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The current era of COVID-19 is characterized by emerging variants of concern, wan-
ing vaccine- and natural infection-induced immunity, debate over the timing and
necessity of vaccine boosting, and the emergence of post-acute sequelae of SARS-
CoV-2 infection. As a result, there is an ongoing need for research to promote under-
standing of the immunology of both natural infection and prevention, especially as
SARS-CoV-2 immunology is a rapidly changing field, with new questions arising as
the pandemic continues to grow in complexity. The next phase of COVID-19 immu-
nology research will need focus on clearer characterization of the immune processes
defining acute illness, development of a better understanding of the immunologic
processes driving protracted symptoms and prolonged recovery (ie, post-acute
sequelae of SARS-CoV-2 infection), and a growing focus on the impact of therapeutic
and prophylactic interventions on the long-term consequences of SARS-CoV-2 infec-
tion. In this review, we address what is known about the long-term immune conse-
quences of SARS-CoV-2 infection and propose how experience studying the
translational immunology of other infections might inform the approach to some of
the key questions that remain. (Translational Research 2022; 241:1�12)
Abbreviations: AIM = activation induced marker; COVID-19 = coronavirus disease 2019; ELI-
Spot = Enzyme-linked immunospot; ICS = intracellular cytokine staining; IL = interleukin; MAIT
cell = mucosa-association invariant T cell; PASC = post-acute sequelae of SARS-CoV-2 infec-
tion; RBD = receptor-binding domain; SARS-CoV-2 = severe acute respiratory syndrome coro-
navirus 2; SOT = Solid organ transplant
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studies were crucial in demonstrating that most indi-

viduals develop long-term humoral and cell-mediated

immunity to infection with the virus, the current era of

COVID-19 is characterized by emerging variants of

concern, waning vaccine- and natural infection-

induced immunity, debate over the timing and neces-

sity of vaccine boosting, and the emergence of post-

acute sequelae of SARS-CoV-2 infection (PASC). As

millions of individuals worldwide continue to become

infected, there is an ongoing need for research to pro-

mote understanding of the immunology of both natural

infection and prevention. In this review, we address

what is known about the long-term immune consequen-

ces of SARS-CoV-2 infection and propose how experi-

ence studying the translational immunology of other
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infections might inform the approach to some of the

key questions that remain.
LONG-TERM PROTECTIVE IMMUNITY FOLLOWING
INFECTION

Most individuals with SARS-CoV-2 infection

develop robust and persistent immunologic responses

following natural infection, and as of the time of this

review, many studies have characterized the humoral1-

23 and cell-mediated19, 24-33 immune responses during

convalescence for periods of up to 1 year. While the

magnitude of the immune response to natural infection

is at least in part determined by the severity of the ill-

ness,3 ,6,7,15,28,30 the predictors of the duration of natu-

ral immunity are not fully understood and may be

determined by a variety of clinical and measurement

factors.15,18 Despite this complexity, there is general

consensus that, in most cases, natural immunity persists

for up to at least 8 months. Despite the observation that

antibody levels may wane over time, several studies

have now demonstrated persistence of virus-specific

lymphocytes over 12 months following natural infec-

tion by various intracellular cytokine staining (ICS),

activation induced marker (AIM), and EliSpot assays.

These assays quantify T cell cytokine expression (ICS/

EliSpot) or surface markers of T cell activation (AIM)

following antigenic stimulation with various virus-spe-

cific peptide pools. For example, the percentage of

virus-specific CD8 and CD4 T cells as measured by

ICS or AIM range from approximately 0.01%�10%

during this extended time period across multiple

studies,25,26,28,29,31,32 with the median or mean percent-

age typically<1%. Spot forming cells/units in ELISpot

assays tend to range from 10 to >1,000 in response to

SARS-CoV-2 peptides, including HLA-restricted

pools.27,34 These responses wane slowly over time in

all assays depending on initial disease severity and var-

ious clinical factors but can typically be detected across

a range of virus gene regions (eg, Spike, Nucleocapsid,

Membrane).

These immunologic findings have been borne out

by the clinical observation that re-infection with

similar viral variants was relatively uncommon in

the first year of the pandemic, with some excep-

tions.35 During the first year of the pandemic, re-

infection seemed exceedingly rare and fewer than

50 cases were reported in the literature,35 although

the true burden of re-infection is difficult to esti-

mate given the scale of the pandemic, the high pro-

portion of asymptomatic infections, and the

variability in access to testing. While there was ini-

tially hope that those with prior SARS-CoV-2
infection would aid efforts toward herd immunity

and could be at lower risk for re-infection, more

recent studies have demonstrated that natural immu-

nity within a population itself is likely insufficient

to fully protect against re-infection, particularly

with novel variants of concern.36 The study of long-

term natural immunity has been complicated by the

relatively widespread rollout of highly efficacious

vaccines with inconsistent uptake across demo-

graphic and geographic locales in addition to the

recent authorization or approval of booster vaccine

doses across the United States and Europe.
BREADTH AND DEPTH OF T CELL IMMUNE RESPONSES
AND CROSS-REACTIVITY TO OTHER
CORONAVIRUSES

Data regarding the breadth of SARS-CoV-2-specific

T cell immune responses following natural infection

and the potential for cross-reactivity with other human

beta-coronaviruses are rapidly evolving and were

reviewed by Grifoni and colleagues.37 Thus far, over

1400 unique CD8 and CD4 T cell epitopes have been

identified,37,38 although only a handful of antigens

comprise >85% of these. Interestingly, immunodomi-

nant regions of the spike protein for CD4 T cells are

relatively limited, whereas distribution for CD8 cells

are more homogeneous.37 Nonetheless, a prior study

estimates that an individual may recognize 17 different

CD8 and 19 different CD4 immunologically important

epitopes.38 In addition, we and others have shown that

SARS-CoV-2 specific CD4 T cell responses, and to a

much lesser extent CD8 T cell responses, are signifi-

cantly correlated with antibody responses including

total levels and neutralization capacity.30,39,40 CD4 and

CD8 T cells also appear to play unique roles in clinical

disease, or respond differently to natural infection, and

it is important to impart that these cells play different

roles in immune responses to infection and should not

be thought of as a unified T cellular response. For

example, we and others have demonstrated that the

magnitude of virus-specific CD4 T cells appears to cor-

relate with initial disease severity and with levels and

neutralization capacity of antibody responses.25,30,41,42

These associations were not consistently observed with

CD8 T cell responses in our study, which appear to be

influenced by other clinical factors. For example, we

previously reported that pre-existing lung disease is

independently associated with higher long-term SARS-

CoV-2-specific CD8, but not CD4, T cell responses.

Regardless of the differences between CD4 and CD8 T

cell responses, there is now data emerging that virus-

specific T cell reactivity is not significantly disrupted

https://doi.org/10.1016/j.trsl.2021.11.006
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by viral variants, such as Delta.43,44 Little data are cur-

rently available on the emerging Omicron variant.

There is also data emerging that some individuals

may have cross-reactive T cell responses to other

human beta-coronaviruses, with detectable responses

in those without a history of known

infection.25,28,41,45,46 Some of these responses may be a

result of occult, asymptomatic prior SARS-CoV-2

infection that led to aborted or rapidly wainig antibody

levels,29,47 but data exist suggesting that pre-existing

memory responses from endemic, less-pathogenic

coronaviruses or other pathogens occur in some

individuals.34,48 Interestingly, pre-existing cross-reac-

tive T cell responses may be better detected by assays

that measure the capacity for T cells to proliferate in

response to SARS-CoV-2 Spike protein stimulation ex

vivo rather than by intracellular or cell surface markers

of response.49 Regardless, it is poorly understood to

what extent or for how long pre-existing cross-reactive

immunity may protect from acute infection or modu-

late disease severity and the development and persis-

tence of post-acute sequelae. Further study is urgently

needed.
VACCINE INDUCED ANTIBODY AND T CELL
RESPONSES

Initial vaccine trials predmoniaty enrolled healthy

adults, and those currently approved or pending

approval for use in the United States and Europe

(Pfizer/BioNTech BNT162b1, AstraZeneca ChadOx1,

Moderna mRNA-1273, Janssen Ad26.COV2, Novavax

NVX-CoV2373) lead to robust antibody binding and

neutralization titers.50 Antibody responses generally

mirror protection from asymptomatic through severe

disease, hospitalization and death. However, efficacy

has been shown to wane over time leading various reg-

ulatory agencies in Europe and the United States to

approve or authorize boosters or supplementtal doses

for adults,51-55 with or without underlying immuno-

modulatory conditions or belonging to risk groups.

Despite waning antibody titers and increased cases of

mild infection, vaccines continue to protect against

severe disease and hospitalization for up to 6

months.51-55 As of now, vaccines remain active against

the predominant circulating strains of SARS-CoV-2,

and variants that may be more resistant to vaccination,

such as Mu, appear to have a replication disadvantage

compared with the widely circulating Delta variant.

Whether this will remain the case with Omicron is

unknown. Whereas levels of nasopharyngeal shedding

have been reported to be similar in persons who

acquired infection after full vaccination compared with
those who were previously unvaccinated, the duration

of viral shedding and symptoms are significantly

shorter, and infection may be more compartmentalized

to non-shedding tissues.56 Further research is war-

ranted to more precisely determine the impact of vacci-

nation on infectivity of breakthrough infection.

Regardless, vaccine use has had a dramatic positive

effect on reducing morbidity, mortality and community

spread of SARS-CoV-2.

Data on T cell responses from vaccine trials are

more sparse, and systematic study of adaptive cellu-

lar responses varied across initial studies (as

reviewed elsewhere50). A majority of approved or

authorized vaccines, however, have demonstrated

development of CD4, CD8 or total T cell responses

as measured by spot forming colonies per 106 cells

in EliSpot assays (40 to >2600 spot forming colo-

nies). Data on the decay of T cell responses follow-

ing vaccination over time are currently lacking, and

it is not known what role vaccine-elicited virus-spe-

cific T cell responses play in preventing primary

infection or modulating the course of acute and

post-acute disease.

To date, the immunologic response prior to

SARS-CoV-2 vaccination has been characterized for

over 12 months.57,58 The recent surge of the Delta

variant of SARS-CoV-2 globally has revealed that

vaccine-induced immunity might be insufficient to

prevent infection and more severe disease in many

cases. Furthermore, the duration for which vaccine-

induced immunity can protect against severe disease

and hospitalization remains unclear, although boost-

ing is likely to significantly extend the duration of

protection.
IMMUNITY IN IMMUNOCOMPROMISED INDIVIDUALS

It is now well established that antibody and T cell

responses can be severely impaired following vaccina-

tion,59 and to a lesser extent, natural infection,60-62 in

immunocompromised individuals, including solid

organ transplant (SOT) recipients, cancer patients, and

others receiving immunomodulatory medications for

various conditions. For example, there is growing evi-

dence that SOT recipients do not develop detectable

antibody levels or measurable neutralizing capacity

following two-dose vaccination,63-68 and current clini-

cal experience demonstrates higher rates of post-vac-

cine infection and hospitalizations in this population.

An additional third or even fourth dose appears to

increase antibody responses, however.69,70 Patients

with cancer, especially those with hematological

malignancies on cytoreductive or anti-B cell therapies

https://doi.org/10.1016/j.trsl.2021.11.006
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and certain rheumatologic diseases also exhibit

reduced antibody responses to vaccination,71-73 albeit

to a lesser degree than those who have received SOT

but may experience high rates of vaccine break-

through.74 Various medications that have anti-prolifer-

ative mechanisms of action (such as mycophenolic

acid derivatives) may be associated with more

impaired antibody, B and T cell responses. As above,

anti-B cell agents and systemic corticosteroids impact

antibody responses and memory B cell responses and

combinations of immunomodulatory agents are likely

to have more profound and lasting negative impacts on

these immune responses.64,65,67,75-77

T cell responses are also impaired in the setting of

immunosuppressive medications and diseases, but data

are now emerging that these responses are somewhat dis-

cordant with antibody responses following vaccination.

For example, nearly half of kidney transplant recipients in

one study that did not develop antibody responses follow-

ing vaccination had detectable SARS-CoV-2-specific T

cell responses.64 Whether or not these T cell responses are

protective, as discussed above, is not known and requires

further study. However, recent data show that persons that

receive anti-B cell therapy (eg, anti-CD20 for multiple

sclerosis) have a paradoxical increase in SARS-CoV-2-

specific CD8 T cell responses, despite significant

impairment of humoral responses.75,78-82 The increase in

CD8 T cell responses may reflect an immune compensa-

tory mechanism,78,83,84 but it is still not clear what role

virus-specific CD8 T cells have in protection from infec-

tion or modulation of disease severity. It is also interesting

to note that despite the potential for increased CD8 T cell

responses, individuals with impaired humoral responses

have increased risk of more severe infection.78,85

Immunity in other immunocompromised individu-

als, such as those living with HIV infection, is more

variable. Recent work has suggested a lower magnitude

of humoral and cell-mediated immune responses86-88

or shorter duration of the antibody response in compar-

ison to the general population,89 although both obser-

vations require further study. Recent studies suggest

that the immune response following vaccination is

equal amongst PLWH and the general population90

and in comparison to those with other immunocom-

promising conditions,91 but further work is needed to

confirm these findings given the global concern for sus-

tained immunity to SARS-CoV-2 and the known

poorer responses to immunization for other infections

among PLWH.92-97 This includes suboptimal responses

to vaccination to prevent against yellow fever,93,94

Hepatitis B,96, influenza,95 polio, diphtheria, and teta-

nus.97 It is likely that inadequate CD4 T cell immune

reconstitution, chronic inflammation, and T cell

exhaustion underlie these observations,93 and careful
studies will be needed to understand how HIV and

COVID-19 vaccination durability overlap.
HUMAN INFLAMMATORY RESPONSES IN COVID-19

COVID-19 can lead to profound inflammatory

responses in acute infection and to increased levels of

various cytokines, such as TNF-a, IL-6, and IP-10,

which are associated with more severe disease and organ

damage.98-103 Especially among those hospitalized with

COVID-19, inflammation during the acute and early

post-acute phase of infection has been associated with

poor outcomes.104-110 In addition, many individuals

present with profound lymphopenia, including a marked

decrease in circulating NK, CD8 and CD4 T cells,

including helper and regulatory T cells.98-103 Lower

numbers of circulating monocytes, eosinophils and

basophils have also been observed. In contrast, leuko-

cyte counts tend to be higher in patients with severe clin-

ical manifestations.111,112 Despite lymphopenia in more

severe SARS-CoV-2 infection, increased frequency of T

cells responding to various antigens such as, Spike,

Nucleocapsid, membrane, and accessory (functional)

protein (eg, ORF 1ab) peptide sequences develop within

the weeks following infection.29 Although lymphocyte

counts return and virus-specific adaptive immunity

develop early during clinical recovery, increased

markers of T cell exhaustion and reduced functional

diversity of T cell subsets have been reported in the

early convalescent period.98,99,113,114

Emerging data suggest that inflammation related to

acute SARS-CoV-2 infection can persist for weeks or

even months.115,116 One study found that convalescent

plasma donors with prior COVID-19 demonstrated ele-

vations in certain markers of inflammation compared

to historical controls, even though they presumably felt

well enough to donate plasma.115 These markers

include interferon (IFN)-gamma, certain interleukin

(IL) proteins (eg, IL-12p70, IL-13, IL-1b, IL-2, IL-4,

IL-5, IL-33), and monocyte chemoattractant protein

(MCP)-1 and suggest ongoing immune activation.

Another study of a large cohort of individuals hospital-

ized with asymptomatic, mild, and severe disease

showed that individuals who recovered from COVID-

19 had elevated levels of proinflammatory and angio-

genic markers at 6 months in comparison to healthy

controls.116 There is an ongoing need for work explor-

ing the clinical implications of persistent inflammation

following SARS-CoV-2; while such elevations are

clearly significant in chronic infections like HIV,117,118

this is less well understood for acute infections like

SARS-CoV-2 which is not thought to persist over the

long-term.

https://doi.org/10.1016/j.trsl.2021.11.006
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IMMUNOLOGIC AND INFLAMMATORY
MANIFESTATIONS OF POST-ACUTE SEQUELAE OF
SARS-COV-2 INFECTION (PASC)

Recently, there has been recognition that a signifi-

cant proportion of individuals recovering from SARS-

CoV-2 infection experience new or persistent symp-

toms that did not pre-date their infection.119-122 Investi-

gation into PASC is only just beginning, and the

pathophysiology of the condition is thus far entirely

unknown. While well-designed epidemiologic studies

are beginning to identify certain risk factors for PASC,

including female sex, older age, severity of initial

infection, number of symptoms during acute illness,

and sociodemographic factors, the condition remains

poorly understood.119-122

One major question is whether PASC is an immuno-

logic phenomenon, either from long-term sequelae fol-

lowing an immunologic insult that occurs early in the

course of the infection (ie, a “hit and run” mechanism)

or related to an ongoing immunologic or other pertur-

bation, potentially in the setting of ongoing viral persis-

tence in tissue. So far, the clues have been limited. A

handful of studies have identified higher levels of bind-

ing or neutralizing antibodies in those with

PASC,122,123 suggesting that persistent symptoms

could be a manifestation of more severe illness (which

is known to be associated with higher antibody levels

and correlated with higher risk of developing PASC) or

possibly persistent immune stimulation.14 Other studies

have found that the humoral response appears lower

among those with persistent symptoms.124-126 For

example, ongoing viral shedding in the gut is associ-

ated with lower RBD-specific antibodies,124 suggesting

suboptimal immune responses may result in persistent

viral antigen. Furthermore, a handful of studies have

correlated PASC with lower SARS-CoV-2 specific

antibody responses,126 and have shown that those with

lower titres during early recovery might be more likely

to have persistent symptoms. Cellular immune studies

are limited and have thus far not revealed obvious dif-

ferences, although our recent work has suggested

lower126 or differential decay in the magnitude of

SARS-CoV-2 specific CD8 T cell responses among

those with PASC.30 While intriguing, the precise impli-

cations of this finding is not known, and could either

represent a more exhausted pool of viral-specific cells

that develop over time or other immune dysregulation

or detrimental systemic inflammation leading to decay

in the frequency of these CD8 T cells. Understanding

the relationship between immune responses during

early recovery and the persistence of PASC symptoms

could guide diagnostic or therapeutic decision making

for millions of individuals recovering from COVID-19.
Studies that have evaluated persistent inflammation

have suggested potential elevations in

biomarkers,116,127 although no clear immunologic

pathways have yet to be consistently implicated. We

recently demonstrated that during early recovery (ie,

one to two months after initial infection), those who

went on to develop PASC generally had higher levels

of biomarkers including significant elevations in circu-

lating TNF-alpha and IP-10, and a trend towards higher

IL-6 levels. During late recovery (4 months following

infection), levels of TNF-alpha and IP-10 levels

decayed and converged with levels in participants

without PASC, whereas IL-6 elevations became more

pronounced. These differences tended to be more pro-

nounced among those with a greater number of PASC

symptoms suggesting that PASC is associated with

increased immune activation over time, which may

underlie some symptoms which persist for more than 3

months following SARS-CoV-2 infection. IL-6 eleva-

tions may result from immune cell activation and sig-

naling, degradation of gut mucosal integrity and

translocation of bacterial and other infectious agents, B

cell activation, among many other processes.117,128,129

Further characterization of such biological pathways

and the processes that might drive them could lead to

the identification of therapeutic targets for those

experiencing PASC. In a prior study, we did not

observe differences in markers of aberrant blood clot-

ting, such as D-Dimer in those with and without persis-

tent symptoms, despite disorders of hemostasis

contributing to some individuals with severe COVID-

19.30 However, further study is certainly warranted

given sample size limitations and the lack of a standard

working definition of PASC.

Aberrant autoimmune responses are present during

acute COVID-19 and have been proposed as a potential

underlying etiology of PASC,130-132 and recent study

showed that over 40% of patients in a longitudinal study

have positive antinuclear antibody (ANA) titers >1:160

12 months following infection.133 A majority of the

cohort reported PASC symptoms and the number of

symptoms reported were higher in those with a positive

ANA. In our long-term COVID-19 cohort, however, we

were unable to detect positive ANAs in any of 49 partici-

pants approximately 4 months after initial infection and

detected positive ANAs in just 3 of 69 participants 8

months after acute infection, which is similar to the per-

centage of people in the general population without

known autoimmune disease that have detectable ANAs.

Our cohort included individuals with and without PASC,

including those with>20 symptoms 8 months after initial

infection and perturbation in activities of daily life.134 As

a result, further studies of potential autoimmune

https://doi.org/10.1016/j.trsl.2021.11.006


Translational Research
6 Peluso et al March 2022
mechanisms behind PASC are needed in order to under-

stand these disparate findings.

Finally, the alterations of both inflammation and

immune responses in the setting of convalescent

COVID-19 may also influence future risk of various

conditions such as cardiovascular, pulmonary and

neurological diseases. Unfortunately, time will be

needed to understand the longer impact of

SARS-CoV-2 infection more fully beyond persis-

tent symptoms.
TISSUE PERSISTENCE OF SARS-COV-2 INFECTION: A
POTENTIAL MECHANISM FOR PASC?

It is well established that immunocompromised

individuals are capable of shedding SARS-CoV-2

RNA from oral/nasopharyngeal tissues months after

acute infection, and novel variants may have arisen

in such individuals under the setting of partial

immune pressure.135,136 However, RNA shedding

usually resolves within a month in immunocompe-

tent patients,137 and we recently observed no persis-

tent RNA shedding in convalescent COVID-19

patients who exhibit PASC approximately 4 months

after initial infection.30 Despite this, there has been

limited but intriguing data suggesting that SARS-

CoV-2 proteins can be identified in gut tissue

months after initial infection.14 If SARS-CoV-2

remains transcriptionally and/or translationally

active in various tissue reservoirs following clear-

ance from nasopharyngeal tissues, this could repre-

sent a potential mechanism underlying the

development and maintenance of PASC.138 There

are also data emerging that COVID-19 may lead to

intestinal damage and microbial translocation.139 In

chronic infections, such as Human Immunodefi-

ciency Virus (HIV), persistence of virus in gut-asso-

ciated mucosal tissue leads to gut barrier

dysfunction and bacterial/fungal translocation that

may lead to elevated markers of immune activation

(including IL-6) and inflammation, even in those on

suppressive antiretroviral therapy.128 Furthermore,

elevations in IL-6 and other inflammatory markers

in the setting of chronic HIV infection are associ-

ated with worse clinical outcomes,140-142 and the

longer-term clinical impact of persistent IL-6 eleva-

tions identified in our PASC cohort requires further

investigation.

Although the mechanisms of PASC are not

known, the current thinking is that PASC is a multi-

factorial process that manifests in diverse clinical

and demographic phenotypes. In addition, there is

yet to be a standard working definition of PASC
and objective phenotypes have yet to be determined.

As a result, studying the pathophysiological basis of

PASC is going to be challenging and require large

numbers of study participants with well curated con-

trol groups.
LEVERAGING THE STUDY OF OTHER CHRONIC
INFECTIONS TO UNDERSTAND POST-ACUTE SEQUELAE
OF SARS-COV-2 INFECTION

The infectious disease research community has

developed tools over the last two decades that can

be leveraged to support research into duration of

immunity and immunologic consequences following

SARS-CoV-2 infection. Decades of research in

chronic viral infections, such as HIV as mentioned

above, shows that tissue persistence and ongoing

inflammation and immune activation can lead to

increased morbidity across multiple organ systems.

In addition, other chronic viral infections, such as

CMV, may lead to long-term inflammation in those

with various immune suppressing conditions such as

HIV and organ transplantation and increases risk of

cardiovascular disease through chronic immune dys-

regulation,143-147 and tools have been developed to

study tissue-based disease that can be applied to the

long-term pathogenesis of COVID-19. Although

SARS-CoV-2 is predominately thought of as a

respiratory illness, viral receptors, suchy as ACE2,

can be found throughout various tissues in the body,

including endovascular tissue and many organ sys-

tems.148-150 Given data hinting at potential viral per-

sistence in gut tissues, many of the potential drivers

of PASC could require tissue investigation for

meaningful in-depth mechanistic studies.

First, there is an urgent need to understand the

long-term immunological and inflammatory impact

of SARS-CoV-2 infection in mucosal, gastrointesti-

nal and respiratory tissues. Whereas procedures

such as bronchoalveolar lavage can be relatively

easy in patients requiring mechanical ventilation for

diagnostics or therapeutics, invasive or semi-inva-

sive sampling in the setting of convalescent disease

presents greater challenges. Although challenging,

the HIV research community has developed a wide

range of translational research tools to study viral

persistence and immune and inflammatory responses

in various mucosal, lymphoid and other tissues

which can be applied to the study of COVID-19

and PASC. For example, gut tissue biopsies and

lymph node sampling are routinely performed in the

clinical and translational HIV research settings, and

the study of these tissues has revealed much

https://doi.org/10.1016/j.trsl.2021.11.006


Translational Research
Volume 241 Peluso et al 7
information on how HIV persists in the setting of

suppressive antiretroviral therapy over time and

how immune responses (or lack thereof) interact
Table I. Translational science questions related to long-

term immunologic consequences of COVID-19

Humoral and Cellular Immunology
What is the role of T cells in preventing or mitigating the
severity of acute infection or re-infection in those with
prior SARS-CoV-2 infection or vaccination?

At what point following infection or vaccination is pro-
tection from hospitalization and severe illness lost? At
what point is protection from re-infection lost?

How does post-infection immunity compare with post-
vaccine immunity? How does this immunity compare
across emerging variants of concern?

What is the functional half-life of SARS-CoV-2-specific T
cells and amnestic potential following infection or
vaccination?

How do novel SARS-CoV-2 therapeutics, including anti-
virals and immunomodulatory agents, affect long-
term immunity following natural infection?

Are the compensatory T cell responses observed in
immunocompromised patients with imparied humoral
immunity following vaccination protective?

Mucosal Immunity
What are the key factors in determining the presence
and duration of protective mucosal immunity?

How does immune memory differ between what has
been observed in peripheral blood with various tissues
(eg, mucosal and organized lymphoid tissues, lower
respiratory tract, etc.)

What is the role of secretory and circulating IgA
antibodies?

Post-Acute Sequelae of SARS-CoV-2 Infection
Are there immune mechanisms active during acute
infection that predict the development of post-acute
sequelae of SARS-CoV-2 infection (PASC)?

Are there immune mechanisms that are initiated during
the recovery phase (ie, after acute infection has
resolved) that are associated with PASC?

If immune mechanisms are found to underlie PASC, can
we distinguish persistent immune perturbations from
the sequelae of so-called “hit-and-run” mechanisms?

Does SARS-CoV-2 antigen persist beyond the period of
mucosal viral shedding, either in the form of replica-
tion-competent or non-replication-competent virus? If
so, at what body sites?

Do inadequate or excessive immune responses (includ-
ing autoimmune responses) contribute to PASC?

If immune mechanisms drive PASC, are there interven-
tions which can prevent or treat PASC symptoms?

Will PASC lead to increased risk of cardiovascular or
neurologic diseases over time?

Quantifying Tissue SARS-CoV-2 Burden and Sequelae
What tissue-based measurements will be informative in
determining whether SARS-CoV-2 genetic material or
protein persist in tissues? What measurements will be
acceptable in those who have entered the conva-
lescent phase?

Are there non-invasive methods of measuring whole-
body immune responses or inflammation in the setting
of SARS-CoV-2 infection?
with infected cells.151-161 In addition, in situ study

of viral infection within an anatomic histological

context has proved critical in elucidating the burden

of infection and impact on immune and inflamma-

tory responses.153,162-165 In addition to the gastroin-

testinal studies as discussed above, studies of

COVID-19 are now emerging examining the role of

T and B cell memory responses in various tissues

(eg, lung-associated lymph nodes in adults or tonsil-

lar tissue in children) and mucosa-association

invariant T cells in lower airways. It is likely that

analysis of human nasopharyngeal, respiratory,

lymph node, gut and vascular endothelium will be

necessary to fully understand the long-term immune

and inflammatory implications of COVID-19. Given

the challenges of studying tissues that are not rou-

tinely accessible to clinical sampling, such as the

brain, heart, liver, spleen, and deeper lymph node

chains, to name just a few, non-invasive technolo-

gies to determine the burden of SARS-CoV-2 infec-

tion and short- and long-term immune and

inflammatory sequelae are urgently needed. Table 1

summarizes many unanswered translational science

questions related to long-term immunologic conse-

quences of COVID-19.
CONCLUSION

SARS-CoV-2 immunology is a rapidly changing

field, with new questions arising as the pandemic con-

tinues to grow in complexity. The next phase of

COVID-19 immunology research will focus on clearer

characterization of the immune processes defining

acute illness, development of a better understanding of

the immunologic processes driving protracted symp-

toms and prolonged recovery (ie, PASC), and a grow-

ing focus on the impact of therapeutic and prophylactic

interventions on the long-term consequences of SARS-

CoV-2 infection.
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