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RESEARCH

Automatic breast tissue segmentation 
in MRIs with morphology snake and deep 
denoiser training via extended Stein’s unbiased 
risk estimator
Xiao‑Xia Yin1*, Yunxiang Jian1, Yang Zhang2, Yanchun Zhang1*, Jianlin Wu3, Hui Lu1 and Min‑Ying Su2 

Abstract 

Accurate segmentation of the breast tissue is a significant challenge in the analysis of breast MR images, especially 
analysis of breast images with low contrast. Most of the existing methods for breast segmentation are semi‑automatic 
and limited in their ability to achieve accurate results. This is because of difficulties in removing landmarks from 
noisy magnetic resonance images (MRI). Especially, when tumour is imaged for scanning, how to isolate the tumour 
region from chest will directly affect the accuracy for tumour to be detected. Due to low intensity levels and the close 
connection between breast and chest portion in MRIs, this study proposes an innovative, fully automatic and fast seg‑
mentation approach which combines histogram with inverse Gaussian gradient for morphology snakes, along with 
extended Stein’s unbiased risk estimator (eSURE) applied for unsupervised learning of deep neural network Gaussian 
denoisers, aimed at accurate identification of landmarks such as chest and breast.

Keywords: Image segmentation, MRI, Inverse Gaussian gradient, Morphology snakes, Breast cancer, Adaptive 
histogram equalization, Extended Stein’s unbiased risk estimator
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Introduction
Currently breast cancer is listed as the second most com-
mon cause of deaths for women [1]. Over 1.3 million 
women worldwide that undergo tumour screening are 
diagnosed with breast cancer each year, making it one of 
the most common forms of cancer. To reduce the mor-
tality rate from breast cancer, early diagnosis and treat-
ments are essential [2]. Breast (MRI) is an established 
clinical imaging modality for high-risk screening, diag-
nosis, preoperative staging, and neoadjuvant therapy 
response evaluation. The most common clinical indi-
cation was diagnostic evaluation (40.3%), followed by 
screening (31.7%) [3].

MRIs enable to identify and mitigate breast diseases by 
generating a series of 3D images that a radiologist uses to 
manually detect the diseased part and identify problems 
[4, 5]. The manual process is time consuming because 
of the high number of images [6–9]. Hence, automatic 
computer-algorithm based image analysis has become 
essential for performing computer-aided detection and 
diagnosis, which aim to provide prompt output and help 
radiologist to accurately locate the diseased area.

The segmentation in medical images is a complex pro-
cess because of shape variation in the noisy and inhomo-
geneous image domain. The type, size and location of the 
organs and particular structures are important informa-
tion in medical images. Vast surveys using diversified 
image processing algorithms are available [10–12] for 
breast tumor segmentation.

http://crossmark.crossref.org/dialog/?doi=10.1007/s13755-021-00143-x&domain=pdf
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Accurate recognition and segmentation of target 
regions determines the success of computer detection 
and diagnosis. According to the degree of radiologist’s 
participation in the process of identifying lesion regions 
by a computer, it can be divided into fully automatic 
recognition (such as automatic recognition based on 
the overall three-dimensional morphology or statistical 
significance), and semi-automatic recognition (such as 
threshold segmentation, region growth or fuzzy C clus-
tering, etc.), along with interactive recognition (manu-
ally select the area of interest and then cut the edge). 
Compared with semi-automatic recognition of region of 
interest, full-automatic recognition has the characteris-
tics of fast speed and wide applicability; compared with 
interactive recognition of lesion images, full-automatic 
recognition has the characteristics of simple structure 
and less manual operation, which lays the foundation for 
the widespread application of computer-aided diagnosis 
(CAD), but the accuracy of automatic target identifica-
tion needs to be further improved [13, 14].

Segmentation techniques such as threshoulding, edge 
detection and pixel based classification depend on pixel 
intensity. Intensity along may not be sufficient to segment 
breast MRIs. Quality of these medical images to be seg-
mented are often affected by noise, low contrast, blurry 
edges, intensity overlapping and motion artifacts. These 
approaches are often combined with other segmenta-
tion methods to provide solution. Active contours have 
played a fabulous role to obtain the object boundaries 
due to its evolution property of contraction and expan-
sion. Those models enable to obtain sub-pixel accuracy 
of object boundaries as well as smooth and closed con-
tour as segmentation result [15]. Active contour models 
are an energy-minimizing curve, does not require any a 
prior knowledge or any training set about images to be 
analysed. It is to minimize the energy function that drives 
the deforming contour towards the object boundary 
under the influence of internal and external forces. Inter-
nal forces are defined within the curve itself that discour-
age smoothness and tautness of the contours, whereas 
the external forces arise from the image data that pull the 
contours toward features of interest, such as edges. These 
forces ensure that the active contour is confined to object 
boundaries or any other feature in the image. Traditional 
active contour models can be categorized into two types: 
a parametric active contour model and a geometric active 
contour model (ACM).

Parametric contour model is a greedy-based model, 
such as traditional active contour or a snake. Parametric 
active contours synthesize parametric curves within the 
domain of an image and aid them to move towards edges 
of the image object of interest. Some typical improved 
models have been reviewed by [16], including but not 

being limited to Traditional snake [17], Distance poten-
tial force [18], Gradient vector flow (GVF) snake [19], 
Vector field convolution (VFC) snake [20].

Geometry active contour model is implemented using a 
level set function which allows multiple object segmenta-
tion. Level set method, introduced by Osher and Sethian 
[21], offers highly robust and accurate methods for track-
ing interfaces moving under complex motions. The basic 
idea of the level set model is to represent image con-
tours by the zero level set of a higher dimensional func-
tion, and the motion of the contour is formulated based 
on the evolution of the level set function. It has been 
demonstrated that level set models are a useful tool for 
modeling time-varying objects with practical and theo-
retical advantages over conventional surface models [22]. 
The level set model does not work well on images with 
noise. This often leads to either a complete breakdown 
or delayed termination of the curve evolution process. 
The stability and convergence of the level set method are 
influenced by the speed function and parameters of the 
level set.

Further geometric contour model can be classified 
based on the stopping criterion. If edge function is used 
to stop the evolution of the contour, then it is referred as 
edge-based contour model, sensitive to noise and illu-
mination variation. In 2001, Chan and Vese proposed 
region based stopping function [23]. Distinct from the 
first kind of models, region-based models make use of 
statistical information in global or local regions to drive 
contour curve to obtain desirable target boundaries. In 
this model, the image is considered to be piecewise con-
stant function and binary segmentation is performed 
using external force estimated via statistical parame-
ters of the regions. This model encounters problem for 
medical images such as X-ray and MRI having inten-
sity inhomogeneity and noisy image domain. Various 
models have been proposed to improve the Chan–Vese 
model. Dolz et  al. provides a framework for a region-
based contouring technique in clinical practice  [24], 
they advise further investigation into more accurate 
atlas selection methods to improve the clinical usability. 
Liu et  al. [25] defined a local region-based Chan–Vese 
(LRCV) model by considering the local characteristics 
of an image as the initial contour with the application 
of Gaussian filtering for smoothing evolution process. 
Pratondo et al. [26] constructed a active contour frame-
work that integrated machine learning with region-
based active contour models for tumour detection from 
MRI images, and so on.

Owing to the emergence of deep learning  learn-
ing  technique that has been seen rapid development in 
the past decade, new active contour models based on 
deep learning have been developed and shown promising 
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results compared to existing solutions. Different from 
unsupervised active contour that no training datasets are 
required, the new model integrates priors and constraints 
into the active contour process via the deep learning 
strategies, to achieve continuous boundaries, smooth 
edges, and sharp corners, etc. Xu et al. [26] presented a 
method for automated detection and segmentation of 
breast cancer nuclei, which uses a convolutional neural 
network to initialize active contour model with adaptive 
ellipse fitting. Chen et  al. [27] desined new active con-
tour models based on deep learning by proposing a new 
loss function, which incorporates area and size infor-
mation and integrates this into a dense deep learning 
model, aimed at the segmentation of cardiac MRI scans 
with clearly defined boundaries. Guo et al. [28] exploited 
single network architecture to define an external con-
straint force of active contour models, and to generate a 
pixel label map containing spatial regional information 
(foreground and background) as well as layered bound-
ary information. A unique property of the designed force 
is that both its strength and direction are adaptive to its 
position and relative distance to the object boundary. it 
allows to place the initial contour far away from the liver 
boundary and potentially enable to control the evolution 
of the contour in order to preserve the topology of the 
liver.

Apart from robust of the active contour algorithm, 
image noise will affect the accuracy of active contour 
for image segmentation. Collecting high-quality noise-
less images is a challenging task in image processing 
and computer vision. The two main limitations in image 
accuracy are categorized as blur and noise. Blur is intrin-
sic to image acquisition systems, as digital images have 
a finite number of samples and must satisfy the Shan-
non–Nyquist sampling conditions [29]. The second main 
image perturbation is noise. Noise is an inherent prop-
erty of medical imaging, and it generally tends to reduce 
the image resolution and contrast, thereby reducing the 
diagnostic value of this imaging modality, degrade the 
performance and usefulness of quantitative MRI diagnos-
tics, when conducting voxel-based tissue classification, 
extracting organ shape or tissue boundaries, estimating 
physiological parameters.

Magnetic resonance imaging is used to extract images 
of soft tissues of human body. It is used to analyze the 
human organs without the need for surgery. Generally 
MRI images contain a significant amount of noise caused 
by operator performance, equipment and the environ-
ment, such as impulse, Gaussian, and speckle, which 
leads to serious inaccuracies MRI and seems to be effi-
cient in providing information regarding the location of 

tumors and even the volume. The noise present in the 
MRI image can be removed by using various de-noising 
techniques whichever is best suited depending upon the 
image acquired and then can be processed by any of the 
segmentation methods. Numerous research works have 
been conducted in detection and elimination of noise in 
medical images. Image denoising via machine learning 
techniques has played an important role in the various 
application areas of medical imaging such as pre-pro-
cessing (noise removal from Ultrasound (US) Images, 
segmentation (MRI of Brain Tumor, lungs infection using 
X-ray), Computer Aided Diagnosis (CAD) for breast can-
cer, Fetus development and many more) [30–33]. These 
techniques learn a set of bases from the denoised images 
aimed at creating a dictionary to sparsely represent image 
patches as a linear combination of dictionary atoms [34]. 
There has been an attentiveness in using multi-resolution 
wavelet filters in a variety of medical imaging applica-
tions [35, 36].

More recently, deep learning received considerable 
attention, emerging as a machine learning approach in 
delivering robust MR image processing. Bermudez et al. 
proposed an autoencoder with skip connections for 
T1-weighted (T1w) imaging of the brain [37].The devel-
oped network, trained with 528 T1w images, significantly 
improved the image quality based on PSNR analysis. 
DnCNN is also widely used for denoising of brain MR 
images [38, 39]. Denoising using DL is used not only for 
the improvement of image quality but also for reducing 
scan time. In addition, In [40] an adaptive filter with edge 
preserving property for Rician noise in MRI images is 
proposed. In [41], for Gaussian and impulse noise detec-
tion in tomography images, a discriminative bilateral fil-
tering for is proposed. In [42] an adaptive median filter 
for removal of impulse noise in X-ray images and speckle 
noise in ultrasound images is proposed. In [43] medical 
images which are used for detecting cancer in different 
parts of human body are considered and different types 
of noise effecting such images are reviewed.

The main objective of this study is to segment the 
breast region of interest (BROI) from breast MRIs with 
low contrast, which is carried out with a framework 
consisting of three major steps. Firstly, an approximated 
image, removing the noise while preserving the main 
structures, is found in the feature space of the original 
image via deep denoiser training via extended Stein’s 
unbiased risk estimator (eSURE). Secondly, we use Adap-
tive histogram equalization for image contrast enhance-
ment, which is as a preprocessing strategy with an aim to 
find the edge that can be used as a reference to partition 
between breast and chest in MRI images. Thirdly, inverse 
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Gaussian gradient for morphology snakes is designed. In 
this step, we adopt adjust sigmoid for image enhance-
ment, and perform inverse gradient to keep the edge of 
chest, before morphological geodesic active contour can 
be applied. The motivation is to separate the imaged 
breast segmentation from background region via thresh-
old easily, in the meanwhile, to accurately isolate the 
chest region from MRIs. The proposed method is vali-
dated in two types of MRI images: breast MRI 3.0 T and 
breast MRI 1.5  T with tumour and non-tumour images 
using the 1160 breast images from 10 female subjects and 
1740 breast images from 15 female subjects, respectively. 
These breast images are extracted from breast MRIs with 
and without tumours. The pixel-based quantitative analy-
sis showed excellent segmentation.

The paper is organized as follows. In Sect. 2, we intro-
duce the mathematical framework based on the level 
sets and morphology based active contour. In Sect. 3, we 
introduce the extended Stein’s unbiased risk estimator 
and the numerical algorithm of deep denoiser training 
via extended Stein’s unbiased risk estimator. In Sect.  4, 
we validate our model by some experiments on medical 
images. In Sect. 5, we end the paper by a brief conclusion.

Methodology
The general workflow breast segmentation at the region 
of interest (BROI) as illustrated in Fig.  1. Each step is 
successively explained in the following sections. Breast 
segmentation is carried out with a framework consisting 
of three major steps. Firstly, we adopt eSURE denoising 
method to remove noised MRI images, in comparison 
with threshold based method, for noise type analysis 
and denosing performance comparison. Secondly, adap-
tive histogram equalization for image contrast enhance-
ment, which is as a preprocessing strategy with an aim 
to find the edge that can be used as a reference to parta-
tion between breast and chest in MRI images. The second 
step carries inverse Gaussian gradient for morphology 
snakes. In this step, the two different portions in relation 
to breast and chest are processed and analysed differently 
according to the different properties of their own. For 
Imaged chest, we try the method called adjust sigmoid 
for image enhancement, and perform inverse gradient to 
keep the edge of chest; therefore, morphological geodesic 
active contour can be applied to accurately isolate the 
chest region from MRIs. While in the breast segmenta-
tion, we aim to find the upper and lower edge of breast, 

Fig. 1 Illustration of the general workflow regarding breast segmentation at the region of interest (BROI)



Page 5 of 21Yin et al. Health Inf Sci Syst (2021) 9:16

with an aim to separate the imaged breast segmentation 
from background region via threshold easily [44].

Preprocessing
The original breast MRIs are T1-weighted nonfat-sup-
pressed MRI images, in which fat appears as the brightest 
and air (background) as the darkest signal. Fibroglandu-
lar tissue, tumors, and the chest wall appear as moder-
ate signals with similar signal intensity [12]. The figure 
below shows a contrast enhanced image after the injec-
tion of contrast agent. Figure  2a, b is breast MRI 3.0  T 
(1.5 T) with (without) tumour. In this case, a part of the 
fibroglandular tissue with (without) tumour tissue are 
connected to the chest wall and there is no fat along 
the anterior side of the chest wall. The contrast in those 
regions are not be sufficiently enhanced in addition to the 
partly enhanced tumour tissues.

Adaptive histogram equalization (AHE) is used to 
improve contrast in images. Different from ordinary his-
togram equalization, AHE allows to compute several his-
tograms, with each corresponding to a distinct section of 
the image. Calculated histograms can be used to redis-
tribute the intensity values of the image. It is therefore 
suitable for improving the local contrast and enhancing 
the definitions of edges in each region of MR image. In 
order to find the edge between breast and chest wall, it 

requires the increased contrast in details over these small 
areas. This problem can be solved if we use a transforma-
tion function that is derived from the neighborhood of 
every pixel in the image. This is what AHE do.

Deep denoiser training via extended Stein’s unbiased risk 
estimator (SURE)
As an important part of preprocssing to denoise an MRI 
image, we make it a single subsection in the methodology 
part to highlight the deep learning based denoising strat-
egy. Due to the bright noise pixels existing around the 
edge of breast region, when performing segmentation, 
these noise pixels actually lead to false edges of breast, 
which either encloses the true edges or excludes the 
true edges. Therefore, it is challenging to achieve breast 
segmentation.

SURE based deep denoiser training
Typically, Gaussian contaminated signal (or image) is 
modeled as a linear equation: y = x + n, where x ∈  RN is an 
unknown signal, y ∈  RN is a known measurement, n ∈  RN 
is an i.i.d. Gaussian noise such that n ∼ N (0, σ2 I), and 
I is an identity matrix, We denote n ∼ N (0, σ2 I) as n ∼ 
 N0,σ2.

Given a deep estimator  hθ(y) of x, the deep SURE has 
the following form:

(1)η(hθ (y)) =
1

M

M
∑

j=1

{||y(j) - hθ (y(j))||2 − Nσ 2 +
2σ 2

ε
(ñ(j) )t(hθ (y

(j) + εñ(j))− hθ (y
(j)))}

Fig. 2 A contrast enhanced image after the injection of contrast agent. a and b is breast MRI 3.0 T (1.5 T) with (without) tumour
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where θ is the set of DNN denoiser parameters, M is the 
size of mini-batch, is a small fixed positive constant, and 
ñ(j) is a single realization from standard normal distribu-
tion for each training data j [45].

Extended SURE
The original SURE in (1) works well with a single noise 
realization per image, but it can not take advantage of 
having multiple noise realizations per image. Thus, an 
extend SURE denoising is proposed to be able to han-
dle pairs of noisy images per ground truth image. The 
extended SURE (eSURE) can be formulated in the follow-
ing way [45]:

Let y1∼N(x,σ 2
y1I), z ∼ N(0, σ 2

z I) , and 
y2�(y1 + z) ∼ N (x, (σ 2

y1 + σ 2
z )I). Then, the random vari-

able γ (hθ (y2), y1) is an unbiased estimator of mean squre 
error(MSE):

where  y1 and z are independent or uncorrelated and

When we apply the eSURE framework to a pair of 
uncorrelated Gaussian noisy images (y ∼ N (x, σ 2

y  ) and 
z ∼ N (x, σ 2

z  ). In that case, the divergence term vanishes 
leaving us the following expression:

Inverse Gaussian gradient for morphological geodesic 
active contour
Morphological geodesic active contour
Morphological geodesic active contour is also called 
Morphology Snakes. This operation consists of the mor-
phological operations and geodesic active contour. Active 
contour based segmentation methods are being used in 
medical image processing research for years now. Geo-
desic active contour (GAC) is one of the most popular 
contour evolution methods [13, 14]. GAC tries to sepa-
rate foreground (object) and background with the help 
of image intensity and gradient. GAC solves a partial dif-
ferential equation (PDE) to evolve the curve towards the 
object boundary [46–48].

The fundamental objective of GAC model was to track 
a closed surface Ŵ(u) for which Ŵ(u) : [0 : ∞] → RN 
as it evolved in data space. Such an interface was rep-
resented as a closed curve C(u) in 2D or a set of points 
on the boundaries of the region of interest Ω. Initially 

(2)

γ (hθ (y2), y1) =
1

N
||y1 − hθ (y2)||2 − σ 2

y1 +
2σ 2

y1

N

N
∑

i=1

∂hi(y2)

∂(y2)i

Ey2{
1

N
||x − hθ (y2)||2} = Ey2{γ (hθ (y2), y1)}

Ez,y{γ (hθ (y), z)} = Ez,y{
||z − hθ (y)||

N

2

} − σ 2
z

introduced by Osher and Sethian [15], the level set (geo-
desic) method performed well at capturing dynamic 
interfaces and shapes. The basic idea of this method was 
that the contour could be embedded as the zero level set 
of a high-dimensional function φ(x, y, t) known as a zero 
level set function (LSF). Assuming a dynamic paramet-
ric contour C(p, t) : [0, 1] × [0,∞) → R2 with a spatial 
parameter p ∈ [0, 1][0, 1] and t was a temporal variable 
t ∈ [0,∞) , then the target contour was described as the 
zero level set function C(p, t) = {(x, y)u(x, y, t) = 0}.

Embedding level set function u which was described by 
the continuous Lipschitz function with signed distance d 
from (x, y) to the initial curve C0. Such a Lipschitz func-
tion implied that the existence of a bounded first deriva-
tive. The distance was given a positive sign outside the 
initial boundary (R2�) , a negative sign inside the bound-
ary (Ω \∂Ω) and zero on the boundary (∂Ω). The curve 
evolution equation of GAC can be represented in implicit 
form as ∂u

∂t = g(I)|∇u|(ν + div( ∇u
|∇u| ))+∇g(I)∇u , where, 

ν is the balloon force parameter describing the evolve 
direction of the active contour curve. For ν > 0, the GAC 
will evolve in the inward direction, or in opposite direc-
tion when ν < 0. We use div( ∇u

|∇u| ) to indicate the curvature 
of the curve C. For I is one slice of the breast MRI sequen-
tial images, the edge indicator function g may be used 
to control the curve evolution and stop the curve from 
evolving when it arrives at an object’s boundaries. Such 
a function is defined to be g(I)= 1

/√
1+ α|∇G ∗ I | , 

where ∗ is the convolution operator and G is a Gauss-
ian kernel with standard deviation σ.With this defini-
tion, |∇G| ∗ I → 0 and g(I) → 1 in homogenous regions 
without fine texture. In contrast, |∇G| ∗ I → 255 and 
g(I) → 0 at edge regions.

The GAC contour evolution equation comprises of 
three forces: (a) Balloon force, (b) Smoothing force and 
(c) Attraction force. However, solving PDEs involves 
computationally expensive numerical algorithms. In this 
paper morphological operators are used to solve the 
PDE of GAC as proposed in [16, 17]. Let the contour at 
nth iteration is represented by un(x) . The balloon force 
(g(I)|∇u|ν) can be solved using a threshold θ , binary ero-
sion (Eh) and dilation (Dh) operations for (n + 1)th itera-
tion as

The attraction force (∇g(I)∇u) can be solved very easily 
from intuition. The main purpose of attraction force is to 
attract the curve C towards the edges. Mathematically we 
can discretize this force as

un+
1
3 (x) =,







(Dhu
n(x)), if g(I)(x) > θ and ν > 0,

(Ehu
n(x)), if g(I)(x) > θ and ν < 0,

un(x), otherwise
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In order to solve the smoothing term 
(g(I)|∇u|div( νu

|∇u| )) Alvarez et  al. [49, 50] defined two 
morphological operators, sup-inf (SIh) and inf–sup (ISh). 
In binary images, both SIh and ISh operators look for 
small straight lines (3 pixels long) in four possible spacial 
directions. If no straight line is found, the pixel is made 
inactive and active respectively. The difference between 
SIh and ISh is that, the first one operates on active pix-
els (i.e. pixels having values 1) and the second one oper-
ates on inactive pixels (i.e. pixels having values 0). It can 
be proved that, the mean curvature (div(∇u

/

|∇u|)) can 
be obtained using the composition of these operators 
(SIh◦ISh). So, the smoothing force with smoothing con-
stant µ can be written as

This morphological geodesic active contour is applied 
which is a composition of the three forces (balloon force, 
attraction force followed by smoothing force) to each of 
the slices of the CT volume.

Localization of chest from breast MRIs
In order to localize the breast and chest regions of inter-
ests, a suitable edge in relation to the two regions from 
the axial 2D slice needs to be determined in terms of its 
geometry of breast MRIs. Firstly, we look for the edge of 
breast region of interest, then we derive how to use this 
edge to calculate the edge of chest region. Breast images 
is approximately symmetric and there are two breasts 
on the right and left hand of the MR image. In order to 
find the edge pixels, we search the middle line and then a 
middle region can be determined.

Part of the edge of the breast region is assumed to be 
involved in the middle region along y axis. Before the 
edge region is located, the MR image stack is first pro-
cessed by a morphological binary erosion operation 
with a disk type structuring element of radius 3 pixel. 
The main purpose of this operation is to remove all the 
undesirable small regions present in the MRI slices. The 
middle region of MRI stack is calculated along its verit-
cal directions (y axis) of the axial 2D slice, within the dis-
tance of ± 20 pixels to its middle line. The main edge of 
the breast region of interest is the first bottom line along 
x axis, as shown in Fig. 3.

un+
2
3 (x) =,























1, if ∇u
n+ 1

3∇g(I)(x) > 0,

0, if ∇u
n+ 1

3∇g(I)(x) < 0,

u
n+ 1

3 (x), otherwise

un+1(x) =,







((SIh ◦ ISh)uun+
2
3 )(x), if g(I)(x) > 0,

u
n+ 2

3 (x), otherwise

The bottom edge of chest therefore, is N–middle_pix-5, 
which is viewed as a 5 pixel distance from the lowest edge 
of the middle region of breast (y = middle_pix), aimed 
at removal of the edge of breast. The number of N is the 
total number of pixels along its y direction of MRIs. We 
view this as an ending point for downward direction of 
chest. Therefore, we get the boxed chest image region as 
follows, where The enclosed area (body_cc) with curve 
is the mophological active contour of chest, as shown in 
Fig. 3.

Then compare the intensity of the pixel with its neigh-
bor line of the pixel along the y direction. This procedure 
is repeated for each other line, throughout the whole 
image, and replace the weaker pixel intensity with the 
previous line of the pixel intensity, if the previous line 
shows stronger intensity pixels. This aims to add one 
more pixels at the each important edge of the chest, 
breast, and tumour when they are changed from light to 
dark so as not to wrongly remove edge pixels when con-
ducting gradient transform. Our aim is to find the edge 
with color change from bright to dark that includes the 
edge we wish to detect.

Localization of breast MRIs
In order to define top and bottom boundaries of breast 
segmentation, we use such an expression as 4/5*(N–mid-
dle_pix), which is the approximate distance between 
the chest and the bottom edge of breast in the middle 
region with an aim to pick up all the breast tissue that 
has been classified as chest tissues. It is illustrated as the 
figure below. The green colored part is the region cut-
ted from the chest region of interest, where the white 
arrows indicate the misclassified breast tissue to chest 
tissue. In order to redo the breast segmentation accu-
rately, we involve this as part of the breast region of inter-
est and calculate the breast segmentation. The y posiition 

Fig. 3 The middle region of MRI is calculated along its veritcal direc‑
tions (y axis) of the axial 2D slice, within the distance of ± 20 pixels to 
its middle line
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is calculated by 4/5*(N–middle_pix) as a starting line of 
upward direction from breast region.

After find the top edge of breast region, we need to 
determine the lowest edge of breast. Considering the 
noise around breast edge, we take 0.1 as a threshold, 
which means the pixel with intensity value larger than 
0.1 will be added together along the horizontal line, if the 
accumulated intensity along the horisantal line is larger 
than 10, the bottom of horizontal line with additional 5 
pixel gap will be viewed as the bottom edge of breast, an 
ending point of for downward direction of breast. The 5 
pixel gap aims to involve, for example, the imaged nipple 
related pixels. In the mealwhile, the accurate bottom edge 
will also reduce the effect of noise which may wrongly 
detected as the edge of breast when conduct morphologi-
cal active contour, as shown in Fig. 4.

As illustrated in Fig. 5, the yellow line means 10 pixel 
gap from the initial calculated bottom line, as this will 
introduce some noise and make a wrongly drawing breast 
shape due to much noise around the edge of breast, so 
finally, we use 5 pixel of extra gap instead to be the final 
bottom line of the breast region for active contour to be 
conducted.

In order to find the threshold of breast image inten-
sity range, we first to find the intensity value of noise 
outside of breast. In the following figure, below the bot-
tom boundary of breast, there are some noise around, 
which results in wrong boundary decision when using 

Fig. 4 It is illustrated how to achieve the boxed chest image region, 
in which the enclosed area with curve is the morphological active 
contour of chest

Fig. 5 Illustration of noise around breast edge leads to wrongly 
determined edge of breast

Fig. 6 The yellow line means 10 pixel gap from the innital calculated 
bottom line, and the green line is achieved via the use of 5 pixel of 
extra gap that is the final bottom line of the breast region for active 
contour to be conducted

Fig. 7 Below the bottom boundary of breast, there are some noise 
around, which results in wrong boundary decision when using mor‑
phological active contour as illustrated by white arrow
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Fig. 8 Contour detection on (a) original images; Before and after eSURE denoising on the top and bottom images respectively with the first level 
noise (b) and the fourth level noise (c)

Fig. 9 Illustration of the original MR images in (a), background truth in (b), contour detection in denoising images with level 1 noise (c) and level 4 
noise (d), along with the intensity weakened images (e)
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mophological active contour as illustrated by white 
arrow. We gradually add random noise of different inten-
sities to the images.To release the noise effect, we find 
the maximum value of the noise intensity. We decide the 
intensity threshold of breast region is maximum noise 
intensity plus extra 12 according to our test and revise till 
find the ideal results.

Then we extract the breast tissue image by threshould 
the image in the boxed region. Before it, we use binary 
openning to remove possible noise and binary close to 
smooth the edge of breast tissue. We draw the boundary 
of breast using morphological active contour (Fig. 6).

The stack is thresholded at this decided value in the 
boxed region which retains the lower intensity air filled 
regions (including surrounding air) in the MR image 
stack. A morphological binary erosion operation has 

been done with a disk type structuring element of radius 
1 pixel on the thresholded MRI stack I. The main pur-
pose of this operation is to remove all the undesirable 
small regions present in the MRI slices. Binary openning 
is involved to remove possible noise and binary close to 
smooth the edge of breast tissue. The boundary of breast 
using morphological active contour is finally performed.

MRI measurements
In this paper, we validate our algorithms using two type 
of MRIs using 1.5 T MRIs and 3.0 T MRIs.

1.5 T related potocol: DCE-MRI was acquired by using 
the fat-suppressed 3D-FLASH with one pre-contrast and 
four post-contrast frames, with TR/TE = 4.50/1.82  ms, 
flip angle = 12 degrees, number of signal average = 1, 
matrix size = 512 × 512, FOV = 32  cm, and slice 

Table 1 Illustration of signal to noise ratio in 12 female cases before and after denosing on level 1 noisy images and level 
4 noisy images

001 002 003 004 005 006 007 008 009 010 011 012

Noise Lev1 46.21 46.43 46.43 46.43 46.43 46.43 46.43 46.43 46.42 46.43 46.42 46.43

Denoi. Lev1 47.83 47.74 47.84 46.48 48.22 47.75 47.85 47.72 47.87 48.12 48.00 48.40

Noise Lev4 38.91 38.95 38.95 38.95 38.96 38.95 38.95 38.95 38.95 38.95 38.95 38.95

Denoi. Lev4 41.69 41.59 41.66 40.99 41.79 41.53 41.62 41.74 41.59 41.68 41.68 41.91

Table 2 List of the statistical analysis of breast image segmentation using proposed strategies, according to the segmen-
tation on original images (Original), and the intensity weakened images (Weaken)

Bold numbers mean the maximum and minimum values of the corresponding items to be calculated and compared

Indicators patient Original Weaken

DSI Accuracy Recall Specificity DSI Accuracy Recall Specificity

1 0.91 0.98 0.95 0.97 0.94 0.99 0.95 0.98

2 0.33 0.98 0.31 0.98 0.45 0.98 0.45 0.98

6 0.91 0.97 0.98 0.98 0.90 0.98 0.97 0.98

15 0.82 0.98 0.97 0.97 0.87 0.98 0.96 0.98

18 0.78 0.97 0.97 0.97 0.81 0.97 0.95 0.98

19 0.83 0.96 0.95 0.98 0.82 0.98 0.94 0.98

21 0.90 0.98 0.94 0.99 0.90 0.97 0.92 0.99
23 0.86 0.98 0.95 0.98 0.90 0.99 0.95 0.99
24 0.87 0.96 0.97 0.96 0.87 0.96 0.97 0.96
26 0.86 0.98 0.93 0.99 0.83 0.98 0.90 0.99
27 0.83 0.99 0.98 0.97 0.81 0.97 0.97 0.97

29 0.73 0.97 0.96 0.97 0.73 0.97 0.97 0.97

30 0.84 0.98 0.93 0.98 0.83 0.98 0.94 0.98

Average 0.81 0.97 0.91 0.98 0.82 0.98 0.91 0.98
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thickness = 1.5  mm. The imaging resolution (voxel size) 
was 0.6 × 0.6 × 1.5 mm.

3 T related protocol: The MRI scan was acquired using 
the volume imaging for breast assessment (VIBRANT) 
sequence in the axial view to cover both breasts, with 

repetition time (TR) = 5 ms; echo time (TE) = 2 ms; flip 
angle (FA) = 10°; slice thickness = 1.2  mm; field of view 
(FOV) = 34 × 34 cm2; matrix size = 416 ×  416.

Table 3 List of the statistical analysis of breast image segmentation using proposed strategies, according to the 
denoised MR images with level 1 (Denoised_1) and level 4 noise (Denoised_4)

Bold numbers mean the maximum and minimum values of the corresponding items to be calculated and compared

Indicators patient Denoised_1 Denoised_4

DSI Accuracy Recall Specificity DSI Accuracy Recall Specificity

1 0.90 0.97 0.93 0.97 0.92 0.98 0.94 0.96
2 0.73 0.98 0.84 0.98 0.74 0.98 0.88 0.98

6 0.91 0.98 0.98 0.98 0.91 0.98 0.98 0.98

15 0.85 0.98 0.96 0.98 0.82 0.98 0.93 0.98

18 0.85 0.98 0.96 0.98 0.83 0.97 0.95 0.98

19 0.85 0.96 0.93 0.99 0.84 0.98 0.94 0.99
21 0.92 0.99 0.93 0.99 0.92 0.99 0.92 0.99
23 0.87 0.98 0.94 0.98 0.88 0.98 0.94 0.98

24 0.89 0.97 0.97 0.97 0.88 0.97 0.97 0.97

26 0.87 0.99 0.92 0.99 0.87 0.99 0.90 0.99
27 0.85 0.98 0.97 0.98 0.85 0.98 0.97 0.98

29 0.75 0.97 0.96 0.97 0.75 0.97 0.94 0.97

30 0.85 0.98 0.92 0.99 0.85 0.99 0.91 0.99
Average 0.85 0.98 0.94 0.98 0.85 0.98 0.94 0.98

Fig. 10 Illustration of a comparison between the contours achieved after eSure denoising on level 1 noisy images in (a) and intensity weakened 
images in (b)
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Fig. 11 Breast segmentation with tumours. Case 1

Fig. 12 Breast segmentation with tumours. Case 2

Fig. 13 Breast segmentation with tumours. Case 3
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Experiment results
The following figures are the resultant experiments that 
are achieved via the proposed approaches. There are 15 
cases of female subjects with 12 × 160 = 1820 layers of 
MRIs that have been tested for validation. The measure-
ment uses MRI machine of 1.5 T. As illustrated in Fig. 7, 
we achieve the segmentation of breast before and after 
the deep denoising via eSURE, with application of trans-
mitting learning of nature images. Before denoising, as 
illustrated in Fig. 7a, orange colored arrow indicates the 
contours with slightly away from its original position. 
Green arrow shows small variation of contours around 
the edge between the two breast. Figure  7b shows the 
contours detected after the first level of Gaussian noise 
is added. The signal to noise ratio is 46.44. One the top of 

Fig. 7b, shows increased errors in the detected edges of 
breast compared with resultant contours on the original 
images, highlighted by the colored arrows. After denois-
ing, as shown on the bottom of Fig. 7b, the detected con-
tours have been much close to the real edge of breast, 
compared with contours delineated in Fig.  7a and the 
top of Fig. b. The signal to noise ratio has been improved 
to 47.75. Figure c shows the contours detected after the 
fourth level of Gaussian noise is added. The resultant 
contours on the top of Fig. c, is becoming worse than the 
detected contours with first level noise, due to the added 
signal to noise ratio. However, after denoising, the result-
ant contours with errors have been partly corrected, but 
still shows less corrections than resultant contours delin-
eated on the first level of denoising images, as the bottom 

Fig. 14 Breast segmentation with tumours. Case 4



Page 14 of 21Yin et al. Health Inf Sci Syst (2021) 9:16

of Fig. b. The noise ratio of Fig. 7c is changed from 38.96 
to 41.59.

To some extent, there exists slightly false classifica-
tion of breast tissues when conducting segmentation on 
denoised images. It is found when performing division 
of the image intensity by 3 to achieve weakened image 
intensities on MRIs, the image contours show improved 
performance, as illustrated in Fig. 8. Figure 8a illustrates 
the original MRIs that will be segmented. Figure  8b are 
the background truth delineated by one of experienced 
doctors. Figure  8c–e are contours calculated based on 
denoising images on level 1 and level 4 noisey MRIs, 
and intensity weakened images, respectively. The con-
tours shown in Fig. 8e locate well on the edge of breast, 
whereas Fig.  8c, d display some errors when locate the 
contours after denoising on the level 1 and level 4 images.

However, in most situation, denoising on level 1 MRIs 
performs well in achieve active contour images. In Fig. 9, 
a comparison between the contours achieved after eSure 
denoising on level 1 noisy images Fig.  9a and inten-
sity weakened images Fig. 9b. Though there exists small 
errors in achieving contours on the breast region of 

interest after denoising, the whole shape of breast is obvi-
ously to be drawn. For comparison, the intensity weak-
ened images could not get the correct classification of 
the breast when conducting the proposed segmentation 
approach.

The statistical analysis is conducted for the valida-
tion of segmentation results in relation to deep denois-
ing method. The resultant statistical data are listed in 
the following tables. Table 1 is signal to noise ratio in 12 
female cases before and after denoising on level 1 noisy 
images and level 4 noisy images. The deep denoising 
method allows to improve the signal to noise ratio from 
46 on level 1 noisy images to 48 or so on level 4 images, 
and from 38 to 41 around on level 4 noisy images. The 
denoising method enables to improve signal to noise 
ratio well in level 4 noisy images compared with level 1 
noisy images.

Table  2 lists the statistical analysis of breast image 
segmentation using proposed morphology snake strate-
gies, according to the segmentation on original images 
(Original), on the denosed MR images with level 1 
(Denoised_1) and level 4 noise (Denoised_4), along with 

Fig. 15 Breast segmentation with tumours. Case 5
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the intensity weakened images (Weaken). The statistical 
analysis is conducted according to dice rate (DSI), accu-
racy, recall rate and specificity. For the proposed segmen-
tation conducted on original images, the highest value 
of DSI is 0.91, and lowest value is 0.33. Intensity weak-
ened images allows achieving increased values in the 
lowest and the highest value of DSI, which are 0.45 and 
0.94, respectively, due to the weakened noise intensity. 
But their averaged values keep the same. For the recall 
rate, though the lowest value of original images is lower 
than weakened intensity images, their highest value and 

averaged value keep the same. Compared with original 
images, MR images with weakened intensity result in the 
improved performance in accuracy and specificity, with 
an increased averaged value of 1% and 2%, and the high-
est and lowest value show an increased value between 3 
and 4% as well.

Table  3 lists the statistical analysis of breast image 
segmentation using proposed morphology snake strat-
egies, according to the segmentation on the denoised 
MR images with level 1 (Denoised_1) and level 4 noise 
(Denoised_4). For the proposed segmentation conducted 

Fig. 16 Breast segmentation with tumours. Case 6
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on level 4 noisy images, the highest value of DSI is 0.92, 
and lowest value is 0.74, with averaged value of 0.85, 
higher than the other three types of images. Recall rate 
is 0.98, 0.88 and 0.94 for the highest, lowest, and aver-
aged value, respectively, the best performance on the four 
types of images. The averaged value of accuracy at the 
two denoised levels of MR images shows the same score 
of 0.98 or high. The specificity is similar among the four 
types of images. The images with level 1 and level 4 noise 
shows essentially the same performance.

The proposed method is also applied in 11 female sub-
jects measured using MRI machine of 3.0 T. These breast 
images are extracted from breast MRIs with tumour 
inside. The resultant segmentations are illustrated in 
Figs. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21.           

From the above figures, case 3 and case 5 show slight 
changes in the outlines of breast with part of edge cross 
tumour pixels, due to weak contrast in the breast images. 
All the remaining cases of stacked breast images are 
drawn with good visualized shapes and enclosed tumours 
inside. It is a challenge for the level sets algorithm in loca-
tion of image edge with low contrast, as presentation in 
methodology section. The edge process and analysis is 

fully automatic without application of any prior knowl-
edge. The approach allows to achieve tumour detection 
in the region of interest in relation to breast with slightly 
increases size related to the region of interest.

Also we compare the results with other algorithms that 
have performed well in recent years. We selected DICE, 
recall (RE), specificity (Sp) and accuracy (acc) for a more 
comprehensive comparison,the result in Table 4.

A breast MRI image includes not only various tis-
sues, but also subcutaneous fat, as shown in the red 
area, which is the fat portion of this image. However, for 
the binary marker, the doctor removed the fat portion, 
when they manually drawing the breast region. While, in 
the actual analysis, this portion tends to be retained, as 
a result, the score of DICE rate looks not as high as the 
other algorithms, which is a different understanding in 
the determination of breast regions of interest. As show 
in Fig. 22.

Conclusion
Current breast MRI segmentation is not sufficiently 
accurate due to difficulties in removing landmarks from 
noisy magnetic resonance images (MRI) with similar 

Fig. 17 Breast segmentation with tumours. Case 7
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intensity levels and the close connection to BROI. To 
achieve accurate detection of BROI, the proposed hybrid 
methodology integrates adaptive histogram equaliza-
tion, inversed morphology snake, along with eSURE 
deep denoising for breast segmentation. It is found that 
the denoising MR images with slightly added noise show 
improved performance in breast segmentation. The algo-
rithm paves the way for automated tissue diagnosis. One 
of the advantages of the proposed segmentation is also to 
incorporate deep transfer learning with nature images in 

noise removing. Due to some important parameters that 
have been transferred from nature image to the learn of 
medical images, the classification accuracy of the breast 
ROI has been much increased.

As high dimensional MRI data may be sparse, after the 
image intensity to be weakened, morphology snake can 
stop at the gradient of image edge, with reduced affec-
tion of noisy pixels that lead to misclassified breast edges. 
This is to consider that some noisy pixels on denoised 
images still exist. If the image intensity is reduced, there 
will be a reduction in noisy pixel intensity, which allow 

Fig. 18 Breast segmentation with tumours. Case 8
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Fig. 19 Breast segmentation with tumours. Case 9

Fig. 20 Breast segmentation with tumours. Case 10
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the morphology snake to be shrinkaged to its correct 
edges of breast.

For the future work, it is expected to find a parameter 
to determine which image should be denoised, and which 
image can use the intensity weakened operation instead 
to find the breast edges to be better located.

In this paper, the proposed algorithm frameworks have 
been tested on 12 cased of breast MRIs of 1.5 T and 11 
different cases that comprised of different shapes with 
tumour patterns using MRIs of 3.0  T. We list different 

Fig. 21 Breast segmentation with tumours. Case 11

Table 4 Quantitative comparison of performance of 
breast segmentation using the proposed method with the 
recently developed other approaches

RE Sp DICE acc

Gallego et al. (2012) [51] 0.89 – 0.88 –

Albert et al. (2014) – 0.98 0.85 –

Aida et al. (2017) [52] 0.94 0.98 0.96 0.97

Doran et al. 2017[53] – – 0.90 –

Our 0.94 0.98 0.85 0.98
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classification performance on original and denoised 
images via 1.5 T MRI machines and display all the stack 
of breast MRI via with tumours achieved using 3.0 T MRI 
machines. It is observed that the proposed algorithm 
enables to perform segmentation of the breast effectively 
and automatically on breast MRIs. The presented model 
can act as a preliminary step that further assists in the 
diagnosis of breast cancer.
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