection could not have altered the shape during the magma ocean 

epoch, it could have plausibly affected it after the crust crystallized, and the lithosphere started to 

form.  We briefly consider four process by which mantle convection could affect topography: 1) 

Dynamically produced topography due to present-day mantle convection, 2) Dynamically 

produced topography during early mantle convection that “froze-in” and persisted until the 

present day, 3) Density contrasts formed by mantle convection that froze-in at depth, but only 

influenced the gravity field, and 4) Crustal thickness changes produced by mantle convection.  
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Given the low probability of a random process generating the Moon’s unique degree-2 shape 

(0.3%, Section S9), none of these processes are likely to be important.  However, for 

completeness we briefly outline the physical properties associated with each of them. 

 

The first process is unlikely to operate, given the large thickness of the present lithosphere (>700 

km, e.g. refs. 44,45) and its expected strength at degree-2 (ref. 24).  That is, if the present 

lithosphere is able to support degree-2 topography loads
24

, it is also able to prevent the 

expression of degree-2 topography from internal convective stresses.  This mechanism was 

originally proposed by Cassen and Young (1978)
46

, but it can now be dismissed with our 

understanding of the Moon’s lithosphere. It is also unlikely that the lunar mantle is presently 

convecting.   

 

With regard to the second process, it is plausible that if there was degree-2 power in the early 

mantle convection pattern, it could have produced dynamic degree-2 topography and geoid 

(gravity) anomalies.  In addition, it is plausible that these anomalies could have “frozen-in” as 

the lunar lithosphere formed.  Buck and Parmentier (1986)
47

 suggested a similar process could 

produce small-scale gravity anomalies in the oceanic lithosphere.  However, it is not certain 

when the mantle began to convect and whether or not the lithosphere would have resisted 

deformation at that time.  For example, Parmentier et al. (2002)
48

 predict a 500 My timescale 

for convective overturn, while large mantle plumes develop more quickly in Zeithe et al. 

(2009)
49

.  Zhong and Zuber (2000)
24

 predict that even a 100-My-old lithosphere could resist 

degree-2 loads.  Also, this mechanism requires that the convection pattern remain constant as the 

lithosphere freezes.  In sum, this mechanism in principle has the potential to influence the lunar 

shape, but is not supported by the statistically unique coefficient ratios that suggest that tides are 

the cause of the degree-2 shape.  In fact, our findings and the timescales they represent may help 

constrain early thermal processes like mantle convection. 

 

With regard to the third process, it is possible that density changes could have arisen from 

processes related to convection, and frozen into the Moon to produce power in the degree-2 

gravity field.  We have already considered the possibility that the degree-2 characteristics would 

still be recoverable in the case of a cap-shaped pure gravity anomaly (i.e. with no topography, 

Section S10.1).  Therefore, even if this process took place, and a cap-shaped anomaly is a 

reasonable approximation for the resulting density contrasts, it is unlikely to affect our 

conclusions.  Also, as we have already argued, the unique degree-2 coefficients can only rarely 

be produced by random processes. 

 

With regard to the fourth process, crustal thickness patterns influenced by convection have been 

proposed to explain the degree-1 Mars crustal thickness dichotomy
50,51

.  However, the details of 

how crustal thickness could change due to convection patterns are not well established
50

, and 

therefore whether or not they would apply to the Moon is uncertain.  In addition, the lunar 

lithosphere grows quickly, such that these processes might operate at depth, but merely produce 

density anomalies (as in the process described above), instead of compensated crustal thickness 

changes.  Therefore, as for the second case, there is potential for this process to have operated on 

the Moon, but statistical arguments do not support their significant contribution to the degree-2 

shape. 
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S11. Tidal despinning timescale 

 

An assumption in our analysis is that the Moon spun down to the synchronous state before the 

crust and lithosphere developed.  Using equations for tidal despinning timescales
52,53

, we find 

that for any semi-major axis a < 5 Earth radii, the tidal despinning time is < 100  years, assuming 

an initial spin period of 5 hours, k2 = 1.5, and Q = 100.  This timescale is significantly shorter 

than the expected formation times for the crust and eventually the lithosphere. 

 

S12. Thorium map 
 

Figure S14 shows a map of the near-surface thorium distribution from Lunar Prospector data. 

 

S13. Data sources 
 

Lunar gravity data are from a 660 degree and order GRAIL expansion obtained from data at 

http://pds.nasa.gov.  

 

Lunar topography data are from the Lunar Reconnaissance Orbiter Lunar Laser Altimeter, 

sampled at 4 pixels per degree, i.e. 1/4
°
 resolution (http://imbrium.mit.edu). 

 

Lunar crustal thickness data are from Model 3 from http://www.ipgp.fr/~wieczor/ 

GRAILCrustalThicknessArchive/GRAILCrustalThicknessArchive.html 

  

Reflectance data for Fig. 1 are from Clementine data available at 

http://www.mapaplanet.org/explorer/moon.html. 

 

Lunar thorium data are from a 0.5-degree resolution map available at 

http://www.mapaplanet.org/explorer/moon.html. 

 

Section S1 uses data from Venus, Earth, and Mars.  Topography data for Mars are from a 90 

degree and order expansion from the Mars Orbiter Laser Altimeter (http://starbase.jpl.nasa.gov/). 

Gravity data for Mars data are from 110 degree and order expansion from Mars Reconnaissance 

Orbiter tracking data (http://pds-geosciences.wustl.edu). The topography data for Venus are from 

a 719 degree and order expansion from Magellan, Pioneer Venus and Venera 15/16 altimetry 

(http://www.ipgp.fr/~wieczor/SH/SH.html). Venus gravity data are from the 180 degree and 

order expansion of a Magellan model (http://pds-geosciences.wustl.edu). The topography data 

for the Earth are from a 2160 degree and order spherical harmonic model 

(http://www.ipgp.fr/~wieczor/SH/SH.html). Gravity data for the Earth are from the 60 degree 

and order static GRACE model (ftp://podaac-ftp.jpl.nasa.gov). 

 

S14. Note on significant figures in Supplementary Information 

 

In some cases in the SI we show one extra significant figure for bookkeeping.  However, in any 

case where an uncertainty is reported, the decimal place of the uncertainty should be taken as the 

least significant figure.  In the main text, only formal least significant figures are shown. 
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S15. Map projections used 

 

All maps shown in the main text and SI use the Mollweide projection. 
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Table S1. Best-fit power-law coefficients for gravity and topography power W (eq. S4), for a fit 

to degrees 3 to 50.  Units are in log10 units of W/degree (a) and W (b). 
 Venus Earth Mars Moon Moon  

(without large basins)* 

 a b a b a b a b a b 

Topography -1.89  0.27 -1.78  0.87 -1.83 0.76 -1.35 0.07 -1.10 -0.30 

Gravity -3.36  -9.19 -2.99  -9.96 -2.73  -7.86 -2.14 -8.04 -2.04 -8.18 

Crustal thick.       -0.92 1.23 -0.79 1.03 

*Using best-fit degree 3, degree 4, and degree 5 values outside of large basins (Tables S5, S6, S9, and 

S11). 
 

 

 

Table S2. Ratio of non-hydrostatic degree-2 power to the power predicted at degree-2 from a 

best-fit power law (fit to degrees 3 to 50). 
 Venus Earth Mars Mars  

(without Tharsis) 

Moon Moon   

(without large basins)* 

Topography 0.11 0.29 1.58 0.23 2.62 2.8 

Gravity 0.07 4.41 6.41 0.48 4.52 5.2 

*Using predictions from best-fit power law and observed power outside of large basins (Tables S5 and 

S6).   
 

 

Table S3. Basin boundaries and centers. 

Basin name Center (Lat.°, Long.° E) Diameter (km) 

1. South Pole-Aitken (-53.2°, 191°) a = 2400, b = 2060* 

2. Imbrium (34°, 343°) 1150 

3. Orientale (-19°, 266°) 900 

4. Nectaris (-15.2°, 34.5°) 850 

5. Serenitatis (27°, 19°) 700 

6. Crisium (17°, 58.4°) 600 

7. Mendel-Rydberg (-50°, 266°) 600 

8. Freundlich-Sharonov (18.5°, 175.5°) 550 

9. Hertzsprung (2.0°, 231°) 550 

10. Humboldtianum (57.5°, 82°) 550 

11. Humorum (-24.4°, 321.4°) 550 

12. Moscoviense (26.5°, 147.9°) 550 

13. Smythii (-1.5°, 87.5°) 500 

*Here a = 2  semi-major axis, b = 2  semi-major axis.  The basin also has a tilt angle = -18.8°.  The 

angle is measured clockwise from a meridian through the basin center
17

. 
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Table S4. Compensated and uncompensated topography ratios C2,0/C2,2, calculated using 

topography and gravity data outside of the basins shown, for fits over degrees 0 to 4 and degrees 

0 to 5.  For the cases with SPA with semi-axes 10% and 20% larger than the nominal values, the 

degree 5 solutions start to become unstable (due to the increased size of SPA), and we only 

report the degree 4 solutions (or degree 3 for semi-axes > 20% larger than nominal). 

 Up to degree 4 Up to degree 5 

Basins excluded from  

spherical harmonic fit* 

Comp. 

topo. 

 C2,0/C2,2 

Uncomp. 

topo.  

C2,0/C2,2 

Comp. 

topo. 

C2,0/C2,2 

Uncomp. 

topo 

C2,0/C2,2 

None (global data, Table S10) -2.0 -6.1 -2.0 -6.1 

I -1.9 -6.3 -1.9 -6.1 

O -2.3 -6.5 -2.3 -6.3 

N -1.9 -7.3 -1.9 -7.9 

SPAm20 -1.4 -2.0 -1.5 -2.6 

SPAm10 -1.3 -1.3 -1.3 -1.4 

SPAp10 -1.4 -0.6   

SPAp20 -1.6 -0.5   

SPA -1.3 -0.8 -1.2 -0.6 

SPA, I -1.2 -0.8 -1.2 -0.6 

SPA, I, N -1.2 -0.7 -1.2 -0.6 

SPA, I, O -1.3 -1.2 -1.2 -1.2 

SPA, I, O, N,  -1.3 -1.1 -1.2 -1.3 

SPA, I, O, N, Sr -1.2 -1.3 -1.1 -1.3 

SPA, I, O, N, Sr, C -1.2 -1.3 -1.1 -1.3 

SPA, I, O, N, Sr, C, MR -1.3 -1.0 -1.2 -1.0 

SPA, I, O, N, Sr, C, MR, FS -1.3 -1.1 -1.3 -1.0 

SPA, I, O, N, Sr, C, MR, FS, Hz -1.3 -1.3 -1.2 -1.2 

SPA, I, O, N, Sr, C, MR, FS, Hz, Ht -1.4 -1.1 -1.3 -1.0 

SPA, I, O, N, Sr, C, MR, FS, Hz, Ht, Hr -1.4 -1.1 -1.3 -1.0 

SPA, I, O, N, Sr, C, MR, FS, Hz, Ht, Hr, Ms -1.5 -1.1 -1.4 -0.9 

SPA, I, O, N, Sr, C, MR, FS, Hz, Ht, Hr, Ms, S
†
 -1.5 -1.1 -1.3 -1.0 

SPAp10, I, O, N, Sr, C, MR, FS, Hz, Ht, Hr, Ms, S -1.5 -1.1   

SPAp20, I, O, N, Sr, C, MR, FS, Hz, Ht, Hr, Ms, S -1.6 -1.0   

All 13 basins with 20% larger boundaries -1.5 -0.9   
All 13 basins with 30% larger boundaries -1.5 -0.8   

 Up to degree 3  
12 basins with 30% larger boundaries, SPA +40%

‡
 -1.0 -1.0   

12 basins with 30% larger boundaries, SPA +50%
‡
 -0.9 -1.3   

*Abbreviations: SPA = South Pole-Aitken basin, SPAm10, 20 = SPA with 10% or 20% smaller semi-

axes, respectively, SPAp10, 20 = SPA with 10% or 20% larger semi-axes, respectively, I = Imbrium, O = 

Orientale, N = Nectaris, Sr = Serenitatis, C = Crisium, MR = Mendel-Rydberg, FS = Freundlich-

Sharonov, Hz = Hertzsprung, Ht = Humboldtianum, Hr = Humorum, Ms = Moscoviense, S = Smythii. 

†Degree-5 fit used in the main text and for all conclusions. 

‡Percentage given for SPA indicates increase in its nominal boundary size. 
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Table S5. Topography spherical harmonic coefficients calculated outside SPA and 12 large 

basins, fit up to degree 5, in the present Earth-facing frame and the principal frame.  Coefficients 

derived from global data in the present frame are also shown.  W(n) is the power for degree n 

(eq. S3) (km
2
) (equal in the principal and present frames).  The angles for rotation of topography 

into its principal frame using global data, and using data outside SPA and large basins, are shown 

at the bottom.  Uncertainties are derived from Monte Carlo analysis. Coefficients used in 

analysis in main text are highlighted. 

 Global data,  

present frame, km 

Fit outside basins, present 

frame, km ( 1σ) 

Fit outside basins, principal 

frame, km (1σ) 

Degree, 

Order 
C S C S C S 

0,0 -0.248*  0.24  0.09  0.24  0.09  

1,0 0.138  -0.28  0.11  -0.49  0.06  

1,1 -1.025 -0.422 -1.35  0.09 -0.51  0.03 -1.38  0.11 -0.05  0.06 

W(1) 1.24 2.2  0.2   

2,0 -0.668  -0.45  0.06  -0.65  0.05  

2,1 -0.769 -0.017 -0.27  0.09 0.18  0.03   

2,2 0.109 0.383 0.26  0.03 0.54  0.03 0.51  0.05  

W(2) 1.20 0.67  0.06   

3,0 0.063  0.00  0.05  0.00  0.10  

3,1 0.553 0.088 0.14  0.11 0.00  0.04 0.25  0.12 0.17  0.04 

3,2 0.438 0.189 0.22  0.09 0.01  0.05 0.24  0.06 0.01  0.04 

3,3 0.406 -0.006 0.32  0.04 -0.01  0.03 0.05  0.03 -0.14  0.03 

W(3) 0.70 0.17  0.04   

4,0 0.216  0.17  0.05  0.04  0.07  

4,1 -0.225 -0.048 0.02  0.08 -0.01  0.04 0.05  0.13 0.05  0.05 

4,2 -0.327 -0.101 -0.04  0.08 0.01  0.06 -0.22  0.06 -0.15  0.09 

4,3 -0.199 -0.287 -0.06  0.05 -0.22  0.05 -0.05  0.03 0.05  0.04 

4,4 -0.192 0.111 -0.11  0.03 0.12  0.02 0.11  0.05 -0.11  0.03 

W(4) 0.39 0.11  0.02   

5,0 0.115  -0.08  0.04  0.03  0.07  

5,1 0.029 -0.033 -0.04  0.06 -0.03  0.02 -0.09  0.06 -0.06  0.06 

5,2 0.180 0.144 -0.06  0.05 0.06  0.04 0.07  0.06 -0.06  0.10 

5,3 0.018 0.209 -0.12  0.05 0.09  0.05 -0.05  0.09 -0.03  0.06 

5,4 0.037 0.011 -0.06  0.05 -0.11  0.04 -0.13  0.05 -0.08  0.04 

5,5 0.122 0.077 0.07  0.02 0.10  0.03 -0.11  0.03 0.10  0.03 

W(5) 0.13 0.07  0.02   

° -27.4 -30.5  1   

° 21.0 5.8  4   

° -17.4 -35.5  5   

*This value reflects the offset of the LRO data from the LRO reference radius. 
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Table S6. Gravity spherical harmonic coefficients calculated outside SPA and 12 large basins, fit 

up to degree 5, in the present Earth-facing frame and principal frame.  Coefficients derived from 

global data in the present frame, and gravity coefficients rotated into topography’s principal 

frame are also shown.  W(n) is the power for degree n (eq. S3) (equal in principal and present 

frames).  The angles for rotation of gravity into its principal frame using data outside SPA and 

large basins, are shown at the bottom.  Uncertainties are derived from Monte Carlo analysis. 

Coefficients used in analysis in main text are highlighted. 

 Global data,  

present frame 

Fit outside basins, 

present frame 

 10
-5

 ( 1σ) 

Fit outside basins, 

principal frame 

 10
-5 

( 1σ) 

Fit outside basins, 

topography 

principal frame 

 10
-5 

( 1σ) 

Deg., 

Order 
C S C S C S C S 

0,0   0.7  0.3  0.2  0.3  0.7  0.3  

1,0   1.3  0.4  1.2  0.4  1.4  0.3  

1,1   -1.5  0.4 -0.5  0.1 -1.5  0.4 -0.5  0.1 -1.4  0.4 -0.6  0.3 

W(1)  0.4 
 
 0.1  10

-9
     

2,0 -9.09  10
-5

  -8.4  0.3  -8.5  0.3  -4.3  0.7  

2,1   0.7  0.5 0.5  0.2   3.7  0.5 -5.9  0.3 

2,2 3.47  10
-5

  3.4  0.2 0.3  0.1 3.4  0.2  3.9  0.6 -0.9  0.3 

W(2) 9.5  10
-9

 8.4  0.4  10
-9

      

3,0 3.20  10
-6

  0.0  0.2  0.3  0.2  -0.1  0.5  

3,1 2.64  10
-5

 5.46  10
-6

 1.7   0.5 0.7  0.2 1.6  0.5 0.6  0.2 1.4  0.6 0.7  0.3 

3,2 1.42  10
-5

 4.88  10
-6

 0.5  0.4 0.1  0.2 0.6  0.3 0.3  0.2 0.5  0.2 1.1  0.1 

3,3 1.23  10
-5

 -1.77  10
-6

 1.0   0.2 0.0  0.1 1.0  0.2 -0.1  0.2 -0.4  0.2 -0.6  0.1 

W(3) 0.1  10
-9

 0.4 
 
 0.1  10

-9
     

4,0 3.24  10
-6

  0.4  0.2  0.4  0.2  0.4  0.3  

4,1 -6.01  10
-6

 1.66  10
-6

 0.3  0.3 0.2  0.1 0.3  0.3 0.2  0.2 0.5  0.5 0.0   0.2 

4,2 -7.12  10
-6

 -6.78  10
-6

 -0.3  0.3 -0.3  0.2 -0.2  0.4 -0.1  0.2 -0.7  0.3 -0.5  0.4 

4,3 -1.35  10
-6

 -1.34  10
-5

 -0.1  0.2 -1.2  0.2 -0.3  0.2 -1.2  0.2 -0.3  0.1 -0.2  0.2 

4,4 -6.00  10
-6

 3.93  10
-6

 -0.3  0.1 0.4  0.1 -0.2  0.1 0.3  0.1 0.6  0.2 -0.6  0.2 

W(4) 0.4  10
-9

 0.2 
 
 0.3  10

-9
     

5,0 -2.24  10
-7

  0.0  0.2  0.1  0.1  0.3  0.3  

5,1 -1.01  10
-6

 -4.12  10
-6

 0.2  0.2 -0.5  0.1 0.2  0.2 -0.6  0.1 -0.9  0.3 0.2  0.2 

5,2 4.40  10
-6

 1.06  10
-6

 -0.3  0.2 0.1  0.2 -0.2  0.2 -0.7  0.2 -0.2  0.3 -0.1  0.4 

5,3 4.66  10
-7

 8.70  10
-6

 -0.7  0.2 0.8  0.2 -0.6  0.2 0.8  0.2 -0.1  0.2 0.0  0.4 

5,4 2.75  10
-6

 6.76  10
-8

 -0.3  0.2 -0.0  0.2 -0.4  0.2 0.1  0.1 -0.6  0.2 -0.1  0.1 

5,5 3.11  10
-6

 -2.76  10
-6

 0.3  0.1 -0.4  0.1 0.1   0.1 -0.5  0.1 -0.6  0.1 -0.3  0.1 

W(5) 0.1  10
-9

 0.2 
 
 0.3  10

-9
   

°   -2.6  1  -30.5* 

°   -2.3  2  5.8* 

°   -2.3  1  -35.5* 

*From topography principal frame calculation (Table S5). 
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Table S7. Topography and gravity principal axis locations with and without large basins 

(Latitude°, Longitude° E) ( 1σ). 

 Largest axis  

(minimum moment axis) 

Intermediate axis  Smallest axis 

(largest moment axis) 

Global topography data (21.0°, 207.4°) (-16.1°, 290.9°) (63.1°, 346.3°) 

    

Topography fit outside  

basins, degrees 0-5* 
(5.9°   4°, 210.4°   1°) (-35.1°   5°, 296.4°   4°) (54.4°   5°, 308.6   6°) 

Global gravity data (0°, 180°) (0°, 270°) (90°, 0°) 

Gravity fit outside  

basins, degrees 0-5* 
(-4.8°   2°, 182.0°   1°) (-1.8°   1°, 272.1   1°) (84.9°   2°, 202.9°   35°) 

*Used in main text.  

 

 

Table S8.  Compensated and uncompensated degree-2 topography spherical harmonic 

coefficients calculated using the basin-filling method.  Corrections and uncertainties are obtained 

using calculations with synthetic maps (Section S3). 

 Compensated 

topography 

Uncompensated 

topography 

Compensated 

topography 

corrected, with 

1σ uncertainties 

Uncompensated 

topography 

corrected, with 

1σ uncertainties 

10% larger outer 

basin diameter 

    

C2,0 -0.47 -0.08 -0.5  0.2  -0.10  0.01 

C2,2 0.35 0.11 0.39  0.08 0.12  0.03  

C2,0/C2,2 -1.35 -0.7 -1.4  0.6 -0.8  0.2 

20% larger outer 

basin diameter 

    

C2,0 -0.49 -0.08 -0.6  0.2 -0.10  0.01 

C2,2 0.34 0.11 0.39  0.08 0.12  0.03 

C2,0/C2,2 -1.40 -0.7 -1.5  0.6 -0.8  0.2 
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Table S9. C20 and C22 topography and gravity coefficients ( 1σ) calculated outside of the 

Moon’s large basins, in topography’s principal frame (Figs. 2d and 2e).  The theoretical 

compensated and uncompensated topography required to produce gravity observations is shown 

in the top half of the table.  The linear combination of compensated and uncompensated 

topography that matches both observed gravity and topography is shown in the lower half of the 

table (see Fig. S9).  Compensated and uncompensated topography harmonics are associated with 

crustal thickness variations and a fossil bulge, respectively. 
 Observed gravity 

with basins 

removed (Fig. 2e) 

Compensated 

topography* 

Uncompensated 

topography* 

Observed topography 

with basins removed  

(Fig. 2d) 

  Required to produce gravity:  

C2,0 -4.3 ± 0.7 x 10
-5

 -1.8 ± 0.3 km -0.17 ± 0.03 km -0.65 ± 0.05 km 

C2,2   3.9  ± 0.6 x 10
-5  1.6 ± 0.2 km  0.15 ± 0.02 km  0.51 ± 0.05 km 

  Linear combination to match topography and gravity:*  

C2,0  -0.53 ± 0.07 km -0.11 ± 0.04 km  

C2,2   0.40 ± 0.06 km  0.11 ± 0.03 km  

C2,0/C2,2  -1.3 ± 0.2  -1.0 ± 0.3  

*Assumes crustal density 2550 kg/m
3
, mantle density 3200 kg/m

3
, mean lunar density 3340 

kg/m
3
, and mean crustal thickness 40 km

19
.  Some values may not sum due to rounding. 

 

 

Table S10. C20 and C22 topography and gravity coefficients in topography’s principal frame, 

using global data (compare with Table 1 and Table S9).  The compensated and uncompensated 

topography required to produce gravity observations is shown in the top half of the table.  The 

linear combination of compensated and uncompensated topography that matches both observed 

gravity and topography is shown in the lower half of the table.  Compensated and 

uncompensated topography are associated with crustal thickness variations and a fossil bulge, 

respectively. 

 
Observed global 

gravity 

Compensated 

topography* 

Uncompensated 

topography* 

Observed global 

topography 

  Required to produce gravity:  

C2,0 -5.74 x 10
-5

  -2.4 km -0.22 km -1.00 km 

C2,2   1.66 x 10
-5 0.7 km 0.06 km  0.45 km  

  Linear combination to match topography and gravity*:  

C2,0  -0.86 km -0.14 km  

C2,2  0.43 km 0.02 km  

C2,0/C2,2  -2.0 -6.1  

*Assumes crustal density 2550 kg/m
3
, mantle density 3200 kg/m

3
, mean lunar density 3340 kg/m

3
, and 

mean crustal thickness 40 km
19

.  Uncertainties are small and not shown, since these globally-determined 

harmonics are well known. 
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Table S11. Crustal thickness spherical harmonic coefficients calculated outside SPA and 12 

large basins, fit up to degree 5, in the present Earth-facing frame and principal frame.  

Coefficients derived from global data in the present frame are also shown.  W(n) is the power for 

degree n (eq. S3) (km
2
) (equal in principal and present frames).  The angles for rotation of crustal 

thickness into its principal frame using global data, and using data outside SPA and large basins, 

are shown at the bottom.  The ratio C2,0/C2,2 in the crustal thickness principal frame is also 

shown.  Uncertainties are derived from Monte Carlo analysis. 

 Global data,  

present frame, km 

Fit outside basins, present 

frame, km ( 1σ) 

Fit outside basins, 

principal frame, km ( 1σ) 

Degree, 

Order 
     C        S C S C S 

0,0 0*  2.53  0.65  2.52  0.66  

1,0 0.65 0.00 -1.17  0.80  -2.16  0.40  

1,1 -5.01 -1.90 -5.90  0.66 -1.98  0.21 -5.91  0.80 -0.20  0.43 

W(1) 29.1 40  6   

2,0 -2.47 0.00 -1.48  0.51  -2.70  0.39  

2,1 -3.79 -0.07 -0.83  0.98 0.72  0.25   

2,2 0.04 2.06 1.19  0.41 2.93  0.22 2.50  0.23  

W(2) 24.7 13  2   

3,0 0.45 0.00 -0.24  0.32  -0.52  0.80  

3,1 2.22 0.08 0.13  0.84 -0.73  0.24 1.03  0.54 1.04  0.31 

3,2 1.87 0.99 0.91  0.67 0.21  0.31 1.14  0.48 -0.40  0.32 

3,3 1.92 -0.18 1.47  0.26 -0.47  0.21 0.20  0.45 0.06  0.38 

W(3) 13.3 4  1   

4,0 1.01 0.00 0.60  0.34  0.01  0.38  

4,1 -0.90 -0.41 -0.07  0.50 -0.20  0.22 0.21  0.51 -0.40  0.43 

4,2 -1.49 -0.44 0.24  0.64 0.13  0.33 -1.08  0.37 0.12  0.63 

4,3 -0.96 -1.02 -0.01  0.40 -0.41  0.31 0.46  0.35 0.34  0.31 

4,4 -0.88 0.74 -0.54  0.21 0.99  0.16 0.44  0.41 -0.14  0.27 

W(4) 7.7 1.9  0.5   

5,0 -0.65 0.00 -0.34  0.32  0.15  0.41  

5,1 0.27 -0.07 -0.38  0.36 0.04  0.18 0.13  0.40 0.35  0.39 

5,2 1.00 0.77 0.01  0.45 0.08  0.29 0.60  0.33 -0.04  0.38 

5,3 -0.18 0.92 -0.49  0.40 0.11  0.34 0.34  0.43 -0.11  0.29 

5,4 0.05 -0.02 -0.05  0.31 -0.70  0.26 -0.12  0.49 -0.30  0.28 

5,5 0.61 -0.41 0.41  0.15 -0.41  0.19 -0.53  0.27 -0.56  0.35 

W(5) 3.5 1.3  0.5   

° -32.3 -33.4  2     

° 23.2 2.9  8     

° -24.2 -52.8  14     

C2,0/C2,2    -1.1  0.2 

*The mean crustal thickness is 43 km, but it was subtracted before using the data. 
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Table S12. Comparison of degree-2 and degree-4 coefficients for topography, gravity, and crustal 

thickness, calculated outside of large basins (taken from Tables S5, S6, and S11).  The degree-4 

coefficient that is largest in tidal heating models, C4,4, is highlighted.  Crustal thickness is shown both 

in topography’s principal frame, and its own principal frame.  The predicted value of C2,0,/C4,4 is 

approximately -0.45 when tidal heating is important.   
 Topography, topography 

principal frame, km ( 1σ) 

Gravity, topography 

principal frame ( 10
-4

) 

( 1σ) 

Crustal thickness, 

topography principal 

frame, km ( 1σ) 

Crustal thickness, crustal 

thickness principal frame, 

km ( 1σ) 

Degree, 

Order 
C S C S C S C S 

2,0 -0.65  0.05  -4.3  0.7  -2.54  0.37  -2.70  0.39  

2,1   3.7  0.5 -5.9  0.3 0.05  0.04 0.62  0.10   

2,2 0.51  0.05  3.9  0.6 -0.9  0.3 2.55  0.23 0.34  0.05 2.50  0.23  

4,0 0.04  0.07  0.4  0.3  -0.03  0.05  0.01  0.38  

4,1 0.05  0.13 0.05  0.05 0.5  0.5 0.0   0.2 0.13  0.30 0.29  0.23 0.21  0.51 -0.40  0.43 

4,2 -0.22  0.06 -0.15  0.09 -0.7  0.3 -0.5  0.4 -0.78  0.21 -0.34  0.20 -1.08  0.37 0.12  0.63 

4,3 -0.05  0.03 0.05  0.04 -0.3  0.3 -0.2  0.2 0.21  0.14 0.73  0.27 0.46  0.35 0.34  0.31 

4,4 0.11  0.05 -0.11  0.03 0.6  0.2 -0.6  0.2 0.72  0.34 -0.13  0.04 0.44  0.41 -0.14  0.27 

C2,0/C4,4    -0.28  0.14  
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Table S13. Summary of tidal heating calculations (see Section S8). 
Case # Eccentricity Basal 

crustal heat 

flux 

(mW/m
2
) 

Basal crust 

temperature 

(°C) 

Mean thickness 

(km) 

C2,0 

(km) 

C2,2 

(km) 

C2,0/C2,2 Tidal heat 

flux 

(mW/m
2
) 

1 0.02 20 1125 101.3 -0.23 0.67 -0.34 0.7 

2 0.02 20 1150 97.8 -3.80 1.88 -2.02 2.0 

3 0.02 20 1175 87.0 -10.01 4.61 -2.17 5.9 

4 0.02 20 1200 68.6 -13.98 8.26 -1.69 15.5 

5 0.02 20 1225 48.4 -12.36 9.69 -1.28 34.4 

6 0.02 20 1250 32.6 -8.51 7.60 -1.12 63.6 

7 0.02 20 1275 23.6 -5.05 4.73 -1.07 94.3 

8 0.02 20 1300 20.0 -3.20 2.83 -1.13 115.5 

9 0.02 20 1325 19.2 -2.48 2.06 -1.20 127.0 

10 0.02 20 1350 19.6 -2.17 1.76 -1.24 133.1 

11 0.02 20 1375 20.6 -2.02 1.62 -1.25 136.7 

12 0.02 20 1400 21.9 -1.94 1.53 -1.27 139.0 

13 0.02 20 1425 23.6 -1.89 1.48 -1.28 140.7 

14 0.02 20 1450 25.4 -1.81 1.44 -1.26 141.8 

         

15 0.02 30 1125 68.7 0.60 0.29 3.03 0.4 

16 0.02 30 1150 68.4 -0.55 0.57 -0.95 1.3 

17 0.02 30 1175 65.3 -3.32 1.54 -2.20 3.7 

18 0.02 30 1200 57.2 -7.48 3.53 -2.12 10.5 

19 0.02 30 1225 44.7 -9.43 5.88 -1.60 26.1 

20 0.02 30 1250 32.0 -7.87 6.36 -1.24 53.4 

21 0.02 30 1275 23.3 -4.98 4.61 -1.08 84.8 

22 0.02 30 1300 19.5 -3.14 2.78 -1.13 107.4 

23 0.02 30 1325 18.5 -2.38 1.99 -1.20 119.6 

24 0.02 30 1350 18.6 -2.08 1.67 -1.25 126.0 

25 0.02 30 1375 19.3 -1.94 1.54 -1.26 130.0 

26 0.02 30 1400 20.2 -1.86 1.45 -1.28 132.7 

27 0.02 30 1425 21.4 -1.79 1.41 -1.27 134.7 

28 0.02 30 1450 22.6 -1.76 1.37 -1.29 136.6 

         

29 0.02 40 1125 51.8 0.65 0.08 7.8 0.3 

30 0.02 40 1150 52.2 0.16 0.24 0.66 0.9 

31 0.02 40 1175 51.3 -1.13 0.67 -1.69 2.7 

32 0.02 40 1200 47.6 -3.78 1.68 -2.25 7.6 

33 0.02 40 1225 40.1 -6.55 3.40 -1.93 20.1 

34 0.02 40 1250 30.7 -6.89 4.61 -1.49 44.5 

35 0.02 40 1275 22.8 -4.75 4.21 -1.13 76.1 

36 0.02 40 1300 19.0 -3.03 2.67 -1.14 99.7 

37 0.02 40 1325 17.9 -2.28 1.87 -1.22 112.6 

38* 0.02 40 1350 17.8 -1.98 1.57 -1.26 119.6 

39 0.02 40 1375 18.3 -1.84 1.44 -1.28 123.7 

40 0.02 40 1400 19.0 -1.76 1.37 -1.29 126.7 

41 0.02 40 1425 19.8 -1.70 1.32 -1.28 129.0 

42 0.02 40 1450 20.8 -1.66 1.29 -1.29 131.0 

         

43 0.025 20 1125 96.7 -2.99 1.60 -1.87 1.7 
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44 0.025 20 1150 86.9 -9.11 4.13 -2.2 5.2 

45 0.025 20 1175 68.8 -13.6 7.92 -1.72 14.5 

46 0.025 20 1200 48.1 -12.35 9.55 -1.29 33.7 

47 0.025 20 1225 31.6 -8.58 7.59 -1.13 65.5 

48 0.025 20 1250 21.5 -5.13 4.80 -1.07 105.1 

49 0.025 20 1275 16.9 -3.07 2.78 -1.10 137.7 

50 0.025 20 1300 15.6 -2.18 1.86 -1.17 156.3 

51 0.025 20 1325 15.7 -1.83 1.50 -1.22 166.0 

52 0.025 20 1350 16.5 -1.68 1.35 -1.25 171.2 

53 0.025 20 1375 17.6 -1.60 1.26 -1.27 174.4 

54 0.025 20 1400 19.1 -1.55 1.22 -1.28 176.4 

55 0.025 20 1425 20.9 -1.49 1.18 -1.26 177.6 

         

56 0.025 30 1125 67.2 -0.27 0.48 -0.57 1.1 

57 0.025 30 1150 64.6 -2.82 1.36 -2.08 3.3 

58 0.025 30 1175 56.9 -7.02 3.27 -2.15 9.6 

59 0.025 30 1200 44.4 -9.30 5.71 -1.63 25.2 

60 0.025 30 1225 31.1 -7.94 6.35 -1.25 54.6 

61 0.025 30 1250 21.5 -5.15 4.73 -1.09 94.5 

62 0.025 30 1275 16.7 -3.06 2.79 -1.10 128.4 

63 0.025 30 1300 15.2 -2.14 1.82 -1.18 148.2 

64 0.025 30 1325 15.1 -1.79 1.45 -1.23 158.5 

65 0.025 30 1350 15.6 -1.63 1.30 -1.25 154.3 

66 0.025 30 1375 16.5 -1.55 1.22 -1.27 167.9 

67 0.025 30 1400 17.5 -1.48 1.17 -1.26 170.3 

68 0.025 30 1425 18.7 -1.45 1.14 -1.27 172.5 

69 0.025 30 1450 20.1 -1.40 1.11 -1.26 174.0 

         

70 0.025 40 1125 51.2 0.28 0.21 1.35 0.8 

71 0.025 40 1150 50.5 -0.89 0.59 -1.51 2.4 

72 0.025 40 1175 47.1 -3.45 1.54 -2.24 7.0 

73 0.025 40 1200 39.7 -6.37 3.26 -1.96 19.3 

74 0.025 40 1225 29.8 -6.82 4.73 -1.44 45.6 

75 0.025 40 1250 21.2 -4.98 4.34 -1.15 84.8 

76 0.025 40 1275 16.5 -3.01 2.76 -1.09 119.9 

77 0.025 40 1300 14.8 -2.08 1.76 -1.19 140.8 

78 0.025 40 1325 14.6 -1.72 1.39 -1.23 151.5 

79 0.025 40 1350 15.0 -1.56 1.24 -1.26 157.6 

80 0.025 40 1375 15.6 -1.49 1.17 -1.27 161.6 

81 0.025 40 1400 16.4 -1.42 1.12 -1.27 164.3 

82 0.025 40 1425 17.3 -1.40 1.09 -1.29 166.9 

83 0.025 40 1450 18.3 -1.35 1.07 -1.27 168.8 

         

84 0.03 20 1125 89.5 -6.94 3.12 -2.22 3.7 

85 0.03 20 1150 73.3 -12.7 6.80 -1.87 11.1 

86 0.03 20 1175 52.2 -12.88 9.42 -1.37 27.8 

87 0.03 20 1200 34.1 -9.37 8.12 -1.15 57.8 

88 0.03 20 1225 22.1 -5.83 5.35 -1.09 102.0 

89 0.03 20 1325 13.5 -1.47 1.19 -1.23 204.0 

90 0.03 20 1350 14.5 -1.36 1.10 -1.24 208.2 

91 0.03 20 1375 15.7 -1.30 1.04 -1.25 210.8 
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92 0.03 20 1400 17.3 -1.27 1.01 -1.26 212.6 

93 0.03 20 1425 19.0 -1.28 0.99 -1.30 214.3 

         

94 0.03 30 1125 64.9 -1.77 0.99 -1.79 2.3 

95 0.03 30 1150 58.7 -5.73 2.58 -2.22 7.2 

96 0.03 30 1175 47.1 -8.98 5.09 -1.76 20.1 

97 0.03 30 1200 33.3 -8.39 6.38 -1.31 47.1 

98 0.03 30 1225 22.2 -5.82 5.17 -1.13 90.4 

99 0.03 30 1325 13.0 -1.43 1.16 -1.24 196.4 

100 0.03 30 1350 13.7 -1.33 1.07 -1.25 201.4 

101 0.03 30 1375 14.6 -1.28 1.01 -1.26 204.8 

102 0.03 30 1400 15.7 -1.25 0.98 -1.28 207.3 

103 0.03 30 1425 17.0 -1.20 0.96 -1.25 208.8 

104 0.03 30 1450 18.3 -1.21 0.93 -1.30 211.2 

         

105 0.03 40 1125 50.2 -0.38 0.42 -0.91 1.7 

106 0.03 40 1150 47.7 -2.53 1.17 -2.16 5.1 

107 0.03 40 1175 41.3 -5.69 2.74 -2.08 15.1 

108 0.03 40 1200 31.5 -6.93 4.48 -1.55 38.5 

109 0.03 40 1225 22.0 -5.55 4.60 -1.20 79.9 

110 0.03 40 1350 13.1 -1.30 1.03 -1.26 194.8 

111 0.03 40 1375 13.8 -1.24 0.98 -1.26 198.6 

112 0.03 40 1400 14.7 -1.21 0.94 -1.28 201.6 

113 0.03 40 1425 15.6 -1.16 0.92 -1.26 203.7 

114 0.03 40 1450 16.7 -1.16 0.90 -1.29 206.1 

*Used in main text (Fig. 3 inset). 
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Figure S1. Power spectra of planetary topography (A), and gravity (B), offset for clarity.
In logarithmic scale, lunar topography is offset  by +4, and gravity by +2.  Mars topography
is offset by +2 and gravity by 0.  Earth topography and gravity have not been offset.  Venus
topography is offset by -1 and gravity by -3.  Tharsis has been removed by the methods
discussed in Section S1.
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Figure S2. Definition of the rotation angles θ, φ, λ, and the order they are performed to 
rotate a set of data from the present reference frame into its principal reference frame.    
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crustal thickness, or gravity. (A) Topography (km), (B) Crustal thickness (km), and 
(C) Gravity potential coefficient expansion (multiply by 2.823 x 106 m2 s-2 to obtain 
surface potential).  SPA boundaries are also shown for semi-axes 20% smaller, and 20% 
larger than nominal.  See Table S3 for a list of basin diameters and locations.
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Figure S4.  Expansions of best-fit lunar topography (km) outside of SPA and 12 other basins, from 
degree 2,up to the maximum degree shown (the degree-1 terms are calculated but not shown, since 
they would dominate the topography).  Above degree 5, the hole at SPA starts to dominate the 
expansion.  The fit up to degree 5 is used in the main text and for all conclusions (degree 4 yields 
similar results).

Lunar topography, without degree-1 terms Fit up to degree 2
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Figure S5.  Effect of maximum fit degree on fit properties, for spherical harmonic fits to gravity 
and topography outside of large basins, up to the maximum degrees shown.  (A and B) 
Degree-2 coefficients in the principal frame. (C and D) Principal frame rotation angles.
(E) Ratio of C2,0/C2,2 for compensated and uncompensated topography. The expansion up to 
degree 5 is used in the main text and for all conclusions (see Section S2).
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Figure S6. Power spectra for fits up to different maximum degrees for topograhy 
and gravity, outside large basins (global data also shown). (A) Topography.  
(B)  Gravity potential.  In both topography and gravity, the power increases at 
degrees 2 to 5 when the fit is performed above degree 5.  See Section S2 and 
Fig. S4 and Fig. S5.
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Step 1: Fit over degreess 0 to 5.

Step 2: Add synthetic topography over degrees 6 to 50, constrained to power law.
              Use synthetic topography to generate synthetic gravity for degrees 6 to 50.

Step 3:  Fit over degrees 0 to 5.

Step 4:  Compare synthetic �t values to values from original �ts (Step 1).
               Compare ratios of C2,0/C2,2 for compensated and uncompensated topography.  
               Repeat 500 times to determine variance.

Synthetic topography (n > 6) Synthetic gravity (n > 6) from synthetic topography

Figure S7.  Method of determining uncertainty in fits to data outside of the Moon’s large basins.
For Step 2, the topography power-law coefficients are given in Table S1. An empircal relationship 
between topography and gravity is used to generate synthetic gravity. In the gravity figures, 
multiply by 2.823 x 106 m2 s-2 to obtain surface potential.  See Section S2.

Topography (km) Gravity potential

Compare



Figure S8. Topography and gravity with SPA and the next 12 largest basins filled in with 
the local mean topography or gravity. (A and B)  Topography, using the mean of the area 
between the basin diamater and a diameter 10% and 20% larger. (C and D) Gravity, using 
the mean of the area between the basin diamater and a diameter 10% and 20% larger. 
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Figure S9.  Gravity vs. topography for fully compensated or fully uncompesnated 
terrain.  The degree-2 coefficients outside of large basins are shown (± 1σ).  The 
topography is effectively ≈80% compensated for both coefficients. 
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Figure S10. (A) Lunar crustal thickness power spectrum with best-fit power laws,
analogous to Fig 1.  (B) Lunar crustal thickness rotated to its principal frame, 
calculated outside the basins shown.
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Figure S11.  Crustal temperature profile for tidal heating model 38 (Table S13), for a 
point at (0° N, 0° E), where the surface temperature is -18.1°C and the local crustal 
thickness is 25.3 km.  The basal temperature of 1350°C is not meant to represent a 
specific model of magma ocean cooling (see discussion in Section S8).  



Figure S12. Distributions of coefficient ratios for lunar topography (Section S9).
(A)  Distribution of lunar topography coefficient ratios Cn,0/Cn,m for even m, up to 
degree n = 50.  The black line shows the best-fit Gaussian function.  The ratios 
were truncated at -6 and +6 prior to fitting. (B) 10,000 ratio values taken from 
the best-fit distribution in part A and then rotated to the implied principal frame 
(taking those ratios to represent a ratio C2,0/C2,2 ), where the ratio was then 
recalculated and used to make the distribution shown (see text).
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Figure S13. Distributions of C2,0/C2,2 coefficient ratios for compensated and 
uncompensated topography, derived from the lunar topography distribution 
in Fig. S12b, and a generated gravity component.  (A)  Compensated topography. 
(B) Uncompensated topography.  The differences in each distribution come 
from weaker (compensated topography) and stronger (uncompensated 
topography) dependencies on gravity, which is partially generated from 
the input topography, and partially random.  
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Figure S14. Lunar thorium distribution from Lunar Prospector data.  
(A)  In the present reference frame. The black points show the primordial
principal axes (compare with Figs. 2a-c). (B) In the basin-removed 
topography principal frame (compare with Figs. 2d-f).
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