Cowden syndrome: clinical case and a brief review

Sofia Lopes, Julia Vide, Elisabete Moreira, Filomena Azevedo
Affiliations: Department of Dermatology and Venereology, Centro Hospitalar São João EPE, Porto, Portugal
Corresponding Author: Sofia Lopes, MD, Alameda Professor Hemani Monteiro, 4200-319 Porto, Portugal, Tel: 351-915452442, E-mail: sofialopes88@gmail.com

Abstract

Cowden syndrome is a rare genodermatosis of autosomal dominant inheritance characterized by multiple hamartomas in several organs and an increased risk of malignancies. We present the case of a 53-year-old man with a history of benign and malignant thyroid disease, intestinal polyposis, and Chiari malformation. He had several trichilemmomas, papillomatosis of the oral cavity, macular pigmentation of the glans penis, among other clinical features suggestive of Cowden syndrome. Given the suspicion, genetic study was conducted and PTEN mutation was identified. Cowden syndrome affects 1:200,000 individuals. Mucocutaneous lesions are almost always present and there may be other typical features involving other organs, namely thyroid, colon, and brain. Mucocutaneous lesions may be the initial manifestation of this disorder and usually precede the onset of malignant lesions, making timely diagnosis essential for proper monitoring and screening.

Keywords: Cowden syndrome, genetics, PTEN mutation, trichilemmoma

Introduction

Cowden syndrome (CS) is a rare genodermatosis of autosomal dominant inheritance and incomplete penetrance that most commonly results from the germline mutation of the phosphatase and tensin homolog gene (PTEN) deleted on chromosome 10 [1-6]. It is characterized by the presence of multiple hamartomas as well as an increased risk of certain types of cancer [1, 2, 6].

Case Synopsis

A 53-year-old man was referred to our dermatology department owing to fibromas on the trunk and hyperkeratotic lesions on the hands evolving during the last 10 years (Figure 1). His medical history included multinodular goiter and total thyroidectomy owing to follicular variant of papillary thyroid carcinoma, intestinal polyposis, and Chiari malformation. The patient had no family history of genetic disorders. In addition to the fibromas and hyperkeratotic lesions on the dorsa of both hands, physical examination revealed facial papules suggestive of trichilemmomas, papillomatosis of the oral cavity in a cobblestone pattern, macular pigmentation of the glans penis, palmoplantar keratosis, macrocephaly (64.5 cm), and multiple lipomas (Figures 2, 3, 4). Past histological examinations of multiple intestinal polyps revealed the presence of hamartomatous lesions.

Figure 1. Hyperkeratotic lesions on the dorsa of the hands.
Given this clinical presentation, the diagnostic hypothesis of CS was considered. Several biopsies were performed and confirmed facial trichilemmomas, inflammatory fibro-epithelial hyperplasia in the gingival mucosa, acral keratosis, and fibromas on the trunk (Figure 5).

Genetic study confirmed the PTEN mutation. Laboratory investigation and renal ultrasound showed no significant changes.

There was no family history of the disease. The study of the patient's offspring revealed a child with macrocephaly and all of the children are under investigation to screen for PTEN mutation.

Case Discussion

CS was first recognized as a clinical entity in 1963 and first related to the mutation of the PTEN gene in 1997 [1, 2, 5-7]. PTEN is a suppressor gene responsible for the development of at least four distinct autosomal dominant syndromes, including CS presenting in adulthood, Bannayan-Riley-Ruvalcaba syndrome, a rare congenital disorder presenting in childhood, Proteus syndrome, and Proteus-like syndrome [1, 3, 4, 7, 8]. PTEN mutation is present in about 80% of the cases, whereas the remaining are associated with other mutations, leading to increased cell proliferation and survival [5, 9]. There is an associated risk of development of malignant tumors, such as brain, breast, endometrium, colon, thyroid, and
kidney [1-3, 7], which may occur in at least 40% of the patients [5].

This syndrome affects 1:200,000 individuals [8, 9]. The great phenotypical variability makes the disease a diagnostic challenge [1, 2].

Skin manifestations are present in almost all patients [5, 6]. Trichilemmomas, acral keratosis, and palmoplantar pits are examples of cutaneous findings that may raise the suspicion of CS [2]. Oral papillomas are frequently observed and generally coalesce giving a “cobblestone appearance” [5, 6]. Macular pigmentation of the glans penis is also a major diagnostic criterion and may present in almost half of the male patients [7].

The frequency of gastrointestinal polyps is high in patients with CS [4, 6-9]. Histologic types include hamartomatous, hyperplastic, inflammatory, lipomatous, ganglioneuromatous, and adenomatous polyps [2, 4, 9]. The lifetime risk of colorectal carcinoma is 16% [5].

Thyroid pathologic findings encompass both benign and malignant features. Benign thyroid disease is expected in 50-70% of the patients [2, 5], whereas malignant tumors emerge in about 14% of the cases [4]. The most common histologic subtype of thyroid carcinoma is papillary carcinoma, followed by follicular and anaplastic carcinomas [4].

Brain manifestations of CS include macrocephaly, one of the most consistent features of CS, as well as Lhermitte-Duclos disease (LDD), a dysplastic gangliocytoma of the cerebellum that typically occurs in adulthood [2, 6, 7]. Some studies suggest that individuals with CS may have varying degrees of cognitive impairment [2, 7]. In our patient, there is a history of Chiari malformation that has never been linked to the syndrome in the literature. We need more data to suggest a possible relationship between the two entities.

There are several ways to screen CS in suspected patients. The Cleveland Clinic adult clinical scoring system is able to calculate the risk probability of PTEN mutation for adult patients with no family history of the syndrome [3, 10], (Table 1). There are also screening recommendations of the National Comprehensive Cancer Network (NCCN), revised in 2015, that help with the diagnosis [4]. In the latter, features are divided into major and minor criteria, as shown in Table 2 [1, 2, 7].

According to NCCN guidelines, our patient presented 4 major and 3 minor criteria for the diagnosis of CS.
Dermatology Online Journal || Case Report

<table>
<thead>
<tr>
<th>Major criteria</th>
<th>Minor criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast, endometrial or follicular thyroid cancer</td>
<td>Autism spectrum disorder</td>
</tr>
<tr>
<td>Lhermitte-Duclos disease (adult-onset)</td>
<td>Colon, papillary thyroid cancer (papillary or follicular variants) or renal cell carcinoma</td>
</tr>
<tr>
<td>Macroccephaly</td>
<td>Esophageal glycogenic acanthosis (≥3)</td>
</tr>
<tr>
<td>Macular pigmentation of the glans penis</td>
<td>Intellectual disability (IQ ≤75)</td>
</tr>
<tr>
<td>Mucocutaneous lesions including at least three: trichilemmomas; or palmoplantar pits; or acral hyperkeratotic papules; or oral papillomas (or one proven by biopsy); or mucocutaneous neuromas</td>
<td>Lipomas (at least three)</td>
</tr>
<tr>
<td></td>
<td>Testicular lipomatosis</td>
</tr>
<tr>
<td></td>
<td>Thyroid abnormalities, including adenoma, goiter or nodules</td>
</tr>
<tr>
<td></td>
<td>Vascular abnormalities, including cerebral developmental venous anomalies</td>
</tr>
<tr>
<td>Three or more GI hamartomas/ganglioneuromas</td>
<td></td>
</tr>
</tbody>
</table>

Criteria for diagnosis
Three or more major criteria, one being macrocephaly, Lhermitte-Duclos disease, or GI hamartomas
OR
Two major and three minor criteria

One previous study, suggests that mucocutaneous lesions respond promptly to acitretin but may recur after discontinuation of the therapy [11]. Other treatment options have been used to remove skin lesions, including surgical excision, curettage, and laser therapy [12]. Targeting the dysregulated signaling pathway with rapamycin, an (mTOR) inhibitor, may be a therapeutic alternative in the future that may work by causing a functional compensation of the decontrolled cell growth [5].

Since this syndrome is associated with several malignancies, it is crucial to diagnose early and monitor these patients closely. There are screening guidelines also developed by NCCN that help the physician to timely monitor the most affected organs in patients diagnosed with CS [2]. Screening and surveillance should be started at the age of 18 with an annual physical examination and annual thyroid ultrasound [5]. In females, breast examination is recommended after the age of 25 every 6-12 months, including imaging tests after the age of 35 [2]. With regard to colorectal and endometrial cancer, the recommendations suggest that screening begins at the age of 35, with colonoscopy every 5 years and annual endometrial examination [2, 5]. Skin checkup should also be encouraged [2, 5]. Renal ultrasound every 1-2 years may be recommended starting at the 5th decade [2].

Genetic counseling and screening of the relatives is recommended as assisted reproductive technologies may be used to avoid CS in future offspring of these individuals [2].

Conclusion
In closing, this case reveals the importance of recognizing this uncommon syndrome, particularly given that mucocutaneous manifestations usually emerge early in the clinical course and may contribute to an adequate surveillance of associated malignancies.

References

