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- Abstract

. A study of the collective motions of nuclear matter has been made. We

first give a purely classical macroscopic description of hydrodynamic waves

‘in nuclear matter, and suggest some experimental consequences of their ex-

citation. Next a quanturn mechanical study of the collective eigenstates of
nuclear matter is taken up.. The starting point of this discussion is the theory
of the nuclear ground state as given by Brueckner and his collaborators. The
excited states are des.crib_ed by means of the method d-evelopedv by Sawada to
apply to an electron gas.. We generalize this method so as to include the in-

ternal degrees of freedom associated with spin and i=spin and to handle the

‘momentum dependence of the level-shift operator K | used by Brueckner. The

connection between the quantum-mechanical eigenstates and the classical hydro-
dynamic motion is established.. As a consequence of the internal degrees of -
freedom, there exist not only the usual compressive waves, but spin, i-spin,
and coupled spin-i-spin waves. The i-spin waves can be assoéiated with the
Goldhaber-Teller oscillations.

We have investigated the corrections to the Sawada theory.. This gives

rise to the damping of the stable Sawada collective eigenmodes, analogous to

the viscous damping of a plasma oscillation. In some cases, however, we find

not damped but' exponentially growing waves.. This seems to correspond to the
system's collapsing on itself. This difficulty must lie'in our description of the
ground state and we can at the moment only speculate on the origin of this

difficulty,
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1, Iﬁtroduction

The shell model has provided the general framework in terms of which
most nuclear models are now described, Jt is characteristic of this model

that orbits of single nucleons are rather simply related to states of nuclei,

. This includes excited nuclear states which are considered to arise from single-

- particle excitations. We need not review here the considerable successes of

this point of view--or its limitations. In the latter éonnection, however, we

~recall that the failure of the shell model to correctly predict nuclear magnetic

‘moments, quadrupole moments, and some excited states of heavy nuclei has

been generally interpreted as due to collective motions of nuclear particles,

To improve the shell-model description, Bohr and Mottelson, Hill and Wheeler,
and others have introduced collective oscillations of nuclear matter. 1 Also
Goldhaber and Te];lerZ have proposed a relative motion of the neutron and
proton ''fluid componeﬁts" in nuclei as an explanation of the "'giant res_onanée"
in the interaction of nuclei with y rays of about 20 Mev energy.

The notion. of cooperative effects in nuclei is hardly new to nuclear

‘physics. The liquid-drop model of _Bohr3 exploited a hydrodynamic analogy.

His argument followed closely that of the kinetic theory of gas hydrodynamics. -
That is, if a given nucleon is strongly scattered by its neighbors, any local
excitation will be shared by many nucleons, and cooperative "hydrodynamic"
motion is expected. On the other hand, if the nucleon is not. strongly scattered,
cooperative motion does not occur and there ifs no hydrod\ynamic motion, [In
kinetic theory this is the distinction between the Boyle and the Knudson gas.
Because of the success of the shell model it has often been argued
that the:mean free path‘ for collisions between nucleons in nuclei is tog large
to justify the assumption that hydrodynamic motion car occur, We feel, |

however, that this argument may be fallacious. First, the concept of a
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collision between two part1c1es 1s not prec1se1y defined for a medmm in which
: several particles may interact 31mu1taneously | That this p01nt is not trivial
is evidenced by the fact that it involves questions of"'pr'inciple that are still not
understood in kinetic transport theory,4i] Indeed, to take an extreme case,
hydrodyn‘amic motion may obtain in the complete'absence of '""collisions'" be-
tween particles, if instead the particles interact with a 'collective field" |
produced by the motion. . This is illustrated by the well-known phenomenon

of plasma oscillations in an electron gas.. These represent a definite hydro-

dynamic mode of motion by which the electrons interact directly with the
electric field caused by the cooperative motion and not with_dné}\another
Mindividually, "> | o

In this paper .we pursue the argument just given to investigate possible
modes of hydrodynamic motion in ""nuclear matter''--or a nuclear medium of
infinite extent. Undoubtedly boundary conditions at the surface of actual nuclei
will modify the details of our conclusions; on the other hand, it is hoped that
some physical insight intc the mechanism of cooperative motions may be ob-
tained from these considerations. -

The analegy to plasma oseillations, which. originally motivated this
study, turns out to be very helpful. 6. The quantitative results differ considerably,
however, from those for an electron gas. This is associated in large part with
the fact that nuclear forces have a finite range, whereas plasma oscillations
are due to long-range Coulomb intera;cfcibns.?

In Section 2 we giVe an entirely classical, macroscopic derivation of
nuclear hydrodynamic motion, including possible mention of experimental ob-
servation. This:derivation depends on the assumption that the nuclear volume
energy is a minimum at observed nuclear densities. It ignores, however, the
important question of the damping of the motion obtained.

 Following this classmal study of nuclear hydrodynamic oscillations,

a detaﬂed quantum -mechnical treatment of these phenomena is presented.. The

L

startlng p01nt of the discussion is the theory of the nuclear ground-state
structure as formulated by Brueckner and his ‘collaborators 8 . The methods
developed by Gell-Mann and Brueckner ? Sawada et al. 10, and Wentzel1 re
applied to describe the spectrum of exc1ted states, which includes the hydro- )

dynamic eigenmodes.
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"To be more specific, we first generahze the method to systems of
particles having internal degrees of freedorn and to "'scattermgs” described by
the level-shift operators K, employed by Brueckner et al, 8 We then study 1n
detail the macroscoplc hydrodynamlc motlon (as a functlon of tlme) that
arises from "wave packets" of the hydrodynamlc eigenmodes. In d01ng thls
we shall see the close relation to the purely classical hydrodynamlc dlscussmn
of Section 2. Because of the spin and 1sotop1Cosp1n degrees of freedom of nu-
cleons, we f1nd four classes of hydrodynamlc motion. The simplest is a purely
h?drodynamm mode (sound waves) 1nvolv1ng density variations. In addition,
there are spin-wave solutions, correspending to periodic oscillations of the local
spin density, Goldhaber-Teller oscillations, and coupled spin and i-spin waves,

The above discussion indicates that the Sawada method can be applied
to a variety of problems involving cooperative fluid motions. Since this
technique represents only an approximate solution to the many-particle problem,
it is necessary to discuss also corrections to the Sawada method. To do this,
we have employed a time-dependent Schrddinger equation and considered the

excitation of hydrodynamic motion as a transient problem. The corrections to

_ thé Sawada treatment then appear in the form of damping of the simple hydro-

dynamic motion--or as a mechanism leading to ergodic behavior of the many-
particle system. By using a time-'dependent approach, we avoid some ex-
ceedingly delicate problems concerning true eigenstates of multiparticle
systems. _

With the above technique we are able to discuss the damping of the
collective motion. This appears in a manner analogous .to the viscous dampihg
of plasma oscillations. In some cases one finds not damped but exponentially
growing waves., This instability seems to have a simple origin, occurring
for systems that are at too low a density to satisfy saturation conditions. The
exponential growth then seems to correspond to a collapse of the system into
droplets of higher density.- _

The simple compfessive mode, described above, appears to be un-
suitable in this sense when one uses the Brueckner ground-state density and

level-shift operators.
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2. Classical Development of Hydrodynamie Motion -

‘We consider a large nucleus and imagine that we make a small dis-
‘place:rnent'from equilibrium € (£,t) of the nuclear mattér at the point r.’
We suppose that £ varies sufficiently slowly with r° that a large number

of nucleons are involved; thus, we may apply classical mechanics to the sub-

-«

sequent motion.

. As we perform the displacement, the average nucleon velocity at r~is

: J
dg 9§
v:.i_:-;.i (2"])
~ vdt ot
. if £ is small. Let the mass density of nuclear matter be

p(r,t) =py+p'(x,t)

.where p' is the (small) deviation from the equilibrium density, Po.: The

continuity equation for p is

+ v (pv) = 0.

If we make use of the assumed smallness of v and p', this may be approxirhately

rewritten as

o9p' _ o 8,§
- = po v v= - PO v
ot - - - ot
or ; B . .
p' I po Y,' é L ‘ (2=2)

.Néw, the displacement § will be _i'esisted by a restoring force per
unit mass K, since the nucleus was originally assumed to be in equilibrium.
. Thus, by Nz;r‘»‘rton‘s equation of motion, we have
dv .
—= pyF , , v ' (2-3)

.
0 dt

 which is correct to first order in small quantities. Let us now take XL tobe

derivable from a potential § :

" F=-9% . | - (2-4)
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12,13

Following the reasoning of Berg and Wilits, ’ ~ we expectv'E to be de-

termined by p', if p 0 is the equilibrium density. . For example,. we might

expect the form

el

S [c o' +C, ¥op' 4+ C _v4p'+...:]', ' (2-5)
Po 1 2 C 3, _ -

where Cl’ .CZ.’ ... are constants, since terms of O(p“Z) are negligible by our

assumption that the displacement £ is small, . _T'his'expressio_n is consistent

v

with the assumption of small displacements, which means that only terms -

linear in p' need be retained. If we restrict ourselves to disturbances that

- also vary slowly (presumably over the range of nuclear forces), then Eq.

(2-5) may be replaced by

e | | ,
F= — 0. | - (2-6)
Po ‘

| Using Eqs. (2-2) and (2-4), we have

D!
"
tq

voE,

Cl . . _ ‘
-Cyv-E . | o ' (2-7)

Iéei

Since the disturbance must be caused by an external force, say FO’ this -

must be included in the first of Eqgs. (2-7), ‘which is now rewritten as

[T

F=Cyyu-&+5 - - (2-8)

This external force may be due to the passage of a fast particle through the

With this delverlop'ment, the equation of motion (2-3) is now

%
—5 =C,VV £+ Fy. _ » (2-9)
ot _

Let us set o :
C, =a%, | - , (2-10)

and take the divergence of (2-9):
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[3 Ll v?-:‘ veogSveR, e e

We may also rewrite this as ' _ . )

2 L L o
L2y -2ty ﬂ§ a®v: Fg=ts. ' G
Bt S

We have abbrevieted a.Z v EO as S, the ''source" of the dlsturbance of the
nuclear matter. . v
In the absense of the source term, Eq. (2 NIZ) is a simple wave‘ , N
equatlon, describing acoustlc waves in the nucleus. These waves travel with
the '"sound. speed' a » |
Our derivation has been oversimplified in twov’respects, © First we
have neglected the other degrees of freedom associated with the spin and

isotopic spin of nucleons. This leads to the possibility of other eigenmodes

.of nuclear motion. We have also used the static relation (2-5) in the time- |
dependent equation (2-3). When the displacement'takes' place at a finite
rate, (2-5) may be changed in form. (That is, the nucleons may make
nonadiabatic transitions to exc1ted states as the wave passes through the
medium.) Equation (2-5) is not unreasonable for long-wave-length dis-
turbances, however because the rate at which the displacement occurs varies
with the rec1proca1 of the wave length Consequently, as the wave length
becomes large, nonstatic corrections to (2-5) might be expectedvto become
.negligible, _

In later sections we discuss the other eigenmodes of nuclear motion.
These are all go_vverned"byh an equation of the form (2-12), so that we may
consider this to apply to any nuclear eigenmode. We shall also investigate
nonadiabatic ¢orrections to Eq (2-5)., These and'many other results will
follow from a general quantum-mechanical treatment of collective oscillations
of nuclear matter. In the remainder of this section we simplyl give appli-
cations of Eq. (2+12). | } | ',
We first relate the sound speed .a to the nuclear compressibility.

The work per unit mass done in making the displacement 6§ is
(=) 6§ * F . The total work in a volume 'f associated with the displacement

é is then
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W = - pojd'rjég

""po d'Tg

based . on the fact that the restoring forcle_i's linear in §. We make use of Eq.

. (2-8), and neglect boundary conditions, so that this expression becomes

P
we =2 lar(v- £)%° -
2 (2-13)
P , '
~ =L 7 (v E)Z
5 -
or, according to Eq. (2-2). [M is:the nucleon mas&‘]
_Yl;hdzzlé_z 2%(p")2 . : ‘ (2-14)
PoT 2p g ' '

This is the compressional energy per nucleon. The nuclear compressibility1

is conventionally defined as

K=9p22 [W
ap pPT

P=Pp
Using Eq. (2-14), we find the relation
| 22-1 K | (2-15)
9 M
'Estimated values of K range from
K = 187 Mev9 -
to
K =302 Mev;13
these values lead to sound velocities
| a/c = 0.14,
and v
a/c =0.19, , - ‘ (2116)

where c is the speed of light.
A number of possible means might be employed to generate the waves

described by Eq. (2-12). We mention in particular very energetic nuclear’

_interactions, initiated by a single relativistic particle. In this case the mesons
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produced and knock-on nucleons are largely confined to a cone of narrow
opening angle. These particles pass through the hﬁcleus_ (boring a hole through
it, so to speak.) The initial disturbance is confined to a line along the orbit

of these particles, and the source S in Eq. (2-12) may be written as

'8 =5(x - V), N e

where V is the velb‘ci‘fy of the diSturbing particle or partiéles. For cases
of interest Y 1is close to light velocity ' ¢. ILet us suppose: V to be parallel

to the z axis. By introducing the Fourier decomposition of the source,
S = (Zw)=3SOﬁ3kg(k)e Lk (x-Ve) ’ (2-18)

where S0 is a constant and g(0)=1, we may solve the wave equation,r
Eqg. (2-12), for &:

3 k" (e - Vt)
$ = - <(2n)'3sof1 kgg"; - — (2-19)
a

In our case we are interested only in supersonic motion for which we have .
V >a. Equation (2-18) is readily integrated (subject to a retarded-. boundary

condition and assuming long wave lengths) to give

=0 for z >Vt
- 2
+x2) (L) > (2-v)?

a

= 0 for z < Vt, ((y‘a

ASO 1

2ma’ ﬁz-Vt)zefx%z -1) (;&TZ‘ + yﬂ] 'I/Z
) a

(2-20)

for z < Vi, (y°+ x%) (3’;='1)<(Z,=Vt>2“.
a
The form of this solution is rather typical of the disturbance produced
"by a supersonic particle., Most of the energy is localized in the neighborhood
of the shock front, which is a cone. of half angle B: ‘
B =sin t(2—). - (2-2D)
: v ' '
The absolute value of the energy dissipated by the’ shock depends on a detailed
knowledge of how the incident particle tunnels through the nucleus. Rather
than attempt to'give a' description of thiscomplicate"d process hefe, we
simply characterize the stréngth"gf:-the interaction by 'the parameter S, which
occurs in Eq. (2-18}. .
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~ For this purpose we define an energy d1ss1pat10n per.unit. 1ength d,
for‘a point P on the incident particle's path which is one nuclear radius away
from the shock front. In this way we can apply Eq. (2-19), which is the
solution for propagation in an infinite mediuma to a finite s&stem We assume
here that the most of the energy is dissipated when the shock front reaches the
nuclear surface. The geometry of the situation is- shown in Fig. 1, . The !
energy dissipated.in the shaded slab is S1mp1y -d “times the thickness of the
- slab, We obtain a crude expression for  d by integrating Eq. (2-14) for t:he_
energy density W/ T over the surface of the slab. The singularity in Eq.
(2-19) is smoothed over a distance of the: order of the range of nuclear forces.
In addition we assume-that the external force pér unit mass, ° FO, ‘may be

represented by a potential function

ea-xx; _ o
V(%) = VO = . . o | ' . (2—'2.1)

* This potential is simply related to the source in the wave equation (2-12),

P 2 2 S - ‘

S = - a” vivix) . | _ o (2-22)
- Because of the many approximations that have been made, the following

estimate is probably reliable only to within a factor of two:

3 A o N
Kd’-t-?(xro) [—————] - Mev,
200 Mev| -
where |
a’ XpoV
ov
is the volume integral of the potential, and -Kﬂl is the range of the force.
One can get a fairly . large energy dissipation, such as K'-ld—;-"'lo Mev, by
simply taking KT o~ 1 and . V~600 Mev.. A volume integral for the potential
- of this amount corresponds to only 50 or 100 Mev for the individual nucleon-
nucleon encounters involved in the tunnelmg of the incident particle through
the nucleus.

The propagation of a shock wave through anucleus should lead to a
number of interesting effecis, When the shock front reaches the nuclear
surface, nucleons or collections of nucleons (e.g. light'nuclei) may be ejected
and with an energy related to the sound V"eloci‘cy° If the sound veiocity were
very much larger than the internal nuclear velocities, we could expect the

nucleons to be emitted just in the direction normal to the shock front.
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_ Measured with respect to-the incident direction, this characteristic emission

angle is

90=11°.5, o o (2-23)

2

Such a peaked‘distribution will actually be smeared out for a number of
reasons. . The most important of these are the internal momentum, distribution
of the nucleons .and the refractmns of the eJected nucleons at the nuclear
surface. Before proceedlng W1th the. calculations of the energy and angular
distribution of the eJected,nucleone, we should point out that the observation
of this distl.'ibution. would provide a measurement of the '"'nuclear sound
velocity, ' which ,.is-,, as we have seen, directly related to the nuclear com-
pressibility. . At present there is no accurate measurement of ‘this quv'antity.

We calculate the engular and energy distribution of the nucleons
emitted when the shock wave strikes the nuclear surface using the follo‘Wing
model and assumptions. ' » |

We consider the nucleus to be a degenerate Fermi gas inside a
sphere of radius R. Instead of solving the actual wave equation subject to
the boundary conditions of a finite system, we simpl;lr use the solutions
{2-19) for an infinite medium. Furthermore we consider only the shock front
to be important in causing the emission of particles from the nuclear surface.
‘We assume that the nucleons in the shock front possess an additional
momentum Ma, where a is the velocity of the shock wave and is normal
to the shock front. |

When the shock front reaches the nuclear surface, we suppose.that
the nucleons in the sh_ock front, which now'possﬂeés this additional momentum
Ma will contiﬁue on thrdugh the nuclear surface and thus be emitted. The
number of partlcles eJected into the element d3p ( P is the momentum of
the eJected partlcles) is glven by the follow1ng 1ntegra1 over the nuclear

surface,

2T v +1

f .- B
1(P)a’p = adp/ dav/ d(cos p,)e(p AN(P B, 22 N- ' (2-24)

-
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In the integral, p, v “are the’ spher1ca1 coordinates of the normal to

the nuclear surface Q and the polar axis is the d1rect10n of the incident

particle that generated the shock wave. We have restricted ourselves to the

case in which the incident particle strikes the nucleus with zero-impact . -

parameter.,  The step function

oy = Js e o -

insures that the escaping particle moves away from the nuclear surface. Here

ioin

N(P) is the distribution function for nuclear momentum. The momentum of a

nucleon located in the shock front is, according to our previous assumption,

p'—P+Ma.

~~

_).

We relate this internal momentum to the external momentum P, by reduc1ng

the pormal component of P by a f1xed amount Po while leaving the tangential

component unchanged.

p-(poQ= p-(p'- )2 I (2-27)

The momentum Po is of course simply related to the potential-well depth of
the nucleus. The final factor in Eq. (2-24) is S1mply the Jacob1an of the
transformation in going from d3p to d7p. ’ '

Equation (2-24) involves a fa1rly stra1ghtforward numerical 1ntegrat1on,
the details of which we will not go into here. Typical results are given in
Fig. 2, where the following values have been assumed for the pertinent

parameterb Fermi energy, = 40 Mev; ''normal" energy loss,

V = p, /ZM = 50 Mev; sound veloc1ty, a =1/3 c. Equation (2-24) can be

evaluated in closed form if the effects of refraction are ignored. This result
should be valid for particles of sufficiently high energy. If INE dQdE is
the number ejected into the solid angle dQ2 about 6 and the energy interval

dE, we have

I'=cos™'A + cos™! cos 9[ \ (2-28)
'\/ 1 + tan“0A” /

where

A = f(p) (Sinesine

-1 '
0) - cot 8 cot ®, (2-29)

and
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£(p) = <. (2-30)

e LaadEevy

This r_esult is valid for _.f(p) > cos 60 »whicl:l'is the case of interest here.
Equation (2-24), and this approximation as well, can easily be generalized
to include. an effective mass, . The .results in Fig. 2 are not to be taken too
| literally. They do ‘sho’w,’ though, that the hi'gh-energy nucleons emitted by
this mechanism will have an angular distribution peaked at an angle con-
siderably away from the fprward direction, .given approximately by -'90.
This behavior differs markedly from the usual description of a high-energy
nucleon-nucleus interaction, which is usually supposed.to be initiated by'a '
direct interaction and then followed by'a cascade and the evaporation of -
particles. . Tyhis latter picture predicts some Véfy_energetic particles emitted
in the forward direction while the rest (and mos‘t) of the erhitted nucleons are .
low in energy and.distributed almost isotropically. This marked difference
in the angular distributions resulting from these two mechanisms should
make possible. the identification of high-energy nucleons resulting from the
excitation of nﬁcleér shock waves by veryver_lerg_etié incident particles.
Finally we note that the curves 1n Fig. 2 are -':;Auridetevrrnrined by an over-all
factor, which af‘ises from‘our ignorance about the details of how the shock
is initiated. In other Words, we do not knc;W the absolute magnitude of this
effect, i.e., the energy loss. per unit pafh length of the incident particle.
The experimenf:a_l observation of these effects would, of c‘ourse__, serve to
remove this unceftainty.

\
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3. Formulation of Quantum Mechanical Theory

We now give a quantum mechanical discussion of the collective
motion based on the technique developed by Sawada et al. 10 for the electron
gas. The spirit of our calcuiat-ion is that of the Brueckner theory of nuclear
structure. o ‘ .

- We suppose the nncltear matt.er to be confined to a "lai'ge" b‘ox.of
volume . In the absence of 1nteract10ns the nucleons form a degenerate
Fermi‘ gas, their individual states be1ng 1abeled by plane Wave momenta P
and a spin and isotopic spin index \. All partlcles have momenta less than
the Fermi momentum Pp- ' ' '

‘Next, let us imagine the nucleons to interact via two- body forces As

the interactions are '"'turned on, ' nucleons are scattered into and out of the

" Fermi sea. These interactions are described by the nuclear Hamiltonian

| H :lKg+|KO TV VL | - (3-1)
The term IKO represents the Brueckner grOu’nd-bstate energy,
4 1 44 . ! i . ’
'IK'O =z Z E_ .- - Z = (P, p's N KL p s N pUNY), (3-2)
A=l p<pp 2- \,N=l p,p'cpp ¥ - -
with
2 4 :
E =2+ =z = (pup' N K[ P nip' ) (3-3)
AN A AMA it

P, A ' _ )
2M A=1 p.(pF

Here )\ is an index describing the spin and isotopic-spin label of a nucleon

(\=1, 2, 3,4) and K is the "energy shift'' matrix used by Brueckner and his

~collaborators. 8,9 (We discuss the evaluation of these at the end of this
| section.) Thus Ep;')\ is the '"effective energy" of a nucleon in nuclear matter
in Brueckner's terminology. We shall assume that. Ep, X is independent
of )\, writing ) o . o :
| E .= E_. | (3-4)

P, A P

The "kinetic energy' in E‘q,v (3-1) refers to parficie's and holes defined

with respect to a degenerate Fermi (gas:
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\=1
: : : IR S A T B :
, ==  E * a. - Z E b | b . (3-5
tK.)\ R pa_“p., )\‘a‘p,)\;_ ~ . P PsN P\ ( )
Héréa and CL 2 respect1ve1y ann1h11ate and create a nucleon w1th

Py A
momentum p and sp1n" X, these quant1t1es are defined only for p > Pp -

Similra'rly; b ' ™~ and bp ) are ann1hllat10n and creat1on operators for
’ y *

|1 1A _ — . f
holes' within the Fermi sea (bp . Q )\3 o)\ O_ o,y T p< pF) ,

- being deflned only for p< pF F0110w1ng Sawada the interaction energy

Vs is taken as

VS N = (p +a, N p'_q, \! IKI P, )‘O;p" )\|0)
2249, ;N p, P! o S g
Mor Ao
X e \ b:k ) + b a - )
' Q-'P+q, X p,k,o ..»p+q:}¥\ P >\=0 ] .
L o .
o * RTIN S ' : A
X Clp' -9, A b ,p‘, )\'O i bP -q, A a )\’ 0] ’ : . (3 )

Here Q is the norrhalizatio_n volume and K describes the scattering,

Py X "’P"‘“ 4N,
R N '
. P, o P "% )\ . |
The final term V' in Eqg. (3-1) represents the connections to the approximate
Sawada Hamiltonian, ‘

o ) o - . '
H, -!K:JkaO-FVs S (3-7)

We shall return later to an estimate of the importance of V',

Finally we adopt the Sawada—Wentzel commutation relations

[‘bp +q )\‘lia 1 )\" bp+q’l p’ )\]
_ b3 b>'.< *4 Co b:k o - 0 .
) [qtp'fq', IS ARNE -.Ctp+q, LSS B xl] S
% T (3-8)
[bp”rq', A lap‘, A O‘p+q, P, \ ]
=5 X & o .8

q's -9 pLpta AL AN
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When the commutatlon rules’ (3 8) are used the physmal 1nterpretat10n
%
of the Hamiltonian (3-7) is as follows F1rst Q b descrlbes
Pta, N Py Ny

the excitationof a nucleon from the state (p,,)\vl) to the state (p+q, \); this

leaves a "hole' at (p, )\1). Thus a 'pair' is created. . The commutation rules .
(3-8) prescribe that the particle is eventually returned to its original hole_
(with no virtual scatterings having occurred in the meantime). .Thus a
particle and a hole are alyv&ays associated with one another. Such interactions,

of course, do not exhaust all possibilities in the complete Hamiltonian (3-1).

Consequently, the Sawada Hamiltonian is only approx1mate {( This approximation

has been discussed and used several times previously. 14, 15

) For the present
we consider only H s’ neglecting V'. The extra contribﬁtmnsj:o the energy
arising from V' have been called "cluster correctlons” by Brueckner and his
collaborators. (Corrections to the approx1mate commutatlon relations (3- 8)
are also 1ncluded in V'.) Our Hamiltonian Hs is considerably more com-
plicated than that of Sawada et al. 10 These authors considered only the
Coulomb interactions in a degenerate electron gas. The spin degeneracy

of the electrons was trivial in their case, since the Coulomb potential is l
spin-independent. Also, the use of the K matrix in Eq (3-=6),, rather than

the matrix elements of a local potential, adds analytic complexities to the.
eigenvalue equation.. As we shall see, however, these difficulties are not
insurmountable. Our .eigenvalue problem is actually quite similar to that

of Sawada et al. 10 We shall find; as did Sawada et al., that the eigenstates

of HS fall into two classes--those corres'p‘onding to single-particle excitation

and those corresponding to hydrodynamic modes., Sawada et al. 1o classified

~ the hydrodynamic modes as "damped" or '"undamped.' We feel that this

distinction is artificial, as all the hydrodynamic modes are expected to be
damﬁed. That is, we anticipate that the eigenstates of H and H, may bear
little resemblance to each other. Expressed differently, a many-particle
system is expected to be "ergodic'' in thé sense t:hAa'.tv a simple cooperative
motion persists for only a limited time. The ‘importance,of ‘HS is thus not
that it may give one information concerning the eigenstates of nuclei. Rather,
we must think of a time-dependent process by which we excite an eigenstate
of H_ at a given time. In callih.g H a '"good approximation'' to H, we mean
that the eigenmodes of H do not decay in less than several oscillations. If
7 is the time for decay, then “4/7 should be small compared with the energy

resolution with which we are studying the eigenmode of HS.
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From the above discussion, it seems clear that we must solve a time-
dependent problem, rather than one 1nvolv1ng stat1onary states Thus we use
scattering theory Let us suppose the exc1tat1ons to be started 1mpu1s1vely
by some external means, such as a particle striking our nuclear matter.

Let x(t) describe the nuclear matter in its ground state plus the wave packet
of the bombarding partiele. Also, let us suppose this extra particle:interacts
only for a short time at t = 0. Then the complete wave function for the-

~system is

g = x(t) +T_ (1) . | o  (3-9)

Here _"gs(t)’ represents the effect of the external disturbance on the medium.
It arises from a term H, int which, w1th the nuclear matter, describes the

interaction of éxternal particles.
. Since we are considering a transient problem, the boundary conditions

are 1mportant ~ To formulate these, we define

| D(t) = H,_, (1),
with N+ o

D(t) = dE ¢ *E'p(E) . - (3-10)

For present purposes, we set D(t) = 0 for t< 0, so that D is analytic
for Im(E)> 0. The '"scattered wave' in Eq. (3-9) is the particular solution

of the "inhomogeneous Schr&dinger equation",

‘Eiﬂ-‘ ]gs = D(t) . | : (3-11)
ot ' .

We have assumed here that H, int MY be treated as a small perturbat1on

Using Eq. (3-10), is then found to be
in+oeo

. -iEt
y_s (t) = dE :

e
) E-H _ .
in~o , ' . ,

D(E) . - (3-12)

Simple considerations of causality require Es = 0 for .t < 0. -Thus, on the
contour of integration, -Im(E) must be sufficiently great that the singularities

of (E-.H)'ﬂl-lie below the.contour. In general this puts a lower limit on .
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First, let us replace H by H_ in Eq. (3- 12).. .This équétion then des-
cribes a system with. réesonant elgenmodes wh1ch is excn:ed by a transient
impulse at t = 0, The poles of (E-H ) give the e1genfrequenc1es of these
modes.. Now, with the actual Ham11ton1an H, rather than Hs’ let us choose
Hint so as to give an initial excitation that corresponds closely to one or a.:
few of the eigenstates of HS. If Hs is a ''good approximation' .to H, . in the
sense used above, the initial excitation will be damped sufficiently slowly
that.the eigenmodes of- H may be observed before they décay.

T Sawada et al.. have stated that a hydrodynamlc mode will be strongly
damped when its energy lies in the continuum of the spectrum of single-
particle excitations. Although true, this is not a necessary condition for
damping, since the single;particlé excitation spectrum may be extended in-
definitely by exciting two, three, etc. part1c1es |

To make these statements more prec1se we def1ne

a® E-H_, e . o (3-13)
and set . ' N
RN O
E-H a
so that we have )
Q=1+ 1 v'. : _ I _ (3-14)
a-Vv!' ‘ :

We note that E must be considered as complex for the evaluation of integrals.-

By a theorem on the manipulation of such quantities, 16 we may set

Lo oavgp v, (3-15)

a= A" a-K'
1
a

Q=1+

with AV =V VY,

Let us use the eigenstates of Hs as the representation for A' and keep only

the matrix A'O formed from the diagonal elements of A'. . Then the matrix,

I_A' o | (3-16)

is diagonal in the eigenstates of H_. Thus,
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= [dE 9. =|e " T'D(E) A
*‘S f [ 0 Aa]-e S e e e (3-1T)

GUEC
= |dE — ' D(E)
. E-H -aA! '
s 0

describes the p}r'opagva.’t"ing’,eigenrhode-s of HS ‘Since A‘O has a’ negative ,

imaginary part, these modes are expected to be damped. The damping occurs
_ as the drigirial modes share their energy with other_degr\ees of_;f'reedofn;: This
represents the teﬁdency of theé.system to be ergodic. L7 we may extend the
calculation of Ay to higher orders! by taklng the diago-nal matrix élemenfcs
of '
1

Yvesvivlilyao o a1

Ab‘ =V
a : a a .

There are delicate quéstioné i_n\_r.olv.ed invthe‘evaluatiovl"l off;he‘ level-shift
matrices K, and cbrrespondingly in coﬁveniehﬂy orderihg fhe evaldation of
the effects of V'. This is discussed to some extend in Section 7. A complete
discussion of the matrices K lies outside our present scope, however, since
we are emphasizing here the hydrodynamic pr’dperties of nuclei for given K.
We hope to return in a later publication to Questions related to possible dis-
continuities in K (i.e. energy gaps_18 in the single-particle spectruin)-.
Applications made in this iaaper assume that the quantities K ‘are continuous,

as has been implied in the work of Brueckner and his collaborators.
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4. The _Eigenvalue Problem for ,HS

The commutat1on relations (3-8) for the pair- var1ab1es lead to the

follow1ng commutators for the interaction energy:

* 1 -1 ) ol 9 '
* b Vi = Z (P> N\psP'=q, \' lKlp_-q;,)\;p',)\' )
[ P} p’)\og- U U U 3 0
* * b .-
><_ {%‘Eq,_)\'.b p‘,)\'o + ‘P.’i’q: )\|a/ )\O jl
b Loy o Vijmg 2 s Ngip' =g, \' Kl -q, A;p', ! 4-1
P-9, )‘C P )\03 S] _ Q2 ' v (p 0 p q ‘ , P-4 P 0) ( )
: P ALY ‘

% Coo —}
X Qp‘fq,x'b P At p -9 \.CL. K'»
s . £ | G *

b , ) = =E, b ’
[Clp‘”qs A P, )\0£ I:K:I_ [ p p_'qj} ap-q’ A P, )\O
b —] = -E b
[p-q, b ’ —J [ P p'q:l P-9, )\aps )\0

To obtain the collective eigenfunctions and eigenvalues of Hs’ we

10

follow closely the procedure of Sawada, Brueckner, Fukuda, and Brout.

Let §0 be the ground state of H s and E the corresponding 'energy

0
eigenvalue. Similarly, % and E = EO + A(q) are the wave function and energy

for an excited state. Then we have l

(K+V) §_=(Ey+a)

q q : » (4-2)
(K+VIE, = Egly -
10 % o
We make the "ansatz'"'" "~ for the operator Aq, which creates the collective
excitation.
T = A* ¢ 5 ' ' : . 4.3
iq : thiO . : ( )
* (+) . x () |
A = = G : b - G b L
' “ha- - | ;=\, =\ P=d, AP, X
q p"’xo[ P9 -, %o‘a_pvq,x Pi)g P, qi=), =) p_.q’,_d?‘fg

(4-4)
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" The quantities G are numencal coeff1c1ents to be evaluated in a way to be

described below. We must of course, cons1der G to vanish except for
(-) S ' '

P < P I P- ql >pF, and Gp’ q to vamsh except for P Pps |P-9 < pF

The symbol "(-2)) etc., in Eq. (4- 4) represents the time- reversed state of

‘ ")‘", etc., for reasons that will soon become apparent, From Eq. (4-2) : ‘ .
one may readily show ~ : B '
. * 3
K+V_, A = AA . (4-5)
8 q q

. Equation (4-4) is ﬁext substituted into Eq. (4-5) and the commutator is
evaluated with the help of Eq. (4-1). On equating to zero the coefficients of

‘the annihilation and creation operators, one obtains two sets of equatmns

FA—'L G("’) ‘ = _1_. > (', \' Aip-q )\ IK[ pLa, \'ip, ) (4-6)
. P Prqimh = A © P'."*}-:‘X'O o ' SR o
| | ' o) ) 1
% [G BT SPED N 1PETERAPED NP I
. - o '_l . . ) .
A-L G( ) = - D LN p-a, )KL p g,
i pJ N P R U U (P's \' giP-q » | Ip. ;NP _».o)
: xlg;p q; )\'0-)\'0 p.:q;")_\o")\'.o ’
L 2E__-E_. I o (4-7)

P P-q- "p’
To simplify these expressidns, we use time-reversal and parity
invariance: '
(" X' gip-a, 2 lKl P'=ds NPy Ag)
= (;p,-)\o;—p'+q, -\ 'Kl -p+q, -X;+p -)\j‘.o)
=P, -XgiP'-q, =N |K| P-q, - NP -Np)
~ This allows (4-6) to. be.rewrit_ten as

A-n_[ci =1 5 (P, \qiP g, \' KI P-4, \sp', \'j)
[ 13] p.q,l 10 Q P")‘")"o 0 l \ 0

(+) (-)
X I:G P, i\, 'x' + G p'.q;)\',x'o )

; (-) -1 , )
A-L |G . o= = T ' _ ety _
[ p} Py Qi )\0 Q 'Z)\' , ()pp )\Of'p q, A IK' P-9, MiP' s A 0) (4-8)

PN |

o P T B
X[G‘ pl’q’x|’)\|0+G pO'q,)\|')\l0.
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The two.Eqs (4-8) are the e1genva1ue equat1ons Wthh determ1ne A,G(+)
G( ) Before we proceed to the actual solutlon of the elgenvalue problem, 1t is -
interesting to note that our solution leads to boson commutatlon rules for the

operators that create and destroy the collectlve modes

A LAY [A A ]
q q Cb
To obtain a pract1ca1 means of solvmg Eqs (4-8) we will assume that K

can be approx1mated as follows (this method can be easﬂy generahzed if K is

piecewise continuous in several domaing:

m .
- K=2Z Cm {p q}m{p} ' - (4-9)
m .
wh‘ere{p‘} ™ and {p,%} m_are some finite set of functions. Next we introduce
M(m)(i)é' E(i) )P‘ m s v , ; - (4-10)
o P,q o -
where
: ZH)‘ = 1l =
Q p'< pF
\p!+q>pF
Z(‘ﬁ;’_}_ = ' . . ‘ (4-11)
Q pv> PF
P4 <pp

The quantities M and G in {4-10) are considered to be column matrices in the
index °\, while the coefficients Crh in (4-9) are square matrices,.

Equations (4-8) are then

) s [A sz] s c {p q} [ m)(+)+M(m)( 7. (4-12)
: Multiplying by {P} . and summ1ng our p gives.

M EY zcm [z ‘p>-m {p q} } [_M<m)+ + M(m)(")]. (4.'-13)
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-This set of equations defines the eigenvalue A _

We are finally left with the problem of interpretation~-that is, relating
our quantum-mechancal calculation to the classical hydrodynamic a'fgume‘nfs
of Section 2. For this purpose we must form wave packets of the eigenstates
of HS and then calculate the expectation value of the nucleon density operator

-for nucleons of type \:

o -if'-k) - X
hHhT L RN VN : (4-14)
(all k, k')

In the Sawada approximation, this is to be rewritten as

' * *  ig-x
=zz | b _ L +hb A e
"r'}')\ [ P-d, A Ps A P‘q,)\a'P:;lﬁ :

4

q P
L (4-15)
The complete wave. function is
i — iEat | * —  -i(Eq + At  (4-16)
= 0 A T 0
g COEO e +C1 Z():‘lél(q)Aqi0 e .

when we use Eqs. (4-3) and (4-4). Here C, and.C; are constants and a(q)
is the wave-packet amplitude. Equation (4-16) may easily be generalized to
states involving the excitation of several hydrodynamics quanta, in which case
our arguments are not changed. ) o
The expectation value ,

Dy = _@,E}NE) (4-17)

containg:constant and time-dependent terms:
n, =n_ + n‘)\(t) . (4-18)

) ATy

~The time-dependent'térm _n')\(t) describes the hydrodynamic motion and the
average density. From (4-17) we obtain

: : - : i(g; X + Af)

1 _ = e % -

n', (t) = Rg {Co C, qZ>Cl(q) o

N el (=) | '_
- X i'[q'p”-'sq;-)\rka -p_,-q;-x,-?]}' (4-19)
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Here Re{...} means ''real part of {5"

For small g, we shall show later that for a class of K's .we have

A= ‘alq, where a is a constant. Thus,- n')\, satisfies the wave equation -

[—a{’[t?'fa»z vz] ny, = 0. - . . (4-20)
" The wave equat1on fcr the various ”components" ")\" are coupled by the by
dependence -of the G's in Eq. (4- 19) Having estabhshed the existence of Eq
(4-20) we may apply the class1cal con51derat1on of ‘Section 2. - However, we

must first show that the damping of the wave (which is neglected in Eq. (4-20) )

is not important during the time interval in question.

5, First Example

Studies of nuclear structure and scattrering indicate that the following is

a reasonable approximation to the K-matrix, as obtained by Brueckner et al. :8’19
K=6., ., 6. «f. . Vo) [1l-ap +p‘2—2p'p')J | | (5-1)
. The function. Vo(q) is discussed below. - The quantities f)\ y1.-area set of
H

constants defined by the following notation:
A=1 corresponds to (P4 )
A =2 corresponds.to (P{ )
A =3 - corresponds to (N4 ) (5-2)
A=4

corresponds to (N§ ),

where (P4 ) means a proton with spin ".up, " etc. . The physical significance of

"' correspond-

this form for the K matrix is that we have four interacting '"'fluids,
ing to the four systems (5-2).. A particle in one fluid always remains in it,
since spin and isotopic spin flip have been left out.

We further simplify our problem by 'éonsidering q to be very small.

Then p2 and p in (5 1) may each be set equal to pF I:Referrlng to the
expression (4-8) one may easily convince himself that this'is valid. | The
assumption that 'q is small restricts us to d1sturbances with. wave numbers
qv ‘small compared with pr. ' A final simplificati(‘)nrin this séction will be
the neglect of the.,R g’ term in Eq. (5~1). (In the next example this term will

be considered. )
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It is convenient to define . .
(Q) - . 0 q = apF -2 2 ( =
Here p is the pion mass and g is a Yukawa coupling constant. The particular
. form of (5-3) is actually unimpdrtant for our purposes, since only V(0), a con-
stant, is significant in the approximation that g i‘s‘sr‘nall.l Equation (5-3)
represents the strength of interaction of two particles on the Fermi surface.

The quantities f')\)\, are specifi_ed as follows in terms of three di-

mensionless constants of onder unity:z‘-o
fi0:7 %00 7 35 7 f44 = € 20,
f._=f,, =1 ,=1 _ = a<0,

13 7731 7724 T 42

127901 T 134 T H3 = 0y = oy 7055 =15, =B <0 (5-4)

The terms with c correspond to repulsive fbrces, while those with a and
b correspond to attractive forces. 19 The. choice of (5-4) corresponds roughly
to actual nuclear forces if we consider Ial s, c, and !bl to be comparable in
magnitude, » ,
- With this choice for K, the Brueckner ground-state energy ‘_Eqs. (3-2) |
and (3--3)].1s | N
2

p
kK=a¢2 ZE_+ Latatom noVo(0)(1 - LI pp) (s (5-5)
: o 5 .

b

15 2M 8
where A is the nuclear mass number and ng is the particle density. Since

'IKO must be negative, we have

c+a+2b< 0. ' ‘ - (5-6)
Because of the 6, .. 6.- v ¢ in Eq. (5-1), the .G's of Eq. (4-4) have
the form
. P, q; :)\,')\0- .--)\, )‘0 , _Psai X o, ( )

We méy now deﬁné ) .
I + .t : S :
and p _
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E]ES

T

(+) -y | . ‘ '

Equations (4-8) now become .

- ‘- ) \:,:‘. i . '—
G P> QA f. 'i’x A AL -Tx' (5_--9)
. N . p N .
If both sides of this equation are summed over P, the result is
* S .
‘ T)\ =+ )\2‘ vf.)\ X VNO_T)\" (5-10)
where o
NO*‘ = p* 1 (5-11)
A-L \
~ Finally, the two Egs. (5-10) may be added to give
=z £, VN ' -
.Tx S L OT)\‘ . | : (5-12)
with ‘ : Co ‘
N, =N " -N_~ S  (5-13)

0~ "o 0o N .

Equatibn (5-12) is the eigenvalue equation, which determines A4, the T>\,s ,
and thus also the G's in Eq. (5-9). _ v

To evaluate NO’ we continue to make the approximation for small q
in the pair excitation energy (and suppose that the quantities K are continuous

functions of PP and q near the Fermi surface),

L, - 24 o . (5-14)
where M>'< is the effective mass of a nucleon aﬁ the Fermi surface, 21.. The

quantity - N0 may be transformed into the intergral,

) - (5-15)
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and this may be written as

N, = - 2.0t (5-16)
n 2 Sep Q S T P
‘where n, is the nucleon density and -S is the number of nucleon degrees of
freedom (S =4 in our case). We also have ‘
. pF
‘pT T F
and M .
N .
. M o (5-17)
| s -
The quantity~Q is a function of
azMe " (5-18)
q

Pp
the ratio of the eigenvalue A to the ma’ximum‘ energy for exciting a pair of
momentum q. : | ‘ '

When the eigenvalue Eq. (5-12) is satisfied by A>1, the int’egfa‘.nd‘
(5-15) is nonsingula.r. and evaluation is straightforward: -

,i.;A;ﬁwnF*1 . ' (5-19)
Q : 2 A-1 :

Wheﬁ no solution to the eigenval_l;.e problem exists for A>1, we invoke
the considerations of Section 3, where we conéluded that A vmust. have a
positive imaginary part.  This condition defines how the singularity in Eq.-
(5-15) is to be treated; to be specific, it defines the phase of.the logarithm in
Eq. (5-19). Accordingly we write ’ ~ '

A+l=la+fe®
A-1=|A-1 ¥ e,

Lol A Al A g A
Q 2 Lh-a4 2 2

~where a, € >0,

Then we have

et

(5-20)
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In either case the eigénvalue equation (5-Ii2) may be written as

S T - |
QAT =-1 = 1, T)\][— — ] - (5-21)
[ w=1 - 2 eFS ~ ; : o .
The function ! . 1/Q is exhibited as a fu‘nc':ti.on of A forlKA< e in Fig. 3. It
is seen that . Q takes on all negative values in thié}. interval. Consequently,
there is always one (and 6n1y one) value of A with. A Xl if the eigenvalue
Aequation (5-21) gives a negétive Q. For a single component (S = 1) this'is
tru‘e if the forces are repulsive, i.e., V(0)> 1, For positive Q thefe exists
‘no solution with r_'eali A --that is, ”no stable hydrodjrn__amic solution. “
- Since. Q is necessarily real, the imaginary part of the right side of
Eq. (5-20) is identically zero. A brief analysis of this equation leads directly .
to the conclusion that the imaginary part of A, and thus 4, is positive. This
implies that if for the solution of the eigenvalue equation any of the modes
corresponds to a positive Q, this mode is not only unstable but also its
amplitudé increases exponentially with time, Such a situ;tioh is of course
uanysical for a stable mediuyn , and if the theory leads to exponentially
growing waves, this must be ascribed to an improper treatment of the state
of the medium described by the Hamilfonian. 'KO.
_ For small q, the function V(q) of Eq. (5-3) may be replaced by
- V(0) = 41rg2-/p,2, . The eigenvalue problem, Eq. (56-21), now yieids a value for
: Q(orA) wh'iach is independent of q. From the definition of A, Eq (5—18), ’we

conclude that only the ratio of A to q is determ1ned, i.e.

&fq =12,

This result was the basis of the previous d1scussmns of nuclear hydrodynarrucs -
in Sections 2.-and 4. :
The actual elgenvalues of Q [Eq (5 21)] which follow from the

coeff1c1ents f)\ 3! assumed in Eq (5-4), are
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| c-a . (Solution 1)

- Q _Je-a - (Solution 2)
[3 :nogg] ¢ +a-2b ~ (Solution 3)
8 € c+a+2b | - (S_élution 4)

The correlsponding T:}\,_S are

2 U i )

STE T, [ 1 (P) ' (Solution 1)
I (N4 ) |

-1/ “(N.l:)

cr=T, (7L o (Solution 2)

" T=T | _ ‘ * (Solution 3)

(Solution 4) . (5-23)

[ [ o bt

On comparing Eqs. (5-21) and (5-9), we see that - G% .is equal to T)\_ times

Pyqih
a quantity that is independent of . According to Eq. (4-17), therefore, the

T)\,S are essentially the normal hydrodynamic amplitudes:

o nt' ot . = . . . -
n'py: n'yin'ping s _'Tl"T'Z'T3'T4 . (5-24)

By Eq. (5-23) we see that Solution (4) corresponds to a simple compressional .
mode, since the four fluid components move together. . According to the saturation

conditions, Eq. (5-6), this eigenmode has a position Q and is unstable, and moreover
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the waves increase rather than decrease in amphtude W1th time., We are

- . forced to conclude that the ground state of the med1urn is not adequately described

‘by our approximate Hamiltonian IKO, Eq. (3-2), The perturbatmn by V's

leads to large, unstable variation in the density of the med1um We may note
here that this difficulty is not removed by the more pre01se treatment of the

K matrix given in the next section. Thus at the very least, this may imply

the need to include the effect of V's in the evaluation of the ground state energy.
.Othermse certain radical revisions of the K matrlx may be necessary to
correct this d1ff1culty ' ‘

On the other hand the degenerate Modes 1 and 2 are stable in the
Sawada approximation because Eqgs. (5-4) 1mp1y c = a>0, Solution 1 is a
Go'ldhaber=Te11>er3‘mode, for according to Egs. (5-23) and (5-24), the neutron -
and proton ﬁuids move 180° out of phase. Estimates of a,b, and ¢ indicate
that Solution 3 is also expected to be stable, i.e., we anticipated c + a~2b>0.
For this solut1on, nucleons with spin "up” move out of phase w1th those hav1ng
spin '""down, " .

For. AZ >> 1the solution of Eq., (5-19)is Q = - 3A2v and the eigenvalue

solutions (5-22) are

4»n-'n‘_dg2 2 (c-a) (Solution 1) o
— q/p : (c-a) (Solution 2) (5-25)
M (c+a-2b) {Solution 3) .

We may call
- : ' (5-26)

the nuclear ""plasma frequency."
To obtain numerical estimates of the energies of the collective

19

oscillations we utilize the numerical values of Karplus and Watsoni’ for
V{0) and a. For simplicity we piek't'he absolute values of a,b, and c to be
un1ty, which makes the three stable modes have the same energy. We choose
the following numerical values: o

270 Mev . -2 * 2

Pg =' — nOVO 50 Mev, ‘a = (ZpF) , M = 3 M,

It is a simple matter to solve for A, and we find that the value is practically

equal to unity, so that we have
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-3~
Pr : ' -
A =—34 . =(0.443 C) q.

The value of Ao for alarge nucleus can be estimated,'by- Jfékihg

= and R .'."]..0‘,]1’2 cm., " so that

R
| A =227 Mev,

This value is’ large.x.' than the values associated with the Goldhaber-

Teller cdllectiveosc‘illation,. but is certainly in'qualitativeAa-g'reveme.nt, '

particularly when one considers the probable importancés of boundar_y con-

ditions for a finite system,

. 6. A Second Example

We now choose a. K matfix that is.physically more plausible than that

of the last section:

K=1f{p+aq, p'-q ,iKol P;P'), (6-1)
f—1+-&C1‘gvv\g~‘+92} T‘+C3vg, }Zl Teor - (6=2)
(6-3)

Kq = Vola) [1 - a, »(p +p'" - 2ppY)

Here .9'/ and ¢ are rcspe:qtively the spin and isotopic spin operatorsl' for a
nucleon, . The coefficients CjsCys and c, are constants which will later be

chosen to correspond to actual nuclear forces. Finally, ag is a constant.

The Brueckner approximation to the ground-state energy is
: 3 ,

5 2M 2. : v
Here (p-p‘)2 is an avérage ‘over the.Fermi'sphere. Since we have '
o,'o(pnp")2 < 1 e see that we have '
(6-5)

V(0)< 0,

This is the analog of Eq. (5-6).
' ‘To anticipate our conclusions, the K-matrix (6-1) leads to precgisely

the same eigenmodes as were .found in Section 5. In addition, we shall find

extra modes which correspond to oscillations of the isotopic Spin vector density
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Equat1on (6 l) is now to be subst1tuted 1nto Eqs (4«4). Paying careful

-attentlon to the order of indices, we obtain the two equations

7 6t ) o -
A -1, G = &+ — Z K G + G . N
[ L p] . p’ q Q 1 0{(( p:,!r'- q p” q)l/"

o . ¥ e.T. (G + G Y 6-6
39 Y <_‘~1vJ( Ph.q p_‘»q))}z .o (6-6)
It is convenient to c_obns.ider CA}i . as rectanglar matr1ces in spin and i- spm
space and omit the A\ indices. The symbol <. 4 represents a trace in

- both spin and i-spin variables. F1na11y, a sum over repeated vector indices

‘is 1mp11ed in the last term above :
Multiplying Eqs. (6-6) successively. by 1 o, ’F , and 0. TJ and forming

the‘trace we obtain the decoupled equatlons

_ - ‘ - -
A- L r;}i:i 2 5 K, P4pﬁ+ Ty |- ‘
i > | 4P Q ;
- 4€ .. r -
£ 1 e + -
A-=.Lp ~1:3P = % ——Q Z‘ Ko L3p! +£3p, ,
L 7 P -
_ e \ ~
A-L D, F=x —% = k|, T+ ,
p_|=lp Q v 0l-1p ~lp |

i + - . A 5= + e -
| Im P 355 sz] :

r, *= <G
4p < Py q
+ +
T G
""‘3P <"‘U" P9 79
=z IE £
AT < i'bpi q 7"

(szj 2SO T G g > S (6-8)
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The G's corresponding to these four classes of eigenmodes are

H

LGt @ = T,

p,q %
Gip,qm i % - -E:ﬁp ’
ip q(l)_:- 71‘ - fltp"
q(Z) = % o, F_ (T;tz‘p), . | (6-9)

Im

- The numbering of these eigenmodes is chosen to corrle.spond to that of
 Section 5. At pre'sent,( howe\}er we have s1xteen eigenmodes rather than four,
although we have only four different e1genva_1ue equations. These extra
degenera.teA modes are due to the directional degeneracy in spin and i-spin
space. The effect of this is to permit us to set up a nuclear vibration in
such a manner that the spin and i-spin vectors o.scillatte° Thus, we may

" have '"'spin waves' and '"'isotopic spin-waves." '

Thle discussion in Section 4 showed that the‘-'macroscopic density, h‘)\
is proportional to the diagonal elements (in \, the spin, i-spin index) of the
G functidns. For the excitation of any given eigénmdde of collective os-
cil_lation, the ‘ratios of density of the components of the medium can be ob-
taihed immediately from inspection of the G functions given in Eq. (6-9).
Thus for the component, protons w1th spin up, in eigenmode .Nundber‘ 3, we
have -,

= \(%i,&?’) 1= % @11 £i3p :

. We note that only exéitations of the third component of ]I"i 3p can lead to
density fluctuations, since only oy has diagonal elements Proceé€ding in

" this manner we can obtain the ratios of the densities of the var1ous components

in all the eigenmodes, which we list:

nlinzzn3:n4 = 1: 17; (=1):(-1), _ Soluvtion 1_, ‘
: a {6-10)

n,:n, :n,:n
1

ihgin, (-1):(-1):1, Soh_1_t1c?n 2,
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n,in,: n3 4= 1:(=1):1:(-1), Solufion"3, . S |
' (6-10 con'd)

npinyinging = 1:1:1:1, Solution 4,

These are seen to correspond exactly to the solutions in Section 5.
The solutions .'(6—11) do nc_>t' exhaust the possible motions. We may
calculate, for instance, the average spin density,
Q . e-i(k‘-k) S >
< 7 W s X O- g — 3; /o,
e Ky Ty TMe e
R |
in the same manner as the density was calculated in Section 4. This is

[

straightforward and leads to the expression’

' . i(q° X + At)
{g) = Re {c:le*o;zam) -5— o

We may now for example excite all three components of 1“ A3p and phase them

(6-11)

to correspond to a rotation of the average spin- -vector density, which is then _
propagated as a spin wave.  Similarly, we can obtain the propagatmn of i-
apln waves, and coupled spin and i-spin waves.
We next require’ the eigenvalues A for each of the four Egs. ‘(6-52). ‘
It clearly suffices to calculate any one of these and then insert the appropriate
factor ﬁi into the expression.” For definitions wé shall take the first of »
gs. (6-7). Again, q is considered to be very small, so that Eq. (6-3) may

be written as

W -
1

o~ Vola [1"2"‘OPF +_3°02°£':]','

Vi) [1+2.a£ p:l L - '(6;12)

This equation 1mphc1tly defines V ahd a in terms of VO and a

o
Let us now define

l . 'I‘:t ':' . E :t - R‘i4p' 0. »
p' S
+ . o _ & +-
R7 =z % ‘T 6-13)
w ' ”f:l 4p ( )
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The notation X is that of Eqs. (4-8).

T= T 4+ R,
R=. T +R™ .
A o, ~on

With this notation, the first of Eqs. (6-7) becomes

+
r 4p =+

v rT + 2ap - R]

Six integrals are needed to solve this equation:

A-L

NeXd

Z Z2
e "
Qe Ol

e )
g
Z
v
i
Q=

In terms of these, there will occur

On multiplying Eq.
over p,

a

we find

T iV[_-N T + 20N, a R}

R =z V [Nl T‘+_20,N'2 q- R_]’o}
From these we obtain

T = V[NT+2vaN1q g] ,

N

3-R=V [N1T+Z(1N2q R:l
Eliminating 4 . R from these, we find the algebraic equation for
' w

Za(VN_l)Z
1=V 'NO + o—
1 - Z'cl.VNZ

From these 'we obtain

X

"UCRL-8348

(6-14)

(6-15)

(6-16)

(6-17)

(6-15) by 1. and by P and in each case summing

(6-18)
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We use the notaﬁiof;ll of Secti:ori 5‘ It was seen there that the only un-
damped waves (in the present approx1mat10n) are those for A >_1 . In this

case we have
X MEA

N, = - N.. |
1 ]
- 0
! il
_ 70 I AR T
N2 == - + A p FNO o I (6-19)_“_
N, is given by Eqs. (5-16) and (5-19) .
We introduce the abbreviation
I'=. — ' (6-20)
| | ZSeF ’
and find that Eq. (6-18) reduces to
' 2,2
2, ITTA
2(ap ) 55—
r : Q
] = = — + , . . a
0 .

1+2'(°‘sz AT l}
3

This, in turn, can.be written in the form
_ 2
. T 1+ (?.o.pF ) I/3 |
F —_—= >—T 5. . L (6-21)
Q 1+ (2app" ) 3+ AT

‘which reduces to Eq. (5-22) for a =0 .

In Section 5, it was concluded from an examination of the eigenvalue
equation that repulsive forces (I'> 0) led to stable collective oscillation and
that attractive forces (I‘<‘ 0) led to inherently unstable (and unphysical)
eigenmodes. These conclusions remain valid for repulsive forces; and also
for attractive forces for A

_Za.pFZ . m < 1.
3 .
For typical values of a and T such as we are using, these conditions are _
satisfied, so that the previous conclusions are maintained. = The eigenmbde
corresponding to the compressive wave is unstable and furthermore is ex-
ponentially growing. Our i'mproved'-'tr"eatme:nt of the momentum dependence of

the K matrix in this section did not change that unsatisfactory -aspect of our
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results. It would require a substantial change in the values of our parameters
to-make the 'comprés sive mode stable. The spin and i-spin é’igen‘friodes will
be stable if the constants cy, CZ , and’ 3 ‘,ar‘e negative. ‘Negative values.
for these constants are compatible with the low-energy nucleon-nucléon scattering,
and we conclude that these modes are stable. Just as. in the preceding section,
~though, we will find that the value of A is very close to unity and thus relatively
insensitive to the pfecise val\ue of the potential.. Accordingly we simply proceed
with the numerical estimates of Eq. (6-21), using the values of VO and a9
determined by Karplus and Watson,lg. This yields I'= 0,321, and we find. A = 1.01,
so that very nearly, just as before, ‘ | -

Ppa

w = *',

M

= {0.441C)q.

7. 'Dampiﬁg of the Collective Eigenstates

1S

It has been ‘emphasizedf_th'a;"c.the stable 'colleétive eigenmodes that

" appear in the Sawada approximation are only relatively or quasi-stable.
Those terms in the Hamiltonian, \' Y igndred in this approximati‘on cause

. the damping of these eigenmodes. These eigenmodes are degenerate with
respect to twowpair, thrée-pair, etc., states, and the perturbation V' trans-
forms the ordered collective motion into the noncorrelated motion of two or
more pair states.  If the Sawada approximation is good this damping will be
small, '

According to Section 3, the lowest-order damping is given by

: — 1 L, — ,
L [ 1 -
AO_II,T_I{(EEq’V'EViq;}“ | (7-1)
The fact that we are using K matrices for V' does not change this form,
since we obtain K matrices from potentials by summing over pairs of terms

" involving a pair of nucleons.. In doing this we do not lose any qualitative

featufeé of class of ter‘fns.. We n’iay‘write Eqg. (7-1) in the form

. ,A,;O - - "é ;5@@) ) E)lﬂ—i}: v qu ZPE‘ 2 o (7-2)
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where A{q) is the energy of the collective eigenmodé, and p E is th_e.den‘sity
of states, EEE ' The simplest state; EE’ ‘degenerate with the collective state
gq is a two-pair state. It can be verified easily that there are two classes

of terms in V' for which this matrix element exists. These are-

1

s

1 | | o s o %
Vit Z {(p *aptg ' [kl Yo' Mo [CL?fq,X Apr-g, v doing® ptn

PsP'q
D)
)\‘)\9 sk
¥ CLp+q,'>\ qp q,x'b N Apr, X'J} ,
1 . ,; sk b
Vi — Z (p+a, Nsp'=q, \! lKl Py NP\ b .b b 4
2 Z'QP,p‘»q{ p+q)‘ P'-q, \ A Py
Mg ‘ |
7\' ): ' / sk sk %
) . b b .
0 S tPoign Dpregn PXg p‘,k‘J}
(7-3)

The potential V',

scattenng of the excited particle of the collective eigenmode with a partlcle

operating on a collective eigenmode results in the

in the Fermi gas, and the raising of the latter up above the Fermi energy,
thus creating two pairs. The potential V“2 operating on the collective
eigenmode can be regarded as the scattering of the hole member of the pair
in the collective eigenmode in the Fermi gas, resulting in the creation of two

vpairs. We represent the two-pair state _IE B simply as

ofe
s

[ 3P L LI T (7-4)
= Py¥ds A PNy TPyt N, Par

1 SF

We neglect the fact that we should put in single-pair scattering solutions,
since this would be a high-order effect. |

Before we proceed with the details of the calculation of Eq. (7-2),
it is instructive to establish the connection of our damping term with the
classical collision damping in plasmas 02_2. Very sirhply we can interpret
the square of the matrix element in Eq. (7-2) in term of an effective nucleon-
‘nucleon cross section, so that roughly.we can write

1 5 ¢ ¥ i ct 2 | (7-4)
2 p,-P' Q. P*q, P ‘
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where o is the effective cross section, W .is the mean velocity of the excited

particle, and G ‘is the usual function appearing in the collective eigenstate.
. 9 B . : .
The sums over p,p' are restricted in the usual way by the exclusion principle.

Now we have _ - o
> and Z =. Nfq),
p

+
Gt | =

where N{(q) is the number of nucleons at the Fermi surface to depth q.. This
leadsito the result - '

~. 1 (n6), N = N{q) , (7-5)

2 Q

which is the form of the classical damping term2§ and serves as an inter-
pretation of our calculations here, | ‘

Returning to Eq. (7-2), we can now evaluate the matrix element
(ep oL V‘q; ) using the stated potentials and wave functions. In order to
avoid unnecessary complications in our estimate of the damping we neglect the
' spin dependence and take account of the momentum dependence as in Section 5,
Aé heretofore, we are .concerned only with the _e'valuatioh'for small q, and
with these considerations each of the four terms contained in V'l -and V'Z

yields equal results and our expression for AO becomes

o > 7
_ 47V~ Q + -2 .
A‘0 z - W— G P, +d,q | 6(q=ql—q~2)6(A(q)=E’)_

3 3 3 3
4 Xd’p; d’p, d7q; d7q,
From Eq. (5-9),we have

+ _ Vv 1
G 5 @ — s
Prfed 8 Ng)-R1 2
M'F
, ’ _ Py 9
which we will approximate by neglecting the dependence on &= in the
M '

denominator. Though this leads to an undérestimate in A‘O our subsequent
approximation for T tends to cancel this. The resulting integral is still

quite tedious,and we: have estimated it with the result for % of

Cggv? [VeT 1 S 3.% 3 4 '
= - (47°M p"q ). (7-6)
A" (2m)’ < Q ) a%(q) A
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The normalization condition that the G functions must ,sai;isfy_lo is

Gp++q !2 - Z l G;)Jrq'p['z':
|p +al>pg |p +dl<pp
From this one can easily obtain the result (for q<<pF),
202 | 2 - |-1 - R
vr ./ M > ?‘f' +Tn A2L . (7-7)
Q ((zn)q Al A+l ||

In the limit of large A this is

S S UNN VL U G - | ' (7-7a)
Q [(zn)zq 3A° S

Since A in our previous numérical estinxates was 'Nl; this represehfs'an

overestimate in our evaluation of AO; however, our approximation for the

function G was an underestimate, and this should at least correct that.

Substituting Eq. (7-72a) in Eq. (7-6), we obtain

"

L ay = - 3 Vv3 M quaA. (7-8)
o 4 (2w)
 The ratio of this with’ A= Ap.q/M  is
%_ 3 vt Mi2 - 3 vi o3 . fa) 2z (1-9)
A 4 @o’ % e Flrr .

We can very easily'compare-this to Eq. (7-5), the classical ex-
pression for damping. We take for the quantities appearing in Eq. (7-5), the

following reasonable estinmtes:

M 2@v)? /[ «q? Amppa . . PR
g~ 2 2 y 1 ~—_3__ V~_ LR
" (2) 4:on “{2m) M

Substituting these values in Eq.. (7-5), we obtain

: 5 2 '

o v * 3
Ab:;; —_ 3 M PFpd
T (2w)
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which possesses the same form as Eq. (7-8), 'eXJcie;p't";fbi;iﬁﬁfﬁéfic’él factors.
Subst1tut1ng our numerical values used in the previous sections into

. (7= 9), we obta1n

Do . (—) 0.125 ( ﬂ) 2.
A Pp
\ v B
For a large nucleus -(Rfvloalzcm) this becomes
A ' -
% - (—ye- 1073 .
A

Thus it appears that the damping is quite small and that the stable Sawada
_collective states are approximate eigenstates of the total Hamiltonian. Of
course, we must emphasize the qualitative nature of this result, particularly

s

as it applies to actual nuclei.

8. . Conclusions

We have attempted, first of all; to show how the method of Sawada et al,
can be used to provide a detailed description of '‘macroscopic" hydrodynamic,
- fnotion, iIn.particular,ithisinray be ddne Tor: doupled systems of particles
(leading to spin waves in our example). . The formulation in terms of level-
shift K matrices permits a generalization of the method in that the pre\cise
definition of the K matrices enters at a separate sta‘ge .of the calculation.

We have suggested that the. problem is most properly developed within a
time-depenident framework, in which the damping appears as a éonsequence

of the approximations made. In this sense, it is seen to be unimportant to
establish a connection with the true eigenstates of the system l:he understanding
of which is undoubtedly beyond our reac

We assert that the so-called "S1ngle=partic1evstates, " whose excitation
energy is given by the Li q" must be understood in the same manner. These

states also will be damped in time, with a characteristic time (say) = (p,q).

A

For L > the single-particle energy will lie within a small
P9 e, q) - | -

distance A/t (p,q) of the energy of a true eigenstate,
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" The problem of 'obtaiui'ng the K .matrices is not a simple one. We
have avoided this in our d1scuSS1on§, usmg forms suggested by the work of
Brueckner and his colleagues In view of the 1nstab111ty of the hydrodynam1c
© mode obtained here, the possibility of discontinuities in the K matrices at the
Fermi surface should be reinvestigé.ted 18 It also appears that ground-state
energy should be re-evaluated by the Sawada method to determine if a higher
equilibrium density is implied. We hope to return to these questions in a
later publication. - o v

We wish to thank Dr. Richard Lafter for a cohversation in which he
"sug'gested the possible existence of the exponentially growing solutions in
the Sawada approximation. o

This work was done under the au5p1ces ofihe U:S. Atom1c Energy
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Information Division
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Fig. 1. Geometry of the shock wave in nuclear matter initiated
by a very-high-energy incident particle.
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Fig. 2. The angular and energy distributions of nucleons emitted
though the excitation of shock waves in nuclei by a very-
high-energy incident particle. For the values of the
parameters given in the text, the maximum energy for the
emitted particles is about 115 Mev. The units of the
ordinate are relative.
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Fig. 3. Plot of 1/Q as a function of A(Eq. 5-19).





