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Abstract: Difference-in-differences (DiD) is a powerful, quasi- 
experimental research design widely used in longitudinal policy eval-
uations with health outcomes. However, DiD designs face several 
challenges to ensuring reliable causal inference, such as when policy 
settings are more complex. Recent economics literature has revealed 
that DiD estimators may exhibit bias when heterogeneous treatment 
effects, a common consequence of staggered policy implementation, 
are present. To deepen our understanding of these advancements 
in epidemiology, in this methodologic primer, we start by present-
ing an overview of DiD methods. We then summarize fundamental 
problems associated with DiD designs with heterogeneous treatment 
effects and provide guidance on recently proposed heterogeneity- 
robust DiD estimators, which are increasingly being implemented by 
epidemiologists. We also extend the discussion to violations of the 
parallel trends assumption, which has received less attention. Last, 
we present results from a simulation study that compares the perfor-
mance of several DiD estimators under different scenarios to enhance 
understanding and application of these methods.

Keywords: Difference-in-Differences designs; Health policy evalua-
tion; Heterogeneity-robust estimators; Quasi-experimental methods; 
Staggered policy implementation

(Epidemiology 2024;35: 628–637)

INTRODUCTION
Difference-in-differences (DiD) is a quasi-experimental  

approach well suited to analyzing the effects of policies using 
longitudinal data.1,2 The approach has deep roots in epidemi-
ology, such that Ignaz Semmelweis’s 1861 publication on anti-
septic hand-washing in Hungarian maternity wards and John 
Snow’s 1855 examination of the cholera outbreak in London 
prefigured the modern use of DiD over a century later.3,4 DiD 
has become a widely used approach for assessing the health 
effects of programs, interventions, and policies. For example, 
studies have extensively employed the approach to investi-
gate the health impacts of the Medicaid expansion, paid fam-
ily leave laws, revisions of food and nutrition programs, and 
policy expansions during the COVID-19 pandemic.1,2,5–9 To 
reduce confounding and support causal inference, DiD com-
pares changes in outcomes over time between a “treated” group 
exposed to a policy change and a “comparator” group not 
exposed to the change. A fundamental underlying assumption, 
known as the parallel trends assumption, is that the treated and 
comparison groups would have had parallel outcome trends 
in the absence of the policy change. Any differential trends 
observed between the treated and comparator groups after the 
policy change are attributed to the effect of the policy change.

DiD takes different forms depending on the setting. 
The canonical DiD model compares changes in outcomes 
between two groups (treated and comparator) over two time 
periods, before and after treatment. This 2 × 2 DiD model is 
easily extended to multiple groups and multiple time periods, 
typically by including fixed effects (i.e., indicator variables) 
for group and time in a specification commonly referred to 
as generalized DiD or two-way fixed effects DiD regression. 
The two-way fixed effects specification has been a mainstay of 
policy evaluation in public health, economics, and other social 
sciences.10,11

Recent work has shown that the two-way fixed effects 
design requires an additional assumption to generate unbiased 
DiD estimates. Specifically, it requires that treatment effects 
are constant across treated groups and over time. This assump-
tion can easily be violated as treatment effects can differ by 
group characteristics, by calendar time (i.e., when the group 
is treated), and dynamically (i.e., treatment effects vary over 
time).12,13 Heterogeneous treatment effects threaten the valid-
ity of many research designs, potentially biasing two-way 
fixed effects estimates.

Submitted September 25, 2023; accepted May 21, 2024
From the aPhilip R. Lee Institute for Health Policy Studies, University 

of California San Francisco (UCSF), San Francisco, CA; bDepart-
ment of Social and Behavioral Sciences, Harvard T.H. Chan School of 
Public Health, Boston, MA; and cDepartment of Health Law, Policy & 
Management, Boston University, Boston, MA.

Supported by an NIH grant (R01HL151638).
The authors report no conflicts of interest.
The simulation code (including the data generating process), is included in 

the Supplemental Material.

 
Supplemental digital content is available through direct URL citations 
in the HTML and PDF versions of this article (www.epidem.com).

Correspondence: Justin White, Department of Health Law, Policy & 
Management, Boston University School of Public Health, 715 Albany 
Street, Room 249West, Boston, MA 02118. E-mail: juswhite@bu.edu.

Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc. 
This is an open-access article distributed under the terms of the Creative 
Commons Attribution-Non Commercial-No Derivatives License 4.0 
(CCBY-NC-ND), where it is permissible to download and share the work 
provided it is properly cited. The work cannot be changed in any way or 
used commercially without permission from the journal.

Advances in Difference-in-differences Methods for Policy 
Evaluation Research

Guangyi Wang,a,b Rita Hamad,b and Justin S. Whitea,c

www.epidem.com
mailto:juswhite@bu.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0003-2770-0149
https://orcid.org/0000-0002-3388-9569


Epidemiology • Volume 35, Number 5, September 2024 

© 2024 The Author(s). Published by Wolters Kluwer Health, Inc. www.epidem.com | 629

Advanced DiD Methods for Policy Evaluation Research

Given the growing popularity of the two-way fixed 
effects design in health research, it is important for epidemiol-
ogists to be aware of the potential limitations of the method and 
common solutions. Building on recent methodologic reviews 
in the econometrics literature,14,15 we aim to provide theoret-
ical foundations to help epidemiologists understand the fun-
damental problems associated with the two-way fixed effects 
design in the presence of heterogeneous treatment effects. We 
describe recent methodological advances that provide several 
alternative, heterogeneity-robust DiD estimators. We also dis-
cuss parallel trend assumption violations, which have received 
less attention than heterogeneous treatment effects. Finally, we 
conduct a simulation study that compares the performance of 
two-way fixed effects and new approaches under different sce-
narios to enhance the understanding and application of these 
methods in policy evaluations with health outcomes.

THE BASIC DID DESIGN
The simplest form of DiD involves two groups and two 

periods, with the policy implemented in only one group at one 
point during the study period. In the first “pre” period, both 
groups are unexposed. In the second “post” period, one group 
is exposed to the policy while the other is not. To ground 
our discussion, consider an evaluation of paid family leave 
laws that allow working parents to take time off work after 
the birth of a child. We might wish to understand the effects 
of paid family leave laws on the health outcomes of parents 
and their children. A randomized experiment would be diffi-
cult to undertake due to ethical concerns and cost. Thus, we 
turn to real-world data. California was the first US state to 
implement a paid family leave policy in 2004. By comparing 
trends in outcomes between California and states without a 
paid family leave policy, researchers have evaluated the effects 
of California’s policy on a variety of outcomes, such as breast-
feeding and maternal and child health.5,16–18

Researchers commonly use a regression framework to 
estimate a DiD model:

Yg,t = κ+ αTREATg + βPOSTt + δ (TREATg · POSTt) + εg,t,  (1)
where outcome Yg,t  is regressed on TREATg, a binary indi-
cator for whether an observation is in the treated group (i.e., 
California), and POSTt , a binary indicator of whether the 
observation falls in the postperiod (i.e., after paid family 
leave implementation in 2004), as well as an interaction term 
TREATg · POSTt, a constant term κ, and regression residual 
εg,t . In the absence of the policy change, the potential outcome 
for the treated group is determined by a time-invariant group 
effect, and a time effect that is common to both groups . δ is the 
coefficient of interest, representing the average treatment effect 
on the treated (ATT), identified for the 2 × 2 DiD as the regres-
sion coefficient on the interaction term (i.e., TREATg · POSTt),  
as shown in Table 1. Yg,t  can consist of aggregated data (e.g., 
by state) or disaggregated data (e.g., by individual). In the 
case of disaggregated data, Yg,t  is the average outcome of 

individuals within cell (g, t), and the regression is weighted 
by the number of individuals within that cell. In practice, the 
above model is often further modified to include time-varying 
confounders (e.g., state-level characteristics, individual-level 
characteristics when using individual-level data), although 
recent research notes that care must be taken in how covari-
ates enter the model (discussed later).19 The eAppendix; http://
links.lww.com/EDE/C157 provides further details about iden-
tifying the DiD effect with three key assumptions.

EXTENDING DID TO MORE COMPLEX POLICY 
INTERVENTIONS

Although a simple 2 × 2 DiD design is intuitive, pol-
icy settings are often more complex, as when an intervention 
is implemented in multiple groups at multiple time points 
(known as a staggered design), and thus there is no single pre- 
or postperiod. Returning to the paid family leave example, we 
note that several states have passed a paid family leave law 
since California’s law went into effect, with states adopting 
the policy at different times (e.g., New Jersey in 2009, New 
York in 2018).20

A popular approach to accommodate a staggered roll-
out is a generalized DiD design, an extension of 2 × 2 DiD. In 
practice, the implementation is carried out using the regres-
sion specification in Equation (2), commonly referred to as 
a two-way fixed effects estimator. Two-way fixed effects DiD 
can be decomposed into the estimation of many pairwise 2 × 2 
DiDs, and the total estimated effect is a variance-weighted 
average of all 2 × 2 DiDs.12 The key underlying assumption 
is an extension of the canonical parallel trends assumption. 
The simplest extension, which is also the strongest, requires 
the parallel trends assumption to hold for all periods and all 
treated groups. In the paid family leave example, this assump-
tion implies that, if there had been no paid family leave law, 
health outcomes of parents and their children would have 
evolved in parallel on average for each state that passed a paid 
family leave law compared with states without such a law:

Yg,t = αg + βt + δDg,t + εg,t,  (2)

where Yg,t is the outcome of group g at period t. Dg,t indicates the 
treatment status in the group g at period t (e.g., whether the policy  

TABLE 1. Calculating the 2 × 2 DiD Estimand (δ) in a  
Regression Framework

Comparator Treated Difference

Preperiod κ κ+ α α

Postperiod κ+ β κ+ α+ β+ δ α+ δ

Difference β β+ δ δ

The notation is drawn from Equation 1. Each cell represents the value of the outcome 
variable for the row-column combination. For example, the comparator group in the 
policy period has an outcome value of κ, and the treated group in the pre-policy period 
has an outcome value of κ+ α. The treated-comparator difference in the pre-period is 
(κ+ α)− κ = α.

http://links.lww.com/EDE/C157
http://links.lww.com/EDE/C157
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has been implemented in a given state at time t), equivalent to the 
TREATg · POSTt interaction term in the 2 × 2 case. αg and γt are 
fixed effects for group and time (e.g., indicator variables for state 
and year). δ is the key coefficient of interest, representing the esti-
mated policy effect under the assumptions of DiD. Note that Eq. (2) 
does not include separate terms for the treatment indicator, postpe-
riod group indicator, or constant term used in the 2 × 2 DiD in Eq. 
(1) because they are absorbed by the group and time-fixed effects. 
The group-fixed effects account for all observed or unobserved 
group-specific, time-invariant factors, and the time-fixed effects 
account for all observed or unobserved period-specific factors that 
are common to all groups. Researchers often estimate a version 
of Eq. (2) that adjusts for observed time-varying confounders that 
may differentially affect the treated group and interpret estimates in 
light of any residual confounding. However, care must be taken in 
how covariates enter the model (see the Conditional Parallel Trends 
Assumption section).

In many cases, a treatment effect varies with time since 
exposure. To explore dynamic treatment effects, an event-
study DiD specification may be used. It allows for examining 
anticipation effects and phase-in effects in a single regression. 
In the event-study regression, Eq. (2) is replaced by a set of 
indicator variables measuring the time relative to treatment for 
the group g , often referred to as event-time dummies. We first 
generate a centered time variable s, such that the event occurs 
at s = 0. We then estimate the following equation:

Yg,t = αg + βt +
−2∑

s=−q

γsDg,s +
M∑

s=0

δsDg,s + εg,t,  (3)

where δs measures the treatment “lags,” the period-by-period dif-
ferences between the treated group g  and the comparator group 
that occur s periods after the event, from time 0 (the immedi-
ate effect) to time M , and γs measures the treatment “leads,” 
the effects that occur s periods before the event. By convention, 
the reference (or omitted) period is set to s = −1, one period 
before the event, and all coefficients are interpreted relative to 
this base period. While the lag coefficients δs are of main interest, 
showing how DiD effects grow or fade over time, the pattern of 
lead coefficients γs is also of substantive interest, as small and 
statistically insignificant coefficients indicate that the outcome 
trends between the treated and comparator groups were similar 
before the event (“pretrends”), providing support for the paral-
lel trends assumption. Event-study estimates are often presented 
graphically, with centered time on the horizontal axis and the 
DiD estimates and confidence intervals on the vertical axis.21 
Recently, more sophisticated tests of parallel pretrends have been 
proposed,22,23 to address potential problems associated with using 
event studies to test pretrends (discussed later).24

KEY LIMITATIONS OF TWO-WAY FIXED 
EFFECTS DID

Recent advances in the economics literature have shown 
that two-way fixed effects DiD designs may generate biased 

DiD estimators under heterogeneous treatment effects, that is, 
when effects vary across groups or time.12,25 In the following 
section, we provide a short summary of the theoretical foun-
dation of the problem.

“Negative Weights” and “Forbidden 
Comparisons”

Under the parallel trends assumption, de Chaisemartin 
and D’Haultfœuille25 show that the two-way fixed effects DiD 
estimator δ in Eq. (2) can be written as the weighted average 
of treatment effects from multiple 2 × 2 DiDs:14,25

E [δ] = E


 ∑
(g,t):Dg,t �=0

Wg,tτg,t


 ,

  (4)

where τg,t represents the estimated ATT of group g  at period t.  
Each group-time ATT is the difference in potential outcomes 
with and without treatment: τg,t = Yg,t (1)− Yg,t (0). Wg,t are 
weights summing to 1 and are proportional to and of the same 
sign as the following equation:

Dg,t − Dg,. − D.,t + D.,.,  (5)

where Dg,. is the average proportion of the time group g is 
treated across periods, D.,t is the average treatment status at 
period t across groups, and D.,. is the average treatment status 
across groups and periods.

Eq. (5) is decreasing in Dg,. and D.,t (i.e., smaller Wg,t in 
Eq. (4) with larger Dg,. and D.,t), meaning that E [δ] is down-
weighted for groups that receive treatment for longer periods 
and for time periods when more groups are treated. Eq.(4) 
and Eq.(5) together imply that, under heterogeneous treat-
ment effects (e.g., when treatment effects are larger among 
early-treated groups or larger in later periods), E [δ] will not 
be equal to the average treatment effect across all cells, result-
ing in a biased ATT (if defined as the simple average of all 
group-time ATTs). More importantly, Eq. (5) implies that 
some weights may be negative, for example, when Dg,. + D.,t 
is large. In this case, even if the treatment effect is positive for 
each (g, t), E [δ] could be negative, causing the DiD to have 
a flipped sign. For example, if the effect for an early-treated 
group (treated in period 2) is 10% and 40% in periods 2 and 3, 
respectively, and the effect for a late-treated group (treated in 
period 3) is 10% in period 3, the two-way fixed effects estima-
tor may assign weights of +1 and −½ to the effect for the early- 
treated group in periods 2 and 3, respectively, and weight of 
+½ to the effect for the late-treated group in period 3, then 
E [δ] = 1 × 10%− 1/2 × 40%+ 1/2 × 10% = − 5% . 
Hence, the estimated DiD is negative, despite the effect being 
positive for both early- and late-treated groups. For additional 
details, please refer to de Chaisemartin and D’Haultfœuille.14

More generally, if treatment effects vary across time 
or groups, it is possible for τg,t to receive lower or even neg-
ative weights in Eq. (5) for some combinations of g  and t,  
generating biased DiD estimates. Returning to the PFL case, 
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treatment effects in California (early-treated group) in later 
periods may receive lower or even negative weights. The 
larger the treatment effects in California in later periods, the 
more likely that the DiD estimator will be underestimated and 
even have an incorrect sign.

Goodman-Bacon12 offers helpful intuition to understand 
this issue. Two-way fixed effects’ weighting of 2 × 2 DiDs 
makes both “clean” comparisons between treated and not-yet-
treated groups as well as “forbidden” comparisons between 
groups treated in a later period (late-treated) and already 
treated groups (early-treated).12 Under heterogeneous treat-
ment effects, the forbidden comparisons may lead to negative 
weighting problems and a biased DiD estimator (see eAppen-
dix; http://links.lww.com/EDE/C157 for illustration using the 
PFL example). Goodman-Bacon12 proposes a diagnostic to 
assess how much weight is placed on each 2 × 2 comparison, 
including those involving forbidden comparisons.12

Event-study designs similarly face contamination from 
forbidden comparisons under heterogeneous treatment effects 
(see eAppendix; http://links.lww.com/EDE/C157).

ALTERNATIVE HETEROGENEOUS TREATMENT 
EFFECTS-ROBUST DID ESTIMATORS

In recent years, several alternatives to two-way fixed 
effects DiD have been proposed to allow for heterogeneous 
treatment effects. Popular estimators include those proposed 
by Callaway and Sant’Anna13 Borusyak et al26 Sun and 
Abraham27 de Chaisemartin and D’Haultfœuille25 Cengiz et 
al.28 and Wooldridge.29

Key Estimation Strategies
Several of these alternative methods use similar strate-

gies. The first step involves targeting treatment effect param-
eters (i.e., group-time treatment effects, ATTg,t) using only 

“clean” comparisons and avoiding “forbidden” comparisons. 
The second step involves aggregating treatment effect param-
eters to final target parameters of interest, such as an over-
all ATT, using an appropriate weighting approach. Note that 
there are several ways to summarize ATTg,t’s into an overall 
ATT (see eAppendix; http://links.lww.com/EDE/C157).13,30 
Throughout the remainder of this article, the overall ATT is 
denoted by the simple option, representing an average of all 
ATTg,t’s weighted by the group size of each ATTg,t.

Heterogeneous treatment effect-robust methods vary 
in implementation and can be classified into three general 
approaches: a group-time estimator approach, an imputation 
approach, and a regression-based approach. Table 2 offers a 
high-level overview of these approaches, providing a basic 
understanding of the methods and their intricacies. Table 3 
outlines the implementation of various estimators, the corre-
sponding Stata and R packages, and potential advantages and 
disadvantages.

Differences in the Parallel Trends Assumption 
and Covariate Adjustment

Callaway and Sant’Anna13 and Sun and Abraham27 esti-
mators impose a weaker parallel trends assumption, which 
only requires parallel trends from the last pretreated period 
until the last time period. Borusyak et al26 and Wooldridge29 
estimators impose a stronger parallel trends assumption, 
which requires parallel trends in all time periods. Different 
methods handle covariates differently, as discussed next.

THE CONDITIONAL PARALLEL TRENDS 
ASSUMPTION

Parallel trends assumption violations remain a major con-
cern in practice for DiD designs. Typically, it is more plausible to 
assume that the assumption holds conditional on certain observed 

TABLE 2. Summary of Key Estimation Strategies of HTE-robust Approaches

Summary

Group-time estimator 

approach

Proposed by Callaway and Sant’Anna13, this approach first identifies the ATTg,t, comparing the outcome evolution of group g  

(units treated in period g) from the last pretreatment period (i.e., g − 1) to period t, against the outcome evolution of a control 

group (not-yet treated or never-treated) over the same time periods. These identified parameters then can be extended to estimate 

more aggregated ATTs of interest. de Chaisemartin and D’Haultfœuille’s approach operates similarly, except employing different 

weighting for the estimated treatment effect across groups.

Imputation approach Proposed by Borusyak et al26, Gardner31, and Liu et al32, this approach fits a TWFE regression using only observations for units 

and periods not-yet-treated to impute a counterfactual outcome for each treated unit in the absence of treatment. The individual 

treatment effects are then aggregated to an overall ATT. Whereas Callaway and Sant’Anna13 only uses the outcome of the last 

pretreated period as a baseline, this approach uses average outcomes across all pretreatment periods as a baseline. The choice of 

baseline period creates tradeoffs, as stated in the Discussion.

Regression approach Sun and Abraham27, Cengiz et al28, and Wooldridge29 propose regression-based methods. Sun and Abraham uses a fully saturated 

model, running a regression with leads and lags of the treatment (event-study specification) interacted with group indicators. 

Wooldridge uses a similar regression, but with group indicators interacted with time periods. Cengiz constructs cohort-specific 

data sets for each treated unit, which includes the respective cohort and all never-treated units; these cohort-specific data sets are 

stacked to compute an overall ATT using stack-unit and stack-year fixed effects. While Sun-Abraham and Cengiz generate event-

study estimators and Wooldridge generates ATTg,t, both allow for aggregation to a more aggregated ATT of interest.

ATT indicates average treatment effect on the treated; TWFE, two-way fixed effects.

http://links.lww.com/EDE/C157
http://links.lww.com/EDE/C157
http://links.lww.com/EDE/C157
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TABLE 3. Summary of Novel Heterogeneity-robust Difference-in-differences Estimators

Manuscript and Stata/R Packages Method Advantages/Disadvantages

Callaway and Sant’Anna (2021)13

 Stata

  csdid

  hdidregress ra

  hdidregress ipw

  hdidregress aipw

 R

  Did

1.  Uses never-treated or not-yet-treated observations 

as comparator.

2. Estimates every feasible 2 × 2 DiD available in the 

selected sample (ATTg,t) and allows for doubly- 

robust estimation with inverse probability weighting 

(IPW) to reduce bias from confounding.

1. Requires a weaker parallel trends assumption.

2. Can generate more aggregated treatment effects, 

that is, the overall ATT, event-study estimators, and 

group/cohort ATTs.

3. Easy to generate event-study results and plot figures.

Borusyak et al26

 Stata

  did_imputation

 R

  didimputation

1. Uses never-treated or not-yet-treated observations 

as comparator.

2. Explicitly imputes potential outcomes for the 

treated group using the comparator, calculating 

individual treatment effects that can be aggregated.

1. More efficient than other methods under some 

assumptions.

2. Imposes a stronger parallel trend assumption.

3. More precise under parallel trends assumption, but 

less precise if the assumption is violated.

4. Easy to generate event-study results and plot figures.

5. Ready to be generalized to more complicated 

specifications, for example, triple-differences, adding 

group-specific linear trends.

6. Computationally fast.

Sun and Abraham (2021)27

 Stata

  eventstudyinteract

  staggered

 R

  fixest with sunab()

  staggered

1. Uses either never-treated observations as compara-

tor, or the last-treated groups as comparator if there 

are no never-treated, rather than not-yet-treated 

observations.

2. Unlike the other methods, focuses on estimating 

dynamic effects separately for each cohort, which 

can then be aggregated.

1. Generates event-study estimators. The staggered 

package can be used to generate more aggregated 

ATTs.

2. Computationally fast.

de Chaisemartin and D’Haultfœuille (2020)25

 Stata

  did_multiplegt

 R

  DIDmultiplegt

1. Uses two types of DiD estimators:

a. Compares the outcome evolution of groups  

switching from untreated to treated and groups 

untreated in two periods (“switchers in”).

b. Compares the outcome evolution of groups  

switching from treated to untreated and groups 

treated in two periods (“switchers out”).

1. Can be used beyond staggered design, i.e., allows 

for treatment switching in and out rather than only 

switching in.

2. Requires an additional parallel trends assumption, 

i.e., parallel trends for the second type of DiDs  

(i.e., “switchers out”).

3. Computationally very slow.

Cengiz et al. (2019)28

 Stata

  stackedev

1. Uses not-yet-treated or never-treated observations 

as comparator.

2. Creates event-specific datasets (“stacks”), with each 

stack including observations from units that receive 

treatment at the same time and observations never 

treated or treated far enough in the future  

(i.e., treated after examination window).

1. Only generates event-study results. There is  

currently no package to generate a more aggregated 

ATT.

2. Does not provide a way to “weight and sum” 

event-specific treatment effects; each event is 

weighted equally

Wooldridge (2021)29

 Stata

  jwdid

  hdidregress twfe

  wooldid

 R

  etwfe

1. Uses never-treated or not-yet-treated observations 

as comparator.

2. Similar to Sun and Abraham, but includes  

interactions between treatment-time cohorts 

and time-specific effects, rather than interacting 

dynamic effects with cohorts, to select valid  

comparisons.

1. Like Callaway-Sant-Anna, ATTg,t may be aggregated 

as needed to obtain average effects, calendar effects, 

and cohort-specific effects.

2. Can accommodate nonlinear models such as logit 

and Poisson.

3. Uses additional information from pretreatment 

periods that may improve precision.

4. May be more biased than other methods if  

assumptions violated.

ATT indicates average treatment effect on the treated; DiD, Difference-in-differences.
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covariates. Of note, only covariates that vary by treatment status 
and are associated with outcome trends are considered confound-
ers in DiD (i.e., time-varying confounders).33 Table 1 in Zeldow 
and Hatfield33 provides a comprehensive classification of poten-
tial scenarios involving confounders in DiD designs. Under the 
conditional parallel trends assumption, the outcome trend in each 
treated unit, given a vector of covariates X , will be parallel to 
comparator units with the same values of X . Consequently, we 
can infer the conditional ATT for a treated unit with X , and then 
identify the overall unconditional ATT by aggregating all condi-
tional ATTs.

Researchers commonly adjust for covariates in DiD 
regressions to satisfy the conditional parallel trends assump-
tion. However, several limitations have been highlighted in 
the literature. A prominent issue under discussion is the “bad 
control” problem.19,33 If a time-varying covariate is affected 
by treatment status, bias can arise because the time-varying 
covariate may serve both as a confounder and a mediator, and 
thus the ATT is a combination of the direct effect of treatment 
and the indirect effect of treatment via the covariate. However, 
simply excluding it from the regression can lead to violations 
of the parallel trends assumption. Caetano et al19 propose a 
solution to let the parallel trends assumption be conditioned 
on the untreated potential value of these covariates. Statistical 
code to implement this procedure is still under development. 
See eAppendix; http://links.lww.com/EDE/C157 for more dis-
cussion about the conditional parallel trends assumption (e.g., 
other limitations with covariate adjustment, how heteroge-
neous treatment effects-robust estimators handle covariates).

VIOLATIONS OF THE PARALLEL TRENDS 
ASSUMPTION

The conditional parallel trends assumption may still be 
violated due to residual unobserved time-varying confounding. 
Although theoretically untestable, researchers commonly check 
differences in outcome trends in the treated and comparison 
groups during the pretreatment periods, both visually and using 
quantitative tests. Evidence of parallel “pretrends” is used to infer 
the plausibility of the parallel trends assumption. One conven-
tional approach to test pretrends involves assessing the pretreat-
ment coefficients from event-study DiD designs (as described 
earlier). With a staggered design, it is recommended to employ 
the heterogeneity-robust methods described above.

However, recent literature argues that the traditional 
parallel trends test often has low power, causing under- 
rejection of the null hypothesis that there are no differences 
between trends in treated and comparison groups (i.e., type 
II error).24,34 Moreover, even if pretrends are parallel, it does 
not guarantee that post-treatment trends would be parallel in 
the absence of treatment. Therefore, traditional parallel trends 
assumption testing is not a reliable indicator of parallel trends 
assumption violations.

Several articles have proposed alternative approaches to 
detect pretreatment violations of parallel trends, including tools 

to conduct power analyses and “noninferiority” approaches 
testing the likelihood of rejecting the null hypothesis of a large 
pretrend.15,24,34 While these approaches offer valuable insights, 
they do not provide guidance for ATT inference when paral-
lel trends may be violated and do not address post-treatment 
differences in trends. To address these issues, Rambachan and 
Roth22 propose an approach for robust inference and sensi-
tivity analysis regarding parallel trends assumption violations 
(see eAppendix; http://links.lww.com/EDE/C157).

SIMULATION STUDY
We conducted a Monte Carlo simulation study to test 

the performance of the two-way fixed effects estimator and 
four heterogeneous treatment effects-robust estimators under 
different scenarios. We considered three main scenarios: (1) 
constant or dynamic treatment effects (i.e., whether treatment 
effects vary over time), (2) homogeneous or heterogenous 
treatment effects (i.e., whether treatment effects are homoge-
neous across groups, random across groups, or larger among 
earlier-treated groups), and (3) with or without parallel trends 
assumption violations. Table 4 provides a list of scenarios, and 
the eAppendix; http://links.lww.com/EDE/C157 details our 
data generating process.

In each scenario, the simulation had 500 runs for each 
DiD estimator. We compared the performance of DiD esti-
mators in terms of percent bias and root mean squared error 
(RMSE).

Figure 1 presents the distribution of bias (%), and 
Table 5 summarizes the mean bias (%) and RMSE under no 
parallel trends assumption violations. With constant, homo-
geneous effects (scenarios 1a), two-way fixed effects had the 
lowest bias (−0.01%) and RMSE (0.12). With constant, het-
erogeneous effects, two-way fixed effects had a small bias 
when effects varied randomly (2.38%; scenarios 1b) and a 
slightly larger bias under the “large-first” setting (−9.49%; 
scenarios 1c). The Callaway and Sant’Anna13, Borusyak et 
al26, Sun and Abraham27, and Wooldridge29 estimators were 
generally robust across these scenarios, with small bias and 
RMSEs. When treatment effects were dynamic (scenarios 
2a–2c), two-way fixed effects had notably high bias (−66.40% 
to −78.62%). The Callaway and Sant’Anna13 estimator had 
the lowest bias (0.64–4.14%) with dynamic effects. The 
Borusyak et al26, Sun and Abraham27, and Woodridge29 esti-
mators had slightly higher bias (around −6%). Borusyak et 
al26 and Woodridge29 estimators generally had lower RMSEs 
than Callaway and Sant’Anna13 and Sun and Abraham27 esti-
mators in all scenarios, perhaps reflective of precision gains 
from using all pretreatment periods for comparisons.

Figure 2 and Table 5 display results under parallel trends 
assumption violations (scenarios 3a–3f). Compared with the 
scenarios with no parallel trends assumption violations, we 
observed large increases in bias (%) and RMSEs across all 
estimators, suggesting lower accuracy and precision in the 
models’ predictions compared with the true effect. Two-way 

http://links.lww.com/EDE/C157
http://links.lww.com/EDE/C157
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fixed effects exhibited somewhat better performance than 
heterogeneous treatment effects-robust estimators under con-
stant effects but poorer performance when treatment effects 
grow linearly over time. Among heterogeneous treatment 

effects-robust estimators, Callaway and Sant’Anna13 and Sun 
and Abraham27 estimators outperformed Borusyak et al26 and 
Wooldridge29 estimators, aligning with the hypothesis that 
estimators reliant on a weaker parallel trends assumption 

TABLE 4. Summary of Scenarios

# Description
Dynamic Effects

Over Time?

Heterogeneous 
Effects

Across groups?

Parallel Trends 
Assumption  
Violation?

1a Constant, homogeneous effects without PTA violation

1b Constant, heterogeneous (at random) effects without PTA violation X

1c Constant, heterogeneous (large first) effects without PTA violation X

2a Dynamic (linear trend), homogeneous effects without PTA violation X

2b Dynamic (linear trend), heterogeneous (at random) effects without PTA violation X X

2c Dynamic (linear trend), heterogeneous (large first) effects without PTA violation X X

3a Constant, homogeneous effects with PTA violation X

3b Constant, heterogeneous (at random) effects with PTA violation X X

3c Constant, heterogeneous (large first) effects with PTA violation X X

3d Dynamic (linear trend), homogeneous effects with PTA violation X X

3e Dynamic (linear trend), heterogeneous (at random) effects with PTA violation X X X

3f Dynamic (linear trend), heterogeneous (large first) effects with PTA violation X X X

Scenarios 1a–1c compares the performance of DiD estimators under constant effects under the PTA. Scenarios 2a–2c compares the performance under dynamic effects under the 
PTA. Scenarios 3a–3f compare the performance under constant and dynamic effects when the PTA is violated.

PTA indicates parallel trends assumption.

FIGURE 1. Monte Carlo simulation results for scenarios 1 and 2 (no PTA violations). Scenarios 1a–1c have constant effects, and 
scenarios 2a–2c have dynamic (linear trend) effects. Scenarios 1a and 2a have homogeneous effects across groups; scenarios 1b 
and 2b have heterogeneous (at random) effects across groups; and scenarios 1c and 2c have heterogeneous (large first) effects 
across groups. Each scenario is listed in Table 4. BJS Indicates Borusyak-Jaravel-Spiess; CS, Callaway-Sant’Anna; JW, Wooldridge; 
PTA, parallel trends assumption; SA, Sun-Abraham; TWFE, Two-way fixed effects.
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perform better under parallel trends assumption violations 
(details in the Discussion section).

The simulation results remain robust when we increase 
the number of units, time periods, and simulation runs (see 
eAppendix; http://links.lww.com/EDE/C157).

DISCUSSION
The DiD design is a powerful approach for investi-

gating causal relationships, particularly in policy evaluation 
research. While heterogeneous treatment effects-robust DiD 
estimators are effective in reducing bias compared with tra-
ditional two-way fixed effects DiD methods, epidemiologists 

have only recently begun adopting them. This article discussed 
key issues associated with two-way fixed effects estimators in 
the presence of heterogeneous treatment effects, recent meth-
odologic advancements, as well as the parallel trends assump-
tion, which remains a major concern in practice for DiD.

We also examined the performance of two-way fixed 
effects estimators and several other heterogeneous treatment 
effects-robust estimators that have received attention recently, 
adding to several recent articles conducting similar simulation 
studies.30,35 Our results indicated that two-way fixed effects are 
the most efficient option when treatment effects remained con-
stant across groups and time, but its performance diminished 

TABLE 5. Monte Carlo Simulation Estimates of the ATT

No PTA violation
(Scenarios 1 and 2)

PTA violation
(Scenario 3)

Scenario Methods Bias (%) RMSE Bias (%) RMSE

Constant, homogeneous effects Scenario 1a Scenario 3a

TWFE −0.01 0.12 −8.54 0.63

CS −1.56 0.77 −21.53 1.21

BJS −0.38 0.26 −24.31 1.24

SA 0.65 0.39 −20.23 1.15

JW −0.16 0.30 −24.11 1.18

Constant, random the Scenario 1b Scenario 3b

TWFE 2.38 0.90 −4.95 1.07

CS 0.04 1.45 −17.70 1.75

BJS 0.62 0.54 −20.25 1.33

SA 0.95 0.66 −16.93 1.26

JW 0.55 0.56 −19.62 1.25

Constant, large-first the Scenario 1c Scenario 3c

TWFE −9.49 0.74 −15.00 1.05

CS 7.19 1.57 −8.99 1.07

BJS −0.34 0.59 −17.74 1.34

SA 0.03 0.51 −14.89 1.20

JW 0.05 0.41 −17.09 1.20

Dynamic, homogeneous the Scenario 2a Scenario 3d

TWFE −69.24 1.77 −96.65 2.00

CS 1.42 0.62 −57.29 1.83

BJS −6.51 0.40 −81.65 1.36

SA −6.60 0.54 −64.01 1.28

JW −7.58 0.47 −79.76 1.35

Dynamic, random the Scenario 2b Scenario 3e

TWFE −66.40 1.78 −87.78 1.96

CS 0.64 0.86 −50.17 1.24

BJS −5.11 0.45 −67.37 1.33

SA −6.57 0.54 −55.51 1.25

JW −5.43 0.47 −66.58 1.35

Dynamic, large-first the Scenario 2c Scenario 3f

TWFE −78.62 2.28 −95.64 2.30

CS 4.14 0.72 −37.05 1.12

BJS −6.05 0.45 −59.77 1.38

SA −6.16 0.58 −48.97 1.27

JW −6.34 0.58 −58.77 1.32

Each scenario is listed in Table 4.
BJS Indicates Borusyak-Jaravel-Spiess; CS, Callaway-Sant’Anna; JW, Wooldridge; PTA, parallel trends assumption; RMSE, root mean squared error; SA, Sun-Abraham; TWFE, 

Two-way fixed effects.

http://links.lww.com/EDE/C157
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notably under dynamic treatment effects. Meanwhile, hetero-
geneous treatment effects-robust estimators exhibited more 
robust results across all scenarios under the parallel trends 
assumption. Thus, we recommend that researchers test the 
robustness of two-way fixed effects results using a heteroge-
neous treatment effects-robust estimator for staggered design 
studies. Conducting the Goodman-Bacon12 diagnostic will 
also further understand the extent and nature of heterogeneous 
treatment effects in a particular study setting and the compari-
sons receiving greater weight in two-way fixed effects.

Our results align with the conclusion in the literature 
that heterogeneous treatment effects-robust methods often 
yield similar estimates.14,15 Nonetheless, we recommend 
researchers to carefully evaluate which method to employ 
based on the specific context of their study, including factors 
discussed below.

The preferred method depends on the reliability of the 
parallel trends assumption. Callaway and Sant’Anna’s13 and 
Sun and Abraham’s27 approaches rely on weaker assump-
tions of parallel trends, using only the last pretreated peri-
od’s outcome for baseline comparisons. Borusyak et al26 and 
Wooldridge’s29 approaches rely on stronger assumptions of 
parallel trends, using the average outcome of all pretreatment 
periods as a baseline. Tradeoffs exist between efficiency and 

the strength of the identifying assumption. If parallel trends 
hold for all groups and all periods, estimators with strong 
assumptions of parallel trends are more precise. However, 
they are also more biased when strong assumptions of parallel 
trends are violated, especially with early and increasing trend 
discrepancies between groups. However, if the failure of par-
allel trends is due to anticipation effects emerging just before 
treatment (i.e., outcomes change in anticipation of a future 
treatment), estimators with a strong parallel trends assump-
tion are less biased than those with weaker assumptions. In 
summary, if the validity of parallel trends over longer time 
horizons is a concern, Callaway and Sant’Anna’s13 and Sun 
and Abraham’s27 approaches may be preferred.

The choice of comparator is an important design choice. 
Selecting both not-yet-treated and never-treated units as the 
comparator group increases statistical power, whereas select-
ing not-yet-treated units only may reduce confounding bias 
by closely resembling treated units. However, not-yet-treated 
units should be included with caution, particularly when antic-
ipatory effects are present because this can violate the paral-
lel trends assumption and introduce bias. Sensitivity analyses 
may help to determine whether estimates are robust to com-
parator choice. Ultimately, the decision will depend on the 
application.

FIGURE 2. Monte Carlo simulation result for scenario 3 (with PTA violations). Scenarios 3a–3c have constant effects, and Scenarios 
3d,e have dynamic (linear trend) effects. Scenarios 3a and 3d have homogeneous effects across groups; Scenarios 3b and 3e have 
heterogeneous (at random) effects across groups; and scenarios 3c and 3f have heterogeneous (large first) effects across groups. 
Each scenario is listed in Table 4. BJS Indicates Borusyak-Jaravel-Spiess; CS, Callaway-Sant’Anna; JW, Wooldridge; PTA, parallel 
trends assumption; SA, Sun-Abraham; TWFE, Two-way fixed effects.
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The computation time for estimating heterogeneous 
treatment effects-robust DiD estimators is another factor to 
consider. Some estimators, for example, Borusyak et al26, 
Sun and Abraham27, and Wooldridge29, are quick to com-
pute. However, other estimators, for example, those proposed 
by de Chaisemartin and D’Haultfœuille25 and Callaway and 
Sant’Anna13, require more time due to complex weighting 
methods like doubly-robust estimation. de Chaisemartin and 
D’Haultfœuille’s technique may be less desirable for large 
sample sizes due to its substantially slower computation speed. 
However, it does possess the advantage of accommodating 
treatments that switch on and off, while most other methods 
allow for nonreversible treatment only.

Concerning the parallel trends assumption, we recom-
mend event-study plots for visually assessing pretrends. Then, 
it is crucial to thoroughly consider the relationships among 
covariates, treatments, and outcomes over time, within a 
causal framework and insights from prior literature, before 
employing advanced techniques to control these time-varying 
confounders. Nevertheless, given the challenge of assessing 
the validity of the parallel trends assumption, conducting sen-
sitivity tests (e.g., honest DiD22) is important to ensure a more 
robust inference.

Finally, it is important to note that the field of DiD 
estimation is rapidly evolving, with ongoing developments 
incorporating more complex designs, such as continuous 
treatments and triple differences.26,36,37 While beyond the 
scope of this article, these advancements provide method-
ological rigor of policy evaluations for increased translational 
impact.
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