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Background. Carbapenem-resistant Acinetobacter baumannii (CRAb) is 1 of the most problematic antimicrobial-resistant 
bacteria. We sought to elucidate the international epidemiology and clinical impact of CRAb.

Methods. In a prospective observational cohort study, 842 hospitalized patients with a clinical CRAb culture were enrolled at 46 
hospitals in five global regions between 2017 and 2019. The primary outcome was all-cause mortality at 30 days from the index 
culture. The strains underwent whole-genome analysis.

Results. Of 842 cases, 536 (64%) represented infection. By 30 days, 128 (24%) of the infected patients died, ranging from 1 (6%) 
of 18 in Australia-Singapore to 54 (25%) of 216 in the United States and 24 (49%) of 49 in South-Central America, whereas 42 (14%) 
of non-infected patients died. Bacteremia was associated with a higher risk of death compared with other types of infection 
(40 [42%] of 96 vs 88 [20%] of 440). In a multivariable logistic regression analysis, bloodstream infection and higher age- 
adjusted Charlson comorbidity index were independently associated with 30-day mortality. Clonal group 2 (CG2) strains 
predominated except in South-Central America, ranging from 216 (59%) of 369 in the United States to 282 (97%) of 291 in China. 
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Acquired carbapenemase genes were carried by 769 (91%) of the 842 isolates. CG2 strains were significantly associated with higher 
levels of meropenem resistance, yet non-CG2 cases were over-represented among the deaths compared with CG2 cases.

Conclusions. CRAb infection types and clinical outcomes differed significantly across regions. Although CG2 strains remained 
predominant, non-CG2 strains were associated with higher mortality.

Clinical Trials Registration. NCT03646227.
Keywords. carbapenem-resistant Acinetobacter baumannii; clinical impact; international epidemiology.

Carbapenem-resistant Acinetobacter baumannii (CRAb) has 
emerged as a significant healthcare-associated pathogen over 
the last 2 decades [1]. Mortality rates associated with CRAb 
infections are high [2]; however, CRAb is often detected in pa-
tients with poor baseline health status or significant underlying 
conditions, and its true impact on their disease courses remains 
undefined. The ascendancy of CRAb in healthcare facilities 
during the past 2 decades coincides with the propagation of 
several dominant clonal lineages, especially clonal group 
2 (CG2) [3, 4]. CG2 strains producing acquired OXA-23 carba-
penemases appear to account for a large proportion of CRAb 
worldwide, yet regional differences have also been recognized 
[5]. How these strain differences define clinical features and 
patient outcomes remains unclear.

In this analysis, we explored the clinical features of 
patients with CRAb and the impact of infection over coloni-
zation in an international prospective cohort. Furthermore, 
we delineated the phenotypic and genomic characteristics 
of the CRAb isolates to highlight similarities and differences 
across regions.

METHODS

Study Design and Patients

The Study Network of Acinetobacter baumannii as Carbapenem- 
Resistant Pathogen (SNAP) is an international, prospective, 
observational, multicenter study with consecutive enrollment 
of hospitalized patients from whom CRAb was isolated during 
their hospitalization. Surveillance cultures were excluded. The 
first qualifying culture episode during the initial admission was 
included for each patient enrolled during the study period, which 
occurred between September 2017 and November 2019, depend-
ing on regions. Patients were enrolled from 46 health systems 
in 10 countries. The study was approved by the Institutional 
Review Boards of all the participating health systems with a waiv-
er of consent. This study is registered with ClinicalTrials.gov 
(Clinical Trials Registration NCT03646227).

Carbapenem resistance was defined by a minimum inhibito-
ry concentration (MIC) value of 8 mg/L or greater for merope-
nem, imipenem, or doripenem [6]. A patient was eligible 
without age exclusion if A. baumannii was identified from a 
clinically indicated culture specimen and was resistant to at 
least 1 of the 3 carbapenems tested at the local microbiology 
laboratory. Meropenem resistance was confirmed by MIC 

testing at central research laboratories, and cases with 
meropenem-resistant isolates were included in the final 
analysis.

Clinical Data Collection

Demographic and clinical data were obtained from electronic 
health records (EHRs). Infections were defined by published 
criteria [7], with the exception of respiratory cultures for 
which the clinical diagnosis recorded by the treating clinicians 
was applied based on review of the EHR [8]. Association with 
healthcare was determined as previously defined [9]. Positive 
cultures that did not meet the criteria for infection were con-
sidered to represent non-infection. At 90 days after discharge, 
data on post-hospitalization death and readmission were col-
lected from the EHR.

Outcomes

Patient outcomes were evaluated at 30 and 90 days from the 
collection date of the index culture. For patients with infection, 
the primary outcome was all-cause mortality at 30 days. 
Secondary outcomes included the desirability of outcome rank-
ing (DOOR) and 90-day all-cause mortality [10]. DOOR is an 
ordinal outcome that globally assesses patient wellbeing. The cat-
egories were: clinical response at 30 days with no events, 1 event, 
2 or 3 events, and death, where the possible events included lack 
of clinical response at 30 days, worsening clinical status at dis-
charge within 30 days or readmission within 30 days, and renal 
failure post-culture or Clostridioides difficile infection [7].

Microbiologic and Sequencing Analysis

The CRAb isolates were sent to central research laboratories, 
where the MICs of meropenem and other agents with 
anti-Acinetobacter activity were determined using the broth 
microdilution method.

Sequencing of the genomic DNA extracted from the first iso-
lates of the enrolled patients was conducted using Illumina se-
quencers [11]. Draft genomes were assembled using SPAdes, 
version 3.13.1 [12]. Acinetobacter species were determined by 
fastANI, version 1.32, using a 95% cutoff for species identifica-
tion [13, 14]. Multilocus sequence typing (MLST) was analyzed 
by MLST, version 2.22.0, using the PubMLST database [15, 16]. 
Clonal groups were defined as a central ST with its single-locus 
variants (SLVs) and their SLVs [17]. Resistance genes were 
identified by AMRFinderPlus, version 3.10.21, and ARIBA, 
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version 2.14.6 [18, 19]. Acquired carbapenemase genes 
were those other than blaOXA-51-like intrinsic to the species. 
Capsular polysaccharide locus and lipooligosaccharide outer 
core locus were defined using Kaptive version 2.0.3 [20]. 
Core genome alignment was generated by Snippy, version 
4.6.0, using the A. baumannii AYE genome (accession no. 
NC_010410) as the reference [11]. A maximum likelihood phy-
logenetic tree was constructed in RAxML, version 8.2.4 [21].

Statistical Analysis

The characteristics of patients with CRAb and their outcomes 
were compared. The distributions of continuous variables, 
including ordered categorical variables, were compared using 
the Kruskal-Wallis test. The Pearson χ2 test across groups 
was used for nominal categorical variables. To compare 
outcomes between infected and non-infected patients, both 
unadjusted and inverse probability weighting-adjusted pair-
wise DOOR analyses were performed, adjusting for region, 
immunocompromising conditions, pre-admission location, 
and age-adjusted Charlson comorbidity index (CCI) [22]. 
Pairwise DOOR comparisons estimated the probability of a 
more favorable outcome for a randomly selected patient with 
CRAb infection versus CRAb non-infection. Pairwise DOOR 
comparisons between geographic regions were also estimated. 
Among the infected patients, risk factors for outcomes were 
sought in exploratory logistic regression analyses that included 
anatomical source of infection, age-adjusted CCI of the 
patients, immunocompromising conditions, pre-admission lo-
cation, monomicrobial infection, geographic region, clonal 
group, acquired carbapenemase gene (presence or absence), 
capsular polysaccharide locus and lipooligosaccharide outer 
core locus of the associated strains as variables of clinical and 
bacteriological interest, with study site as a random effect. 
P values <.05 were considered statistically significant, and all 
tests were 2-sided. All analyses were performed using SAS soft-
ware version 9.4 (SAS Institute, Inc., Cary, North Carolina, 
USA).

RESULTS

Patient Characteristics

A total of 990 patients were enrolled at international sites par-
ticipating in the Multi-Drug Resistant Organism (MDRO) 
Network (NCT03646227). After excluding 148 patients for 
various reasons, 842 patients were included in the primary 
analysis (Supplementary Table 1). The final cohort included 
369 (44%) patients from the United States, 291 (35%) patients 
from China, 77 (9%) patients from the Middle East, 74 (9%) 
patients from South-Central America, and 31 (4%) patients 
from Australia-Singapore (Table 1). Males accounted for 
55%–87% of the cohort depending on the region. Patients in 
South-Central America were significantly younger (median 

age 56; interquartile range [IQR] 38–68) than patients in the 
United States (median age 62; IQR 53–72), China (median 
age 63; IQR 48–73), Middle East (median age 63; IQR 
32–74), or Australia-Singapore (median age 65; IQR 53–72; 
P = .06 across regions). Patients in South-Central America 
(median CCI 1; IQR 0–2) and China (median CCI 1; IQR 
0–3) had fewer comorbidities than patients in the United 
States (median CCI 3; IQR 1–5), Middle East (median CCI 2; 
IQR 0–3), or Australia-Singapore (median CCI 2; IQR 0–3; 
P < .0001 across regions).

Overall, 536 (64%) of the 842 patients had CRAb infections, 
and 306 (36%) had CRAb non-infection. Additionally, 328 
(70%) of the 468 respiratory tract isolates, 75 (44%) of the 170 
wound isolates, and 19 (41%) of the 46 urinary isolates represent-
ed infection. In terms of acquisition, 523 (62%) of the 842 CRAb 
cases were defined as hospital-acquired and another 259 (31%) 
as healthcare-associated but non-hospital–acquired. Overall, 
430 (51%) of the 842 patients with a CRAb infection were in 
an intensive care unit at the time of the first CRAb culture, rang-
ing from 7 (23%) of 31 in Australia-Singapore to 175 (60%) of 
291 in China, and 45 (61%) of 74 in South-Central America.

The most common sources of CRAb were the respiratory 
tract (n = 468, 56% of total), followed by wound (n = 170, 
20%), bloodstream (n = 96, 11%), and urine (n = 46, 5%) 
(Table 1). The respiratory tract was particularly a common 
source in China (228 [78%] of 291 isolates), whereas 
South-Central America had a relatively high proportion of 
bloodstream isolates (20 [27%] of 74) compared with other re-
gions, ranging from 1 (3%) of 31 in Australia-Singapore to 11 
(14%) of 77 in the Middle East. An additional organism other 
than CRAb grew in 340 (40%) of the 842 patients from the 
same source. Concomitant growth was particularly common 
in wounds (48 of 75 infection cases and 61 of 95 non-infection 
cases, both 64%), for which methicillin-resistant Staphylococcus 
aureus (22 of 109 polymicrobial wound isolates) and 
Pseudomonas spp. (22 of 109) accounted for 20% each.

Strain Characteristics

An acquired carbapenemase gene was detected in 769 (91%) of 
842 isolates. The proportion of CRAb isolates with an acquired 
carbapenemase was high across the regions, ranging from 305 
(83%) of 369 isolates in the United States to 100% in 
the Middle East (n = 77) and Australia-Singapore (n = 31) 
(Figure 1). Also, blaOXA-23 was the most common acquired car-
bapenemase gene across all regions and was present in 680 iso-
lates (88%), including 9 with another acquired carbapenemase 
gene. And blaOXA-24/40 was the next most commonly acquired 
carbapenemase gene and was present in 75 isolates (10%), includ-
ing 3 isolates co-harboring blaOXA-23. The other acquired carba-
penemase genes were blaNDM-1 (n = 11), blaOXA-58 (n = 8), and 
blaOXA-237, a blaOXA-134-like carbapenemase gene only found in 
the United States (n = 5).
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Table 1. Characteristics of Patients With CRAb Isolates by Region

Characteristics
United States  

(n = 369)
China  

(n = 291)
South-Central 

America (n = 74)
Middle East 

(n = 77)
Australia-Singapore 

(n = 31)
Total 

(n = 842)
P 

Valuea

Demographics

Age, y 62 (53–72) 63 (48–73) 56 (38–68) 63 (32–74) 65 (53–72) 62 (49–73) .055

Female sex 167 (45) 86 (30) 33 (45) 20 (26) 4 (13) 310 (37) <.0001

Comorbidities

Charlson comorbidity index 3 (1–5) 1 (0–3) 1 (0–2) 2 (0–3) 2 (0–3) 2 (1–4) <.0001

Diabetes 178 (48) 74 (25) 19 (26) 35 (45) 14 (45) 320 (38) <.0001

Heart disease 131 (36) 46 (16) 6 (8) 27 (35) 6 (19) 216 (26) <.0001

Cerebrovascular disease 87 (24) 63 (22) 3 (4) 13 (17) 3 (10) 169 (20) .0014

Chronic kidney disease 53 (14) 17 (6) 5 (7) 17 (22) 3 (10) 95 (11) .0001

COPD 97 (26) 21 (7) 10 (14) 5 (6) 5 (16) 138 (16) <.0001

History of malignancy 54 (15) 36 (12) 4 (5) 6 (8) 5 (16) 105 (12) .14

Immunocompromised 26 (7) 13 (4) 7 (9) 3 (4) 1 (3) 50 (6) .34

Origin of patient … … … … … … <.0001

Home 112 (30) 109 (37) 61 (82) 51 (66) 18 (58) 351 (42) …

Long-term care facility 155 (42) 4 (1) 0 (0) 0 (0) 1 (3) 160 (19) …

Long-term acute care 47 (13) 17 (6) 0 (0) 0 (0) 1 (3) 65 (8) …

Hospital transfer 51 (14) 161 (55) 10 (14) 24 (31) 3 (10) 249 (30) …

International transfer 4 (1) 0 (0) 3 (4) 2 (3) 8 (26) 17 (2) …

Prior ICU admission 203 (55) 204 (70) 55 (74) 56 (73) 11 (35) 529 (63) <.0001

Patient location at time of first 
positive culture

… … … … … … <.0001

Emergency department 42 (11) 8 (3) 5 (7) 1 (1) 1 (3) 57 (7) …

ICU 163 (44) 175 (60) 45 (61) 40 (52) 7 (23) 430 (51) …

Medical ward 125 (34) 59 (20) 14 (19) 23 (30) 14 (45) 235 (28) …

Surgical ward 17 (5) 42 (14) 5 (7) 9 (12) 8 (26) 81 (10) …

Hematology/oncology ward 4 (1) 1 (0) 0 (0) 1 (1) 0 (0) 6 (1) …

Other 18 (5) 6 (2) 5 (7) 3 (4) 1 (3) 33 (4) …

Days from admission to culture 2 (1–7) 7 (2–15) 16 (9–31) 17 (1–42) 12 (3–26) 5 (1–15) <.0001

Hospital-acquired/ 
healthcare-associated

… … … … … … <.0001

Hospital-acquired 166 (45) 216 (74) 64 (86) 53 (69) 24 (77) 523 (62) …

Healthcare-associated, 
non-hospital-acquired

163 (44) 67 (23) 6 (8) 17 (22) 6 (19) 259 (31) …

Non-healthcare/ 
non-hospital-acquired

40 (11) 8 (3) 4 (5) 7 (9) 1 (3) 60 (7) …

Infection/non-infection by source … … … … … … <.0001

Blood (infection only) 41 (11) 23 (8) 20 (27) 11 (14) 1 (3) 96 (11) …

Respiratory (all) 163 (44) 228 (78) 25 (34) 41 (53) 11 (35) 468 (56) …

Infection 103 (28) 180 (62) 20 (27) 18 (23) 7 (23) 328 (39) …

Colonization 60 (16) 48 (16) 5 (7) 23 (30) 4 (13) 140 (17) …

Urine (all) 18 (5) 7 (2) 7 (9) 6 (8) 8 (26) 46 (5) …

Infection 6 (2) 2 (1) 4 (5) 1 (1) 6 (19) 19 (2) …

Colonization 12 (3) 5 (2) 3 (4) 5 (6) 2 (6) 27 (3) …

Wound (all) 135 (37) 8 (3) 10 (14) 8 (10) 9 (29) 170 (20) …

Infection 60 (16) 4 (1) 3 (4) 4 (5) 4 (13) 75 (9) …

Colonization 75 (20) 4 (1) 7 (9) 4 (5) 5 (16) 95 (11) …

Other (all) 12 (3) 25 (9) 12 (16) 11 (14) 2 (6) 62 (7) …

Infection 6 (2) 10 (3) 2 (3) 0 (0) 0 (0) 18 (2) …

Colonization 6 (2) 15 (5) 10 (14) 11 (14) 2 (6) 44 (5) …

Pitt bacteremia score 4 (2–6) 4 (1–6) 4 (1–6) 4 (2–6) 2 (0–5) 4 (2–6) .13

Polymicrobialb 202 (55) 79 (27) 21 (28) 24 (31) 14 (45) 340 (40) <.0001

All data are shown as n (% of total) or median (interquartile range).  

Abbreviations: COPD, chronic obstructive pulmonary disease; CRAb, carbapenem-resistant Acinetobacter baumannii; ICU, intensive care unit.  
aP- values to assess differences among groups. The χ2 test was used for categorical variables, and the Kruskal-Wallis test was used for continuous variables.  
bMonomicrobial and unknown were combined; n (%) for polymicrobial are shown.
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Carbapenemase-producing isolates were more likely to 
have meropenem MICs ≥32 mg/L than non-carbapenemase– 
producing isolates (Supplementary Figure 1). Of 769 CRAb 
isolates with an acquired carbapenemase gene, 749 (97%) had 
meropenem MICs of ≥32 mg/L compared with 55 (75%) of 73 
isolates without an acquired carbapenemase gene (P < .0001). 
Resistance rates to non-carbapenem agents were variable, 
but overall were high, except for polymyxins (Supplementary 
Table 2).

Molecular Epidemiology

CG2 accounted for 598 of 842 CRAb isolates (71%) and was the 
most common clonal group in all regions with the exception of 
South-Central America, where only 3 (4%) isolates belonged to 
CG2 (Figure 2). In South-Central America, the isolates were 
much more diverse, with CG1 and CG25 being the most com-
mon (both 21 [28%] of 74), followed by CG15 and CG79 (both 
11 [15%] of 74). In the United States (n = 369), the most 

common clonal groups after CG2 (n = 216) were CG499 
(n = 77) and CG406 (n = 31), accounting for 21% and 8% 
and identified from 10 and 6 health systems, respectively.

CG2 was associated with higher meropenem MICs; mero-
penem MIC was >32 mg/L in 383 (64%) of the 598 CG2 iso-
lates and 134 (55%) of the 244 non-CG2 isolates (Wilcoxon 
rank sum P = .023). CG2 was also associated with multidrug re-
sistance toward other agents (Supplementary Table 3). CG2 was 
also significantly associated with the presence of blaOXA-23 as the 
acquired carbapenemase gene compared with non-CG2 (516 
[96%] of 598 vs 155 [66%] of 244; P < .0001) (Supplementary 
Table 4).

Clinical Outcomes

In the overall cohort of 842 patients, 170 patients (20%; 95% 
confidence interval [CI] 17–23) died within 30 days. Of the 
536 patients who had a CRAb infection, 128 patients 
(24%; 95% CI 20–27) died within 30 days compared with 42 

Figure 1. Acquired carbapenemases among CRAb isolates by region. CRAb isolates carried genes for the following acquired carbapenemases: USA: OXA-23 (n = 228), 
OXA-24 (n = 68), OXA-237 (n = 4), OXA-23 + OXA-24 (n = 3), OXA-23 + OXA-237 (n = 1), and OXA-58 (n = 1); China: OXA-23 (n = 288); South-Central America: OXA-23 (n =  
57), OXA-58 (n = 5), NDM (n = 4), OXA-58 + NDM (n = 1), and OXA-24 (n = 1), ; Middle East: OXA-23 (n = 72), OXA-24 (n = 3), and NDM (n = 2); and Australia-Singapore: 
OXA-23 (n = 26), OXA-23 + NDM (n = 4), and OXA-23 + OXA-58 (n = 1). Abbreviation: CRAb, carbapenem-resistant Acinetobacter baumannii.

252 • CID 2024:78 (15 February) • Wang et al

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciad556#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciad556#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciad556#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciad556#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciad556#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciad556#supplementary-data


(14%; 95% CI 10–18) of 306 non-infected patients (difference: 
10%, 95% CI 5–15). The unadjusted and inverse probability- 
weighted DOOR values for non-infected patients over infected 
patients were 58% (95% CI 54–61) and 59% (95% CI 55–62), 
respectively, meaning that a randomly selected non-infected 
patient had a 58% probability of a more favorable outcome 
than a randomly selected infected patient, with the 95% CI rul-
ing out 50%. By infection types, 30-day mortality rates were 
42% (40 of 96, 95% CI 32–52) for bloodstream infections, 
23% (75 of 328, 95% CI 18–27) for respiratory infections, 
11% (8 of 75, 95% CI 4–18) for wound infections, and 11% (2 
of 19, 95% CI 0–24) for urinary tract infections (P < .0001) 
(Supplementary Figure 2). Monomicrobial infection was asso-
ciated with higher mortality rates than polymicrobial infection 
at both 30 days (89 [28%] of 320 vs 38 [18%] of 211; difference: 
10%, 95% CI 2–17) and 90 days (105 [33%] of 320 vs 50 [24%] 
of 211; difference: 9%, 95% CI 1–17) (Supplementary Table 5). 

This was driven by high mortality rates of monomicrobial 
bloodstream infection (Supplementary Table 6).

Overall, the 30-day mortality rates for infected patients were 
uneven across the regions: 49% (24 of 49, 95% CI 35–63) in 
South-Central America, 25% (54 of 216, 95% CI 19–31) in the 
United States, 20% (43 of 219, 95% CI 14–25) in China, 18% (6 
of 34, 95% CI 5–30) in the Middle East, and 6% (95% CI 0–16) 
in Australia-Singapore (P = .0001). In the DOOR outcomes, the 
proportion with the most desirable outcome (ie alive without 
events) was highest in China (79 [36%] of 219; 95% CI 30–42), fol-
lowed by the United States (74 [34%] of 216; 95% CI 28–41), the 
Middle East (7 [21%] of 34; 95% CI 7–34), South-Central America 
(9 [18%] of 49; 95% CI 8–29), and Australia-Singapore (2 [11%] of 
18; 95% CI 0–26) (Table 2; Supplementary Figures 3-5).

The presence of an acquired carbapenemase gene was not as-
sociated with mortality at either 30 or 90 days (Supplementary 
Tables 7, 8). Patients with non-CG2 isolates were significantly 

Figure 2. Population structure of CRAb isolates based on WGS. Phylogenetics are linked with country, clonal group (CG), acquired carbapenemase, capsular polysaccharide 
locus (KL), lipooligosaccharide outer core locus (OCL), DOOR outcome, and meropenem (MEM) MIC value. Abbreviations: CRAb, carbapenem-resistant Acinetobacter bau-
mannii; DOOR, desirability of outcome ranking; MIC, minimum inhibitory concentration; NA, not applicable; WGS, whole-genome sequencing.
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more likely to die by 30 days than those with CG2 isolates (48 
[33%] of 147 vs 80 [21%] of 389; difference: 12%; 95% CI 4–21) 
(Supplementary Tables 9, 10). The excess mortality of non-CG2 
cases over CG2 cases was also observed at 90 days (58 [39%] of 
147 vs 98 [25%] of 389; difference: 14%; 95% CI 5–23).

Risk Factors for Mortality

An exploratory analysis was conducted to probe for risk factors 
associated with 30-day mortality among patients with infection. 
In the univariable fixed-effect model, region (South-Central 
America compared with the United States), anatomical source of 
infection (blood compared with respiratory, wound, urine), clonal 
group (CG1, CG15, CG25 compared with CG2), age-adjusted 
CCI, monomicrobial infection, and lipooligosaccharide outer 
core locus (OCL; OCL1, OCL3 compared with others) were signif-
icant risk factors for 30-day mortality. In the multivariable model, 
bloodstream infection (compared with wound and urinary tract 
infection), monomicrobial infection, and higher age-adjusted 

CCI were significant risk factors for 30-day mortality among in-
fected patients (Supplementary Table 11).

DISCUSSION

In this analysis, large variations were observed in the sources of 
CRAb and the types of infection depending on region. Almost 
80% of CRAb isolates were identified from respiratory 
specimens in China compared with 34%–53% from other re-
gions. Similar observations were made with the Prospective 
Observational Pseudomonas (POP) study, a sister MDRO 
Network study on carbapenem-resistant Pseudomonas aerugi-
nosa [8]. On the other hand, blood and wounds were common 
sources of CRAb in South-Central America and the United 
States relative to other regions, respectively. These differences 
may be associated with infecting bacteria, host susceptibility, or 
differences in healthcare delivery, and indicate that CRAb pos-
es distinct sets of clinical challenges depending on the regions.

Table 2. Clinical Outcomes of Patients Infected With CRAb by Region

Characteristics

United 
States 

(n = 216)
China 

(n = 219)

South-Central 
America 
(n = 49)

Middle East 
(n = 34)

Australia-Singapore 
(n = 18)

Total 
(n = 536)

P 
Valuea

Mortalityb

30-day (primary outcome) 54 (25) 43 (20) 24 (49) 6 (18) 1 (6) 128 (24) .0001

Risk difference (vs United States, 
95% CI)

… −5 (−13 to 2) 24 (9–39) −7 (−19 to 9) −20 (−28 to 1) … …

90-day 65 (30) 49 (22) 26 (53) 10 (29) 6 (33) 156 (29) .0009

Risk difference (vs United States, 
95% CI)

… −8 (−16 to 1) 23 (8–38) −1 (−15 to 17) 3 (−15 to 27) … …

Length of hospital stay from index 
culture

9 (4–18) 15 (7–24) 15 (7–28) 34 (6–62) 33 (14–43) 12 (5–24) <.0001

DOOR outcome at 30 dc 

(Supplementary Figure 3)

Alive without events 74 (34) 79 (36) 9 (18) 7 (21) 2 (11) 171 (32) …

Alive with 1 event 60 (28) 63 (28) 6 (12) 7 (21) 6 (33) 142 (26) …

Alive with 2 or 3 events 28 (13) 35 (16) 10 (20) 14 (41) 9 (50) 96 (18) …

Death 54 (25) 43 (20) 24 (49) 6 (18) 1 (6) 128 (24) …

DOOR probability % (vs United 
States, 95% CI)

… 52 (47–57) 34 (26–43) 43 (34–52) 43 (34–53) … …

Disposition after discharge … … … … … … <.0001

Home 31 (14) 72 (33) 17 (35) 21 (62) 9 (50) 150 (28) …

Long-term care facility 64 (30) 3 (1) 0 (0) 0 (0) 2 (11) 69 (13) …

Long-term acute care 46 (21) 2 (1) 1 (2) 0 (0) 1 (6) 50 (9) …

Transfer to another hospital 8 (4) 72 (33) 3 (6) 1 (3) 1 (6) 85 (16) …

Hospice 22 (10) 21 (10) 3 (6) 0 (0) 0 (0) 46 (9) …

Death 44 (20) 49 (22) 25 (51) 11 (32) 4 (22) 133 (25) …

Transfer to a foreign country 1 (0) 0 (0) 0 (0) 1 (3) 1 (6) 3 (1) …

Clinical response 107 (50) 86 (39) 12 (24) 13 (38) 6 (33) 224 (42) .013

All data are shown as n (% of total) or median (interquartile range).  

Abbreviations: CI, confidence interval; CRAb, carbapenem-resistant Acinetobacter baumannii; DOOR, desirability of outcome ranking.  
aP- values to assess differences among groups. The χ2 test was used for categorical variables, and the Kruskal-Wallis test was used for continuous variables.  
bPatients who were discharged to hospice were not considered to have died. When discharge to hospice was combined with death, the DOOR outcomes at 30 d were: alive without events, 73 
(34%); alive with 1 event, 53 (25%); alive with 2 or 3 events, 27 (13%); deceased, 63 (29%) for the United States, and alive without events, 77 (35%); alive with 1 event, 45 (21%); alive with 2 or 
3 events, 35 (16%); deceased, 62 (28%) for China; and no changes for the other regions.  
cThe three adverse events assessed by DOOR were: lack of clinical response, lack of discharge within 30 d or readmission within 30 d, and incident renal failure or Clostridioides difficile 
infection.
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The global spread of CRAb has been driven by several major 
lineages, including clonal groups CG1, CG2, and CG79, with 
CG2 by far the most predominant [3]. The predominance 
of CG2 was corroborated in our study in all regions except in 
South-Central America, where non-CG2 lineages accounted 
for the majority of strains, supporting the unique CRAb molec-
ular epidemiology across South-Central America [23].

In the United States, CG499 was among the isolates in 10 
hospital systems confirming broad dissemination of this clonal 
group, which was previously reported in the pilot portion of 
this cohort [24] and more recently in outpatient settings in 
Missouri [25]. CG406 was another clonal group only present 
among isolates from the United States, detected in 6 hospital 
systems at a lower frequency. CG406 isolates have been report-
ed as early as 2005 in the United States [25]. Strain factors that 
favor their spread in the United States would be an important 
area of future investigation, as well as longitudinal surveillance 
to examine the trajectory of these emerging lineages.

Reported estimates of mortality associated with CRAb infec-
tion vary widely [26]. In our study, 24% of infected patients 
died within 30 days, which is likely representative of mortality 
associated with this condition today. In particular, the mortality 
rate of patients with bloodstream infection exceeded 40%. 
Striking geographic disparity in patient outcomes was also ob-
served, with a particularly high mortality rate in South-Central 
America. This was despite patients in the region being younger 
and healthier at baseline. This observation may be associated 
with the higher incidence of bloodstream infection as well as un-
measured differences in patient characteristics, diagnostic and 
treatment approaches, or healthcare delivery. Furthermore, the 
excess mortality among South-Central American patients was 
not as prominent among those infected with carbapenem- 
resistant P. aeruginosa in the POP study or carbapenem-resistant 
Enterobacterales in CRACKLE-2, another MDRO Network 
study [8, 11]. This suggests that the characteristic of specific 
CRAb strains prevalent in the region may play a role in the excess 
mortality, including clonal group, carbapenemase production, 
and key immunogenic antigens, such as the capsular polysaccha-
ride and lipooligosaccharide outer core [27]. When a model with 
30-day mortality as the response variable was built, bloodstream 
infection, monomicrobial infection, and higher age-adjusted 
CCI were independent risk factors for death. On the other 
hand, none of the strain variables that were risk factors in the 
univariable analysis (clonal group, lipooligosaccharide outer 
core locus) and included in the multivariable model were inde-
pendently associated with mortality. Further studies are needed 
to assess whether strain lineages unique to South-Central 
America are inherently more virulent than CG2.

Centralized susceptibility testing showed high rates of resis-
tance across commonly used agents in addition to carbape-
nems. An exception was polymyxins (colistin and polymyxin 
B), which were active (now interpreted as intermediate for 

MICs ≤2 mg/L by the CLSI) against 88% of the strains, but 
their inherent characteristics, such as unpredictable pharmaco-
kinetics and significant nephrotoxicity, challenge their routine 
use in the clinic [28]. Whether newer agents with robust 
anti-CRAb activity, such as cefiderocol [29] and sulbactam- 
durlobactam [30], will improve survival and other relevant 
clinical outcomes of patients remains to be seen.

Our study has several limitations. The cohort did not include 
hospitals from Europe and Africa, where the clinical and ge-
nome epidemiology of CRAb may differ. Additionally, the 
study was conducted through waiver of consent to sequentially 
enroll patients with the pathogen. The design restricted clinical 
data collection to documentations available in the EHR, but this 
also allowed us to describe an unbiased picture of CRAb and its 
clinical impact. In summary, CRAb infection types and patient 
outcomes differed significantly across the regions. CG2 was the 
predominant CRAb lineage in all regions except South-Central 
America, where non-CG2 lineages predominated. We also ob-
served an increasing prevalence of non-CG2 lineages unique to 
the United States, which merits attention. The findings under-
score the distinct clinical challenges posed by CRAb, as well as 
the need to recognize factors that may favor the emergence and 
spread of new lineages in certain regions.
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