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SIMULTANEOUS CONFIGURAL
CLASSICAL CONDITIONING

Jeffrey C. Schlimmer and Richard H. Granger, Jr.
Department of Information and Computer Science
University of California, Irvine

ABSTRACT

Humans and animals have the ability to learn complicated configurations of environ-
mental cues that are predictive of important events. In classical conditioning, this task
is called configural conditioning. Psychologists have studied this phenomenon since
Pavlov’s time, yet several of the contemporary learning models provide only partially
satisfactory explanations. Most models provide mechanisms which select among pos-
sible predictive stimuli, but they fail to explicitly identify predictive combinations of
stimuli and are thus restricted to learning only a relatively simple set of possible associ-
ations. In this paper we discuss a learning method which accounts for some configural
conditioning results. Using an implemented system, we demonstrate the effectiveness
of this method by modeling configural conditioning data from a pair of representative
experimental studies.

INTRODUCTION

Consider the problem of trying to learn the precise configuration of weather cues that
indicate rain. The appropriate description may include falling barometer readings and
high humidity or a high degree of atmospheric ionization. The study of the ability of hu-
mans and animals to associate sets of stimuli with an important event is called configural
conditioning. For example, in one case dogs were trained to associate a simultaneous pre-
sentation of six specific cues with delivery of meat powder (Razran, 1965). The animal
then expectantly salivated only when all of the six cues were present and not when any
subset of them were. Remarkably enough, a dog can also be trained to expect food only
when one of two features occurs separately and not when they occur together (Woodbury,
1943). The ability to form associations with a number of Boolean combinations of features
(conjunction, disjunction, exclusive-disjunction) is a well studied phenomenon in experi-
ments on human ability (Grings, 1972; Bruner, Goodnow, & Austin, 1965) and in animal
classical conditioning (Whitlow & Wagner, 1972; Saavedra, 1975).

141



SCHLIMMER & GRANGER

Several contemporary animal learning theories, however, have difficulty explaining these
results. The Rescorla-Wagner (1972) model, for instance, expresses the strength of a con-
figural association as the sum of the associations for each cue. By adjusting the individual
strengths, it selects the most predictive stimulus. A configuration consisting of any of a
number of cues is easily accommodated. Conjunction and exclusive-disjunction, however,
require that the individual cues have a qualitatively different associative strength than
their combination. Within a sensory dimension, this difficulty is usually finessed by as-
suming that the co-occurrence of two stimuli (say a blue light and a red light) results in
some new resonant property of the stimuli (say a purple light). Feature selection models
like this one rely on resonant features in order to learn associations involving conjunctive
and exclusive-disjunctive configurations. However, two stimuli may be configured from
different modalities, as in the case where a tone and a light are reinforced alone but not
together. It is unclear that any additional property of the stimuli is present (though per-
haps one might wish to argue that some property of “two-ness” exists). Yet without it,
traditional models cannot explain the effectual acquisition of these complex CSs; they as-
sume that the association for a set of cues is simply the sum of associations with each part.
A exclusive-disjunctive configuration requires weak learning of the compound to arise out
of strong learning of each component. An additional difficulty of assuming the presence of
resonant properties is that the number of these features must increase exponentially with
the number of cues in the environment.

A number of artificial intelligence learning methods also have difficulties explaining
these experimental data. A common assumption in concept attainment work, for instance,
is that the identity of an instance can be determined via a conjunctive description of its
features (Mitchell, 1982). A simple disjunctive description cannot be learned or represented
in many cases, much less the exclusive-disjunction relationship. In this paper we present
a model, STAGGER, which has the functional flavor of a feature selection model, but
goes beyond this to form new, compound features. We further demonstrate its ability to
correctly model the results from two representative experimental studies.

A LEARNING MODEL: STAGGER

The foundation of STAGGER is a distributed representation of association, composed of
a set of dually weighted predictive features. During each trial, a cumulative expectation of
the US is formed by utilizing the pair of weights associated with each feature. These weights
are easily adjusted as learning progresses, and their mathematical interpretation mirrors
basic results in learning. A secondary form of learning comes into play after expectation of
the US fails; new features are introduced into the representation which are more general,
more specific, or inverted Boolean functions of existing features.

At a higher level, associations in STAGGER are initially formed between primary, per-
ceptual features in a similar manner to the processes in feature selection models. As
conditioning progresses, compound features are formed internally which do not have an
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immediate correlate to individual perceptions. These new features are then part of the
selection process, enabling STAGGER to learn complex configurations without relying on
potentially nonexistent resonant features. The formation of effective feature compounds,
then, is a central part of the process of configural conditioning in our model. In the fol-
lowing sections, we first describe STAGGER’s associational representation and its feature
selection processes. We then explicate its configural learning mechanisms.

Representation and Expectation

Associations are represented in STAGGER as a set of dually weighted features. The two
weights for each feature capture positive and negative implication: one weight represents
the sufficiency of the feature for the US, or (CS = US), and the other represents its
necessity, or (-C'S = ~US). The mathematical measures chosen for these weights mirror
the results of contingency experiments on learning in humans (Wasserman, Chatlosh, &
Neunaber, 1983) and animals (Rescorla, 1968; Colwill & Rescorla, in press). Specifically,
a novel cue comes to be excitatorily associated with an unpleasant stimulus only if the
probability of the US in the presence of the CS is greater than its probability in the absence
of the CS: p(US|CS) > p(US|-CS). In behavioral terms, this means that if either the
CS or the US frequently occurs alone, the subject still learns an association between the
two stimuli. However, if they both occur alone even a few number of times, learning about
their association is severely impaired.

With this in mind, STAGGER uses logical sufficiency (LS), or positive likelihood ratio,
as a measure of sufficiency (Duda, Gaschnig, & Hart, 1979). Similarly, logical necessity
(LN), or negative likelihood ratio, serves to measure necessity. They are defined as:

_ p(-Cs|US)

_ p(C’S’|US)
= ~ p(-C5[-US)

~ p(CS|-US) =

LS ranges from zero to positive infinity and is interpreted in terms of odds. (Odds may
be easily converted to probability p = odds/(1 + odds).) An LS value less than unity
indicates a negative correlation, unity indicates independence, and a value greater than
unity indicates a positive relationship. LN also represents odds. However, an LN value
near zero indicates a positive correlation, while a value greater than unity indicates negative
correlation. For both LS and LN, unity indicates irrelevance. The LS and LN measures
adhere to the contingency law, for it can be shown via algebraic manipulations that LS > 1
and LN < 1 if and only if p(US|NC) > p(US|-NC) (Schlimmer, 1986).

In a given trial, all of the individual feature association weights influence US expecta-
tion. Following the mechanism used by Duda, Gaschnig, and Hart (1979), expectation of
the US is the product of the prior odds of the US, the LS values of all present features,
and the LN values of all absent ones.

Odds(US|CSs) = Odds(US) x [[ LSx [] LN
Vpresent Vabsent
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Table 1: Possible CS-US trial types.

| [ CS Present | CS Absent
[US Present, Confirming Positive | Infirming Positive
Reinforced (Cp) (Ip)
US Absent Infirming Negative | Confirming Negative
Nonreinforced (In) (Cn)

The resulting number represents the odds in favor of the US occurring. The effect of this
multiplicative calculation is that learned associative strengths have a cumulative influence
on US prediction. Two features which are highly predictive of the US cause a greater
expectation when both are present than when only one of them is. However, as we will see
in following sections, STAGGER is not confined to implicit representing configurations (via
a summational effect of components) since it formulates new, explicit compound features
which develop independent associative strengths.

Learning Mechanisms

In addition to computing a holistic expectation from the dual associational weights,
STAGGER incrementally modifies the feature weights and generates new features. These
two latter abilities allow STAGGER to adapt its associational description to better reflect
the conditioning environment.

Feature selection

The sufficiency and necessity weights associated with each of the features may be easily
adjusted. Consider the possible situations that arise during a conditioning trial. Following
the terminology used by Bruner, Goodnow, and Austin (1956), a reinforced trial is positive
evidence which may either confirm the predictiveness of a feature (if it is present in this
trial) or infirm the feature’s predictiveness (if it is absent). Similarly, a nonreinforced
trial is negative evidence which either confirms an absent feature or infirms a present one.
Table 1 summarizes these possibilities. In terms of these matching events, the contingency
law implies that learning occurs in cases involving at most one type of infirming evidence.
In situations with even small amounts of both positive and negative infirming evidence,
subjects fail to learn an association.

LS and LN may be calculated by keeping counts for each feature of the possible situ-
ations listed in Table 1.

Cp(In + Cn) Ip(In + Cn)
IN(CP + Ip) CN(CP + IP)

The prior odds for the US are estimated as (Cp + Ip)/(In + Cn). Note that the LN
measure will rank features with negative infirming evidence highly, but features with both
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Table 2: Feature formation heuristic.

| Expectation Reinforced Error type | Feature formed |

Us -US Commission | AND[£1,£2]
-US Us Omission OR[£1,£2]
— —_ Either NOT[£1]

types of infirming evidence poorly. This reflects learning in partial reinforcement situations
(Fitzgerald, 1963) and is consistent with contingency experiments (Rescorla, 1968).

If STAGGER limited its learning to adjustment of the feature weights, the distributed
association would be sufficient to accurately describe the class of “linearly separable” con-
cepts (Hampson & Kibler, 1983). In this respect STAGGER is similar to connectionist
models of learning when those models do not have any “hidden” units. The purpose of
the hidden, internal units is to allow the encoding of more complicated associations. Fea-
ture formation processes in STAGGER serve an analogous purpose: individual features are
combined into more complex Boolean functions.

Feature formation

STAGGER is not limited to acquiring summational associations between immediate,
perceptual features. New, internal compound features are introduced by the model, allow-
ing it to encode the potentially complex associations involved in configural conditioning.
Because it is able to identify effective featural combinations internally, no assumption re-
garding additional resonant features is required. STAGGER follows three levels of heuristics
in its formation of compound, internal features, and it constructs them using conjunction,
disjunction and negation.

The first heuristic suggests a new compound feature when STAGGER makes an expec-
tation error: either expecting the US in a nonreinforced trial or failing to predict the US
in a reinforced trial. In the first case, the commission has admitted one too many possible
situations as predictive of the US. A compound feature with a restricted application is
formed using conjunction. This feature will be true less often than its components and can
act to dampen the expectation process. In the second case, STAGGER is failing to include
stimuli which do lead to the US, or making an error of omission. A more admitting, or
more general, feature compound is formed using disjunction; it will be true more often
than its components and thus loosens the class of possible predictors of the US. In either
case, STAGGER forms a negated feature compound. Table 2 summarizes this heuristic.

Choosing appropriate features for new formations is accomplished via two additional
heuristics. One heuristic nominates either present or absent features for combination, and
the other narrows the possible features down by electing one or two of the most predic-
tive. STAGGER’s nomination heuristic specifies whether present or absent features are to
be used in forming compound features, depending on the type of feature combination and
prediction error. After STAGGER has made an error of commission, features present on
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Table 3: Nomination heuristic.

[ Error type ] Function formation [ Feature nomination

AND[f1,£2] | Present, Absent
Commission OR[£1,f2] | Absent, Absent

NOT[£1] | Present
AND[£1,£2] | Present, Present
Omission OR[f1,£2] | Present, Absent
NOT[£1] | Absent

this nonreinforced trial may be partially necessary, but are clearly not sufficient for rein-
forcement. Conjunction nominates two necessary features, and thus a present feature is
combined with an absent one. Nominating a present feature is motivated by noticing that
some feature was present and suggested that this trial was likely to be reinforced. Disjunc-
tion nominates two sufficient features, so two features absent in this nonreinforced trial
are chosen; no sufficient features were present. Negation is used to identify safety-signal
features (those which, when present, indicate safety from the US) and thus nominates its
component from the collection of features which were present. The appropriate nomina-
tions following an error of omission (an unpredicted, reinforced trial) are derived by similar
reasoning. Table 3 summarizes the nomination heuristic.

The election heuristic further narrows the possible features for combination. Consider
a situation leading STAGGER to appropriately form a new conjunction. For example, the
familiar concept father: a parent and a male. The two features (parent and male) are
always reinforced (father) though each is separately nonreinforced (a brother is male).
This is negative infirming evidence (Table 1), and therefore LN which tolerates negative
infirming evidence is used to elect features for a conjunctive configuration. By a similar
argument LS elects features to be used in forming a disjunction. Features are elected
equally by both measures for negated formations. Table 4 summarizes this third heuristic.

Table 4: Election heuristic.

| Function J Election measure J
AND[£1,£2] | LN(f1) < 1
OR[f1,£2] | LS(fi)> 1
NOT[{1] LN(f)>1lor LS(f) < 1

These three heuristics may be used in concert, each one driving the others. For example,
in the case of an unexpected, reinforced trial (an error of omission), a disjunction may be
formed (see Table 2) to combine the present feature (Table 3) which has the lowest LN
value (Table 4) with the absent feature with the lowest LN value. In many cases, these
three heuristics cooperate in just this manner. However, there are some situations (a.s in
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Table 5: Configural training.

HL+, H—, L— | Positive patterning or AND[H,L]
HL—, H+, L+ | Negative patterning or XOR([H,L]

Woodbury’s (1943) negative patterning discussed below) in which the election heuristic
cannot offer any guidance. The process of forming effective internal, compound features
then proceeds using the remaining two heuristics.

The feature formation process is limited by pruning ineffective compound features.
Specifically, LN is used to assess the validity of a new conjunction. This more restrictive
feature is true less often that its components are (it is guaranteed to have the same or less
negative infirming evidence), so if it also has less positive infirming evidence (and has a
better LN weight), it is deemed an effective feature. LS is used to test a more inclusive
compound feature. Inverted features are tested by comparing them to the inverse of their
Bayesian measure (e.g., 1/LS). The role of these pruning measures is similar to that of
the test component of a generate-and-test algorithm. The three formation heuristics serve
to guide the generation of new feature compounds while the Bayesian measures are used
to prune ineffective ones.

STIMULUS PATTERNS

Woodbury (1943) was one of the first American researchers to investigate learning
of configural cues. In classical conditioning experiments with dogs, he studied different
configurations of a low and a high buzzing sound which served as CSs for the delivery
of a food pellet. He investigated two simultaneous configurations: positive patterning (in
which only the presence of both buzzing sounds was reinforced), and negative patterning
(where only the presence of either of the buzzing sounds was reinforced). In the first
situation, a Boolean conjunction of the two buzzing sounds was reinforced; in the second,
a exclusive-disjunction was reinforced. Table 5 summarizes these two training conditions.

Figure 1 depicts STAGGER's acquisition of the positive pattern (conjunctive) config-
uration. The upper heavy line represents conditioned responses (CRs) in trials which
contained both of the buzzing sounds. The lower, light, solid line represents CRs to trials
which contained only the lower of the two buzzing sounds and the lower, dotted line rep-
resents responses to the higher of the two buzzers. Each point represents the percentage
of CRs in the last ten trials and is an average over ten separate program executions.

A strict feature selection model could learn to correctly predict reinforcement if there
were a resonant feature resulting always and only from the co-occurrence of the low and
high buzzers (Rescorla & Wagner, 1972, p. 86, fn. 2). Such a resonant feature is plausible
given that both of the stimuli are within the same sensory modality. However, for the
purpose of demonstrating the capabilities of the feature formation processes in STAGGER,
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Figure 1: Conditioning to HL+, H—, L—.

this assumption about resonant features was omitted from the trial specification input to
the program. Distinction between the combination of the two buzzers and either separately
is facilitated by the introduction of the compound feature AND [low-buzz,high-buzz] via
the heuristics described in section : the LN measure ranked low-buzz and high-buzz as the
most effective individual predictors in an expected, but nonreinforced trial. A conjunctive
feature was constructed using the low-buzz feature which was present and the high-buzz
feature which was absent.

Figure 2 depicts STAGGER’s acquisition of the negative pattern (XOR) configuration.
Again the heavy line represents CRs to a co-occurrence of the two buzzing sounds; the light
line, CRs to trials with only the low buzzing sound; the dotted line, CRs to the higher
buzzing sound. After approximately 200 trials, STAGGER is effectively distinguishing be-
tween reinforced and nonreinforced trials.

If the presence of a resonant buzzing feature was assumed, a strict feature selection
model could model this learning, for the resonant low and high buzzing feature could
have a strong negative associative strength which would overpower either of the positive
strengths of each of the individual buzzing cues.

STAGGER formed two compound features in order to accurately predict reinforcement:
AND[low-buzz,NOT[high-buzz]] and AND[NOT[low-buzz] ,higﬁ-buzz]. A simple dis-
junction of these compounds captures negative patterning. However, the formation of
these configurations was not as straightforward as was the case in Figure 1. As we inti-
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Figure 2: Conditioning to HL—, H+, L+.

mated previously, the LS and LN measures were unable to elect any effective features, for
there was an equal amount of positive and negative infirming evidence for each of the cues.
Therefore, exploration for predictive features occurred without Bayesian guidance. On ap
unexpectedly reinforced trial, for instance, STAGGER added three new compound features:
a new disjunctive feature composed of a randomly elected, present feature and a randomly
elected, absent feature; a new conjunctive feature made of a pair of randomly elected,
present features; and a negation of a randomly elected, absent feature. This potential
explosion of exploratory features was still subject to pruning via the Bayesian measures,
though, and if each did not outperform the components from which it was composed, it
was pruned.

BICONDITIONAL DISCRIMINATION

Saavedra (1975) has also studied simultaneous configural conditioning. However, unlike
Woedbury, in each configuration all stimuli were from different sensory modalities. Assum-
ing the presence of resonant features arising from the co-occurrence of features is therefore
less reasonable. Instead of only two features, she utilized four, in pairwise configurations
such that each feature was present in reinforced as well as unreinforced trials. No property
of the features such as “two-ness” would aid in predicting reinforcement. One experimental
group was given reinforced presentations of a tone (auditory cue A;) and flickering light (L)
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Table 6: Biconditional and component discrimination training.

A,L; +, AsL2 +, AjLs —, A2L; — | Biconditional
AL +, A;L; +, AzLz —, A2L; — | Component

% CONDITIONED
RESPONSES COMPONENT +

100 N

BICONDITIONAL +
REINFORCED COMPOUNDS

50
NONREINFORCED COMPOUNDS
J BICONDITIONAL -
&) £ 0 OmETT Mg ges - -
. , COMPONENT —
50 100 150
TRIALS

Figure 3: Biconditional versus component discrimination.

or a clicker (A;) and a steady light (L;). The alternate combinations were nonreinforced.
This training is termed biconditional discrimination since reinforcement is conditional on
two cues. For comparison, she also tested a simple component discrimination case where
the tone was always reinforced. These training schedules are summarized in Table 6.

This experimental manipulation taxes the feasibility of a strict feature selection model
since it is unlikely that the necessary resonant features are available; this class of models
would predict that such an association would be unlearnable. Animal subjects, however, do
learn the biconditional discrimination. Figure 3 overlays STAGGER’s performance on both
the biconditional and component discrimination cases. Each line represents the average
percentage of CRs over ten separate program executions. The upper lines represent re-
sponding to the reinforced configurations; the lower lines, the unreinforced configurations.
The solid lines represent conditioned responding in the biconditional discrimination case;
the dashed lines correspond to component discrimination training.

The component discrimination training proceeds much more rapidly than the bicondi-
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tional discrimination because the appropriate stimuli need only be selected in the former
case, rather than formed, as in the latter case. In the biconditional discrimination task,
STAGGER first forms the compound features AND[A;,L;] and AND[A;,L,] which are then
used in the selection process. Without resonant features arising from the co-occurrence
of A; and L;, and A, and L,, a strict feature selection model would be unable to acquire
the biconditional discrimination. Associative strengths would have to be high enough for
A, and L; to sum for a positive prediction when they occurred together, but low enough
so that when A; and L; co-occurred, nonreinforcement would be expected. This is clearly
impossible.

DISCUSSION

The two representative configural conditioning experiments of Woodbury (1943) and
Saavedra (1975) indicate that animals are able to form associations between complex CSs
and a US. Two categories of models have been proposed to account for this type of learning:
feature selection only, and feature selection plus feature formation.

Feature selection models assume that the association accrued to a stimuli are summed
when they co-occur (Rescorla & Wagner, 1972). The associative strength of a configuration
of stimuli is simply the sum of the associative strengths of its components. A secondary as-
sumption is that when two stimuli (say A and B) are present that a third resonant stimulus
is present which has some of the properties of both (represented by AB); this AB stimulus is
present always and only when both A and B are. A exclusive-disjunctive configuration like
Woodbury’s negative patterning is represented by a strong negative associative strength
for the resonant feature and weaker positive associations for each of the components. This
assumption extends the representational ability of feature selection models to include all
possible Boolean functions. '

There are two unsatisfactory consequences of assuming the presence of resonant fea-
tures. First, while it seems plausible to assume that the simultaneous presence of a red
light and a blue light adds a feature not present when either are presented separately (a-
purple light), this assumption seems tenuous when the stimuli are from different sensory
modalities. Secondly, the number of stimuli from which the model must select grows expo-
nentially with the number of stimuli that may be configurally associated. For example, if
there are three stimuli (A, B, C), there must be four supplementary stimuli (AB, AC, BC,
ABC) in order to select any configuration. Razran (1965) reports on experiments where six
simultaneous features were conjunctively configured; 57 additional resonant features would
be required if a feature selection model were applied. In general the number of resonant
stimuli required by these models is 2" —1 —n, where n is the number of perceptual, stimuli.
Requiring the model to choose between O(2") stimuli may be computationally infeasible.

The alternative we present here is a secondary process which formulates plausibly pre-
dictive compound features as they are needed. The number to be examined is therefore
limited to those necessary and there is a corresponding reduction in computational load on
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the feature selection process. The fact that both approaches rely on the ability to form an
association to a combination of cues is not new. However, unlike the strict feature selection
model, STAGGER employs a feature formation component which can be used to configure
individually perceptible cues into an explicit compound feature usable for learning. Instead
of assuming that this process is already performed by the perception system via resonance
(and its entailing assumptions of cross-modality resonance and exponential requirements),
we prefer the property of necessity-driven feature formation. In this we concur with Razran
when he notes:

What seems more warranted is the view that, inasmuch as configures are formed and
deformed through learning, their role is much more a function of the organism’s condi-
tioned past than of its sensory present, and, moreover, that their learning reveals the
dynamic essence of their “becoming” if not also of their being (Razran, 1965, p. 244,
fn. 3).

FUTURE WORK

One phenomenon unexplained by previous work on feature selection is that of sequential
configural conditioning. In these types of experiments, effectively predicting the US requires
discerning a sequential configuration of the cues in the environment. Woodbury (1943) also
trained dogs to expect a food pellet only when the low buzzing sound followed the high
buzzing sound. While we have provided some explanation of mechanisms which could
give rise to simultaneous configural conditioning, we have yet to address the larger issue
of associating sequences with outcomes. We believe that a featural formation approach,
where sequences are constructed and their effectiveness evaluated, will prove useful.

ACKNOWLEDGEMENTS

This research was supported in part by the Office of Naval Research under grants N00014-84-K-
0391 and N00014-85-K-0854, the National Science Foundation under grants IST-81-20685 and IST-
85-12419, the Army Research Institute under grant MDA903-85-C-0324, and by the Naval Ocean
Systems Center under contract N66001-83-C-0255. We would like to thank Michal Young for his
early involvement with this project and the machine learning group at U.C. Irvine, who collectively
have helped clarify a number of interesting issues and have provided a supportive environment for
the exploration of new ideas.

REFERENCES

Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1965). A study of thinking. New York:
John Wiley & Sons, Inc.

Colwill, R. M., & Rescorla, R. A. (in press). Associative structures in instrumental
learning. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances
in research and theory. New York: Academic Press.

152



CONFIGURAL CONDITIONING

Duda, R., Gaschnig, J., & Hart, P. (1979). Model design in the Prospector consultant
system for mineral exploration. In D. Michie (Ed.), Ezpert systems in the micro
electronic age. Edinburgh: Edinburgh University Press.

Fitzgerald, R. D. (1963). Effects of partial reinforcement with acid on the classically
conditioned salivary response in dogs. Journal of Comparative and Physiological
Psychology, 56, 1056-1060.

Granger, R. H., Jr., & Schlimmer, J. C. (1985b). Learning salience among features
through contingency in the CEL framework. Proceedings of the Seventh Annual
Conference of the Cognitive Science Society (pp. 65-79). Irvine, California: Lawrence
Erlbaum Associates.

Grings, W. W. (1972). Compound stimulus transfer in human classical conditioning. In
A. Black & W. F. Prokasy (Eds.), Classical conditioning II. New York: Appleton-
Century-Crofts.

Hampson, S., & Kibler, D. (1983). A Boolean complete neural model of adaptive behavior.
Biological Cybernetics, 49, 9-19.

Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence, 18, 203-226.

Razran, G. (1965). Empirical codifications and specific theoretical implications of compound-
stimulus conditioning: Perception. In W. F. Prokasy (Ed.), Classical conditioning.
New York: Appleton-Century-Crofts.

Rescorla, R. A. (1968). Probability of shock in the presence and absence of CS in fear
conditioning. Journal of Comparative and Physiological Psychology, 66, 1-5.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations
in the effectiveness of reinforcement and nonreinforcement. In A. Black & W. F.
Prokasy (Eds.), Classical conditioning II. New York: Appleton-Century-Crofts.

Saavedra, M. A. (1975). Pavlovian compound conditioning in the rabbit. Learning and
Motivation, 6, 314-326.

Schlimmer, J. C. (1986). A comparison of feature salience measures (Technical report
#86-99). Irvine, California: The University of California, Department of Information
and Computer Science.

Wasserman, E. A., Chatlosh, D. L., & Neunaber, D. J. (1983). Perception of causal
relations in humans: factors affecting judgments of response-outcome contingencies
under free-operant procedures. Learning and Motivation, 14, 406-432.

Whitlow, J. W., Jr., & Wagner, A. R. (1972). Negative patterning in classical condi-
tioning: Summation of response tendencies to isolable and configural components.
Psychonomic Science, 27, 299-301.

Woodbury, C. B. (1943). The learning of stimulus patterns by dogs. J. comp. Psychol.,
85, 29-40.

163



	cogsci_1986_141-153



